Machine Learning for Biomaterials
Biomaterials play a crucial role in our pursuit of a sustainable society. Feedstock from biomass (e.g., wood) processed in biorefineries can provide us with as a renewable source of materials such as chemicals, solvents, and polymers that can subsequently be incorporated into high-value products. Bio materials furthermore offer alternative routes for waste management through biodegradation processes and promote equality in the global economy by decreasing our reliance on scarce raw materials.
To accelerate the development of new technologies for biomaterials, we are researching machine learning-assisted approaches to materials processing and modelling. Our current efforts focus on applying Bayesian optimization, through our in-house developed code BOSS, as a means of planning experiments and predicting their outcome.
For an application of machine learning and BOSS to optimize a novel biorefinery concept for green lignin extraction based on hydrothermal pre-treatment of hardwood followed by aqueous-acetone extraction see:
For an application of machine learning and BOSS to predict the morphology of colloidal, oxidized tannic acid particles see: