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• Introduction and motivation


• Q1: How can we define flavoured jets in a sensible way?                   


A1: New flavours of jet flavour


• Q2: How well do we understand QCD final-states with heavy-flavours?                  


A2: Heavy-flavour jet substructure
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Quark flavours and QCD
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• however, the mass does influence 
emergent phenomena:

• hadron-formation

• jet properties 

(area/mass= constant)

• strong interactions are flavour-blind: gluons 
couple to quarks irrespectively of their mass



Heavy quarks to probe the Higgs
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• fundamental particles acquire their mass 
through the Higgs mechanism


• SM prediction: Higgs couplings 
proportional to the masses


• heavy states have provided us with the 
first experimental confirmation of the 
Higgs mechanism



The proton mass
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• about 1% of the proton mass comes from mu 
and md


• the origin of the proton mass is the binding 
energy of the strong interaction


• hadron mass spectra can be determined from 
lattice QCD

• top quark decays before hadronsing but b and c fragment into heavy-flavoured 
hadrons, giving us a different handle to study hadron-formation



There’s charm in the proton!
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• collision processes with heavy flavours can also be used to probe any intrinsic 
component of the proton wave function;


• NNPDF collaboration has shown a 3  evidence of intrinsic charm in the proton;

• good agreement with theory models and and visible in Z+c data
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Figure 2. Intrinsic charm and Z+charm production at LHCb. Top left: the LHCb measurements
of Z boson production in association with charm-tagged jets, R

c
j , at

p
s = 13 TeV, compared with our

default prediction which includes an intrinsic charm component, as well as with a variant in which
we impose the vanishing of the intrinsic charm component. The thicker (thinner) bands in the LHCb
data indicate the statistical (total) uncertainty, while the theory predictions include both PDF and
MHO uncertainties. Top right: the correlation coe�cient between the charm PDF at Q = 100 GeV in
NNPDF4.0 and the LHCb measurements of R

c
j for the three yZ bins. Center: the charm PDF in the

4FNS (right) and the intrinsic (3FNS) charm PDF (left) before and after inclusion of the LHCb Z+charm
data. Results are shown for both experimental correlation models discussed in the text. Bottom left:
the intrinsic charm PDF before and after inclusion of the EMC charm structure function data. Bottom
right: the statistical significance of the intrinsic charm PDF in our baseline analysis, compared to the
results obtained also including either the LHCb Z+charm (with uncorrelated systematics) or the EMC
structure function data, or both.
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vanish [21]. Thus unlike the 4FNS charm PDF, that includes both an intrinsic and a radiative
component, the 3FNS charm PDF is purely intrinsic. In this work we have performed this
inversion at NNLO [25] as well as at N3LO [26–34], which as we shall see provides a handle on
the perturbative uncertainty of the NNLO result.

Our starting point is the NNPDF4.0 global analysis [3], which provides a determination of
the sum of the charm and anticharm PDFs, namely c

+(x, Q) ⌘ c(x, Q) + c̄(x, Q), in the 4FNS.
This can be viewed as a probability density in x, the fraction of the proton momentum carried
by charm, in the sense that the integral over all values of 0  x  1 of xc

+(x) is equal to
the fraction of the proton momentum carried by charm quarks, though note that PDFs are
generally not necessarily positive-definite. Our result for the 4FNS xc

+(x, Q) at the charm mass
scale, Q = mc with mc = 1.51 GeV, is displayed in Fig. 1 (left). The ensuing intrinsic charm
is determined from it by transforming to the 3FNS using NNLO matching. This result is also
shown in Fig. 1 (left). The bands indicate the 68% confidence level (CL) interval associated with
the PDF uncertainties (PDFU) in each case. Henceforth, we will refer to the 3FNS xc

+(x, Q)
PDF as the intrinsic charm PDF.
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Figure 1. The intrinsic charm PDF and comparison with models. Left: the purely intrinsic
(3FNS) result (blue) with PDF uncertainties only, compared to the 4FNS PDF, that includes both an
intrinsic and radiative component, at Q = mc = 1.51 GeV (orange). The purely intrinsic (3FNS) result
obtained using N3LO matching is also shown (green). Right: the purely intrinsic (3FNS) final result
with total uncertainty (PDF+MHOU), with the PDF uncertainty indicated as a dark shaded band; the
predictions from the original BHPS model [1] and from the more recent meson/baryon cloud model [5]
are also shown for comparison (dotted and dot-dashed curves respectively).

The intrinsic (3FNS) charm PDF displays a characteristic valence-like structure at large-x
peaking at x ' 0.4. While intrinsic charm is found to be small in absolute terms (it contributes
less than 1% to the proton total momentum), it is significantly di↵erent from zero. Note that
the transformation to the 3FNS has little e↵ect on the peak region, because there is almost no
charm radiatively generated at such large values of x: in fact, a very similar valence-like peak
is already found in the 4FNS calculation.

Because at the charm mass scale the strong coupling ↵s is rather large, the perturbative
expansion converges slowly. In order to estimate the e↵ect of missing higher order uncertain-
ties (MHOU), we have also performed the transformation from the 4FNS NNLO charm PDF
determined from the data to the 3FNS (intrinsic) charm PDF at one order higher, namely at
N3LO. The result is also shown Fig. 1 (left). Reassuringly, the intrinsic valence-like structure is
unchanged. On the other hand, it is clear that for x

⇠
< 0.2 perturbative uncertainties become

very large. We can estimate the total uncertainty on our determination of intrinsic charm by
adding in quadrature the PDF uncertainty and a MHOU estimated from the shift between the
result found using NNLO and N3LO matching.

This procedure leads to our final result for intrinsic charm and its total uncertainty, shown
in Fig. 1 (right). The intrinsic charm PDF is found to be compatible with zero for x

⇠
< 0.2:

the negative trend