Energy correlators for the top quark mass

Massimiliano Procura

universität /Ien

TUM/MPP Collider Seminar, TU München, November 5, 2024

Parton-shower simulations: theoretical robustness and experimental feasibility

Summary and outlook

J. Holguin, I. Moult, A. Pathak, MP, Phys. Rev. D 107 (2023)

J. Holguin, I. Moult, A. Pathak, MP, R. Schöfbeck, D. Schwarz, 2311.02157, 2407.12900

Novel proposal: extract the top mass from correlators of energy flow operators

The top quark mass: indirect measurements

- calculable contributions are evaluated in a specific renormalization scheme
- * Good theoretical control for inclusive $t\overline{t}$ cross section (indirect top mass sensitivity, tied to hard interaction) Parton-level results for $\sigma(t\bar{t} + X)$ to NNLO+NNLL accuracy (Czakon, Mitov 1112.5675) used by ATLAS and CMS to extract m_t in the pole-mass scheme

* Top quark mass: SM parameter of fundamental importance in high-energy physics (EW precision tests, vacuum stability,...) High precision at LHC: persistent challenge

* Extracted by comparing theory vs data for collider observables, whose perturbative

The top quark mass: indirect measurements

CMS 1603.02303

$\Delta m_{\star}^{\text{pole}} \sim \pm 2 \,\text{GeV} \,\text{from} \,\sigma_{t\bar{t}}$

ATLAS 1910.08819, CMS 1812.10505

Weakly sensitive to the top mass, strongly affected by PDF uncertainties

Higher sensitivity to the top mass achieved by considering differential distributions as well as $tar{t}+ ext{jet}$ processes: $\Delta m_t^{ ext{pole}}\sim\pm1\, ext{GeV}$ atlas 1905.02302, CMS 1904.05237, Cooper-Sarkar et al. 2010.04171 ...

The top quark mass: direct measurements

Analysis of kinematic observables built out of reconstructed top decay products has yielded higher precision:

 $m_t^{\rm MC} = 171.77 \pm 0.37 \,{\rm GeV}$

* Approach relies entirely on parton showers and models of hadronization and UE in Monte Carlo event generators: Robust theory uncertainty?

CMS 2302.01967

The top quark mass: groomed jet mass

- * Higher level of theoretical control for the jet mass combined with jet grooming such as soft drop (Larkoski et al. 1402.2657) to mitigate effects from wide-angle soft radiation, UE contamination and hadronization

* Observables in direct measurements exhibit threshold structures, which enhance the sensitivity to m_t but also to soft and collinear radiation as well as hadronization

Even after grooming one needs to account for residual O(1 GeV) shifts

Hoang et al. 1708.02586, 1906.11843; Pathak et al. 2012.15568

Observables for the top mass extraction at LHC

from Hoang 2004.12915

We explore possibility of precision extraction of top quark mass at the LHC from the measurement of energy-weighted angular correlations of boosted top decay products

* Energy flow operator:

$$\mathcal{E}(\vec{n}) = \int_0^\infty dt \lim_{r \to \infty} r^2 n^i T_{0i}(t, t)$$
$$\mathcal{E}(\vec{n}) \simeq \int_0^\infty dt \text{ (Energy flux t)}$$

* N-point correlators of energy flow operators $\langle \mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)\ldots\mathcal{E}(\vec{n}_N)\rangle$ related to cross sections where the contributions from final-state particles are weighted by the eigenvalues of the energy flow operators in the various directions

through $d\Omega$)

Two-point energy correlator in eter collisions

$$\langle \mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)\rangle = \sum_{ij} \int \frac{\mathrm{d}\sigma_{ij}}{\mathrm{d}^2 \vec{n}_i \mathrm{d}^2 \vec{n}_j} \underbrace{E_i E_j \delta^2(\vec{n}_1 - \vec{n}_i) \delta^2(\vec{n}_2 - \vec{n}_j)}_{\text{two-particle inclusive}}$$

$$= \int \mathrm{d}\Sigma = \int \mathrm{d}^2 n_1 \mathrm{d}^2 n_2 \, \delta(\vec{n}_1 \cdot \vec{n}_2 - \cos\chi) \frac{\langle \mathcal{E}(\vec{n}_1 - \vec{n}_2) \delta(\vec{n}_1 \cdot \vec{n}_2) - \cos\chi}{\langle \mathcal{E}(\vec{n}_1 - \vec{n}_2) \delta(\vec{n}_1 \cdot \vec{n}_2) - \cos\chi} \langle \mathcal{E}(\vec{n}_1 - \vec{n}_2) \delta(\vec{n}_1 \cdot \vec{n}_2) \delta$$

