Willkommen beim Lehrstuhl für Experimentalphysik zur Topologie korrelierter Systeme!
Wir arbeiten auf dem Gebiet der experimentellen Festkörperphysik. Der Schwerpunkt unserer Forschung liegt auf der systematischen Suche nach neuen Materialeigenschaften mit ungewöhnlichen topologischen Eigenschaften und starken elektronischen Korrelationen in den Bereichen Magnetismus und Supraleitung. Das Portfolio unserer experimentellen Methoden umfasst die Einkristallzüchtung von Übergangsmetall- und Seltenerdverbindungen, Messungen von Transport- und Volumeneigenschaften unter extremen Bedingungen sowie eine breite Palette von Neutronen- und Röntgenstreumethoden.
We report neutron depolarization measurements of the suppression of long-range ferromagnetism and the concomitant emergence of magnetic irreversibilities and spin freezing in CePd(1−x)Rhx around x*≈0.6. Tracking the temperature versus field history of the neutron depolarization, we find clear signatures of long-range Ising ferromagnetism below a Curie temperature TC for x=0.4 and a spin freezing of ferromagnetic clusters below a freezing…
[weiterlesen]
Mesoscale patterns as observed in, for example, ferromagnets, ferroelectrics, superconductors, monomolecular films or block copolymers reflect spatial variations of a pertinent order parameter at length scales and time scales that may be described classically. This raises the question for the relevance of mesoscale patterns near zero-temperature phase transitions, also known as quantum phase transitions. Here we report the magnetic susceptibility…
[weiterlesen]
MIEZE (Modulation of IntEnsity with Zero Effort) spectroscopy is a high-resolution spin echo technique optimized for the study of magnetic samples and samples under depolarizing conditions. It requires a polarization analyzer in between spin flippers and the sample position. For this, the device needs to be compact and insensitive to stray fields from large magnetic fields at the sample position. For MIEZE, in small angle scattering geometry, it…
[weiterlesen]