At variance with standard event shapes, each event (collection of final state particles) contributes to multiple bins:

Basham et al. PRL 41 (1978)

QCD cross section

Factorization theorems for energy correlators in ete- χ

* In the collinear limit at leading power:

$$\Sigma\left(z,\ln\frac{Q^2}{\mu^2},\mu\right) = \int_0^1 \mathrm{d}x \, x^2 \vec{J}_{\mathrm{EEC}}\left(\ln\frac{zx^2Q^2}{\mu^2},\mu\right) \cdot \vec{H}\left(x,\frac{Q^2}{\mu^2},\mu\right)$$

 $\frac{\mathrm{d}\Sigma_{\mathrm{EEC}}}{\mathrm{Dixon, Moult_{dz}Zhu}} \stackrel{1}{\mathbf{F904}} \stackrel{1}{\mathbf{504}} \stackrel{1}{\mathbf{904}} \stackrel{1}{\mathbf{504}} \stackrel{1}{\mathbf{904}} \stackrel{1}{\mathbf{504}} \stackrel{1}{\mathbf{504}$

 $H(x) \longrightarrow J(x \not\in \chi') \not\in \chi'$

$$\delta\left(1-z-\frac{\vec{k}_{\perp}^2}{Q^2}\right)$$

Soft Collinear
$$\chi \lesssim \pi$$

b)

Energy correlators for jet substructure

* In recent years growing efforts to rethink jet substructure using energy correlators: insights from CFT and light-ray OPE

Chen et al. 2004.11381, Hofman and Maldacena 0803.1467, Belitsky et al. 1309.0769, 1309.1424, Kravchuk and Simmons-Duffin 1805.00098

shape information about the energy distribution within jets

Measured by CMS (2402.13864), RHIC (2309.05761) and ALICE (2409.12687) experiments

* Can be readily computed for track-based measurements to exploit the fine angular **track functions** (Chang et al. 1303.6637, 1306.6630)

* Energy weighting naturally suppresses soft radiation without grooming and enables novel precision calculations of LHC observables to get access to detailed scaling and

resolution of tracking detectors: energy weights get simply rescaled by moments of

Li et al. 2108.01674, Jaarsma et al. 2201.05166

Probing the top using energy correlators

EEEC sensitivity to the top mass

Consider $e^+e^- \rightarrow t\bar{t} + X$ where t decays hadronically. The measurement operator is inclusive on top decay products:

$$\widehat{\mathcal{M}}^{(n)}(\zeta_{12},\zeta_{23},\zeta_{31}) = \sum_{i,j,k} \frac{E_i^n E_j^n E_k^n}{Q^{3n}} \delta\left(\zeta_{12} - \hat{\zeta}_{ij}\right) \delta\left(\zeta_{23} - \hat{\zeta}_{ik}\right) \delta\left(\zeta_{31} - \hat{\zeta}_{jk}\right)$$
$$\widehat{\zeta}_{ij} = (1 - \cos\theta_{ij})/2$$

* At LO, for a boosted top, the distribution in $\zeta_{12} + \zeta_{23} + \zeta_{31}$ has a peak whose location is proportional to m_t^2/Q^2 . The variance can be reduced by constraining the the shape of the energy flow (most simply achieved by requiring $\zeta_{12}pprox\zeta_{23}pprox\zeta_{31}$)

Holguin, Moult, Pathak, MP 2201.08393

EEEC sensitivity to the top mass

The key object in our first analysis where $\delta \zeta$ is asymmetry cut (shape parameter):

 $\frac{\mathrm{d}\Sigma(\delta\zeta)}{\mathrm{d}Q\mathrm{d}\zeta} = \int \mathrm{d}\zeta_{12}\mathrm{d}\zeta_{23}\mathrm{d}\zeta_{33}$ $\widehat{\mathcal{M}}^{(n)}_{\Delta}(\zeta_{12},\zeta_{23},\zeta_{31},\zeta,\delta\zeta) = \sum_{i,j,k} \frac{E^n_i E^n_j E^n_k}{Q^{3n}} \dot{\zeta}$ $\times \delta(3\zeta - \zeta_{12})$ $\zeta_{ij}\ll m_t^2/Q^2$ 166666666666 $\zeta_{ij} \sim m_t^2/Q^2$ Received the second sec Jacquagage

Holguin, Moult, Pathak, MP 2201.08393

$$\begin{split} & f_{31} \int \mathrm{d}\sigma \widehat{\mathcal{M}}^{(n)}_{\Delta}(\zeta_{12},\zeta_{23},\zeta_{31},\zeta,\delta\zeta) \\ & \delta\left(\zeta_{12}-\hat{\zeta}_{ij}\right)\delta\left(\zeta_{23}-\hat{\zeta}_{ik}\right)\delta\left(\zeta_{31}-\hat{\zeta}_{jk}\right) \\ & -\zeta_{23}-\zeta_{31}\right)\prod_{l,m,n\in\{1,2,3\}}\Theta(\delta\zeta-|\zeta_{lm}-\zeta_{mn}|) \\ & \text{dy hard kinematics: } \zeta_{\mathrm{peak}}\approx 3m_t^2/Q^2 \end{split}$$

Top mass from EEEC in eter collisions (PYTHIA8)

* Peak position dominantly determined by the LO hard process

* For $\zeta < 2\delta\zeta$ large contribution from collinear splittings

Holguin, Moult, Pathak, MP 2201.08393

Top mass from EEEC in eter collisions: hadronization

Non-perturbative effects in ECs are governed by an additive power law (Korchemsky, Sterman NPB 555, 1999) Hadronization has a small effect on the peak of the normalized distribution:

$$\Delta m_t^{\mathrm{Had}} \approx$$

The case of pp collisions

Measurement operator on a boosted top quark jet:

$$\widehat{\mathcal{M}}_{(pp)}^{(n)}(\zeta_{12},\zeta_{23},\zeta_{31}) = \sum_{i,j,k \in \text{jet}} \frac{(p_{T,i})^n (p_{T,j})^n (p_{T,k})^n}{(p_{T,\text{jet}})^{3n}} \delta\left(\zeta_{12} - \hat{\zeta}_{ij}^{(pp)}\right) \delta\left(\zeta_{23} - \hat{\zeta}_{ik}^{(pp)}\right) \delta\left(\zeta_{31} - \hat{\zeta}_{jk}^{(pp)}\right) \\ \hat{\zeta}_{ij}^{(pp)} = \Delta R_{ij}^2 = \Delta \eta_{ij}^2 + \Delta \phi_{ij}^2$$

* The peak from hard kinematics is now a

Performed a proof-of-concept analysis to show how a precise characterization of the top-jet pT-spectrum would enable a precision top mass extraction from $\widehat{\mathcal{M}}_{(pp), riangle}^{(n)}$

Holguin, Moult, Pathak, MP 2201.08393

at
$$\zeta^{(pp)}_{\rm peak} \approx 3m_t^2/p_{T,t}^2$$

The case of pp collisions: top-jet pT-spectrum

Shifts due to hadronization and UE in the jet pT-spectrum induce ~1 GeV shifts in the top mass $e_{r,jet}^{p_T} \sim 5 GeV_{f,jet}^{2}$ from the peak position

 p_T

 $\zeta_t \sim m_t^2 / p_{T,\text{iet}}^2$

$$\sim 1 \, \text{GeV}$$

The standard candle observable

We exploit the high degree of correlation between top and W imprints. For large boosts:

$$m_t = m_W \left[C(\alpha_s, R) \sqrt{\frac{\zeta_t}{\zeta_W}} + \mathcal{O}\left(\frac{m_W}{p_{T, \text{jet}}}, \frac{m_t}{m_t}\right) \right]^{T(\zeta)} \quad W(\zeta)$$

where C is governed by relative W boost, top decay and depends on the jet radius R.

For now, we extract C from parton-level simulations averaging over $p_{T,jet} \in [400, 600]$ (Different event generators employ differe approximations to description of top decay

Holguin, Moult, Pathak, MP, Schöfbeck, Schwarz 2407.12900

	Shower	R = 0.8	R = 1.0	R = 1.2	R=1.
	Pythia 8.3	1.076 ± 0.001	1.085 ± 0.001	1.094 ± 0.001	1.101 ± 0
$O] \mathrm{GeV}$	Vincia 2.3	1.082 ± 0.001	1.087 ± 0.001	1.095 ± 0.001	1.103 ± 0
ent	Herwig 7.3 Dipole	1.080 ± 0.001	1.087 ± 0.001	1.095 ± 0.001	1.101 ± 0
/)	Herwig 7.3 A.O.	1.094 ± 0.001	1.101 ± 0.001	1.109 ± 0.001	1.115 ± 0

Checklist for a precision top mass extraction: * robustness against hadronization and UE * vastly dominant effects perturbative * negligible power suppressed effects * resilience to experimental systematics

feasibility study using MC event generators

Holguin, Moult, Pathak, MP, Schöfbeck, Schwarz 2407.12900

Jet radius dependence

Varying R impacts both perturbative and no perturbative jet features but the effect or extracted top mass is dominantly perturbat

on-	Production me	Production mechanism:	
	 PDF uncertai 	 PDF uncertainty 	
n the	 Hard scatteri 	 Hard scattering corrections 	
tive	Jet substructu	Jet substructure:	
	 Jet radius de 	 Jet radius dependence 	
	 Hadronizatioi 	 Hadronization effects 	
	 Impact of und 	 Impact of underlying event 	
	 Wide angle s 	 Wide angle soft physics 	
	Perturbative	 Perturbative uncertainty 	
	Experimental f	Experimental feasibility:	
- - -	Statistical set	 Statistical sensitivity 	
	 Jet energy sc 	 Jet energy scale 	
-	 Constituent 	 Constituent energy scale 	
0	 Track efficien 	 Track efficiency 	
0.4	 Heavy flavor 	Heavy flavor dependence	
24			

Jet radius dependence

 ~ 2990

Hadronization effects

Small sensitivity to hadronization corrections in all parton shower generators

Negligible impact from UE tune variations

PDF variations

Hard scattering corrections

Variations in the physics at the hard scale through scale variations of ISR: negligible impact

Hard scattering corrections

Variations in the physics at the hard scale through NLO matching \overline{t} #ojt $\overline{t} + j$ process: negligible impact

Wide-angle soft physics

Models of color reconnection probe wide-angle soft physics at non-perturbative scales: small impact

Shower uncertainty: FSR scale variation

Results from LL showers + LO description of the top decay: small impact from FSR scale variation

Shower uncertainty: top jet recoil schemes

Top jet recoil schemes model NLO top-decay effects in parton showers: perturbative component dominates and significantly affects the top mass

Experimental feasibility: statistics at the tite mechanism:

The measurement is statistically feasible at the LHC

Experimental feasibility: jet energy scale

and vary recordingly $p_{T,jet}$: very small impact

Experimental feasibility: constituent energy scale

Effects of varying the momenta of the jet constituents (1% for charged, 3% for photons and 5% for neutrals): very small impact

Produ	Production mechanism:	
• PDI	 PDF uncertainty 	\checkmark
• Har	 Hard scattering corrections 	\checkmark
Jet sı	Jet substructure:	
• Jet	 Jet radius dependence 	\checkmark
• Hac	 Hadronization effects 	\checkmark
• Imp	 Impact of underlying event 	\checkmark
• Wic	 Wide angle soft physics 	\checkmark
• Per	 Perturbative uncertainty 	\checkmark
Exper	Experimental feasibility:	
• Sta	 Statistical sensitivity 	\checkmark
• lot	 Jet energy scale 	\checkmark
	 Constituent energy scale 	\checkmark
	 Track efficiency 	
	 Heavy flavor dependence 	
l • Hea		

Experimental feasibility: track efficiency Production mechanism:

CMS track efficiency models: small impact

Experimental feasibility: heavy flavor dependence

CMS models for different jet response between jets originated by a light quark vs b-quark: small effect

Summary and outlook

- dominated by hard kinematics (perturbatively calculable effects)
- resilience against soft radiation effects, underlying event contamination and hadronization. Theoretical robustness and experimental feasibility
- top decays and further exploration of the experimental measurement.

* Triple energy correlators measured on boosted top jets: enhanced top-mass sensitivity

* By exploiting both top and W imprints in the triple energy correlator, high level of

* Our MC-based analysis motivates novel precision calculations of energy correlators on

Goal: a novel, theoretically clean, precision extraction of the top mass in a well-defined short-distance scheme based on energy correlators measured on boosted top jets at LHC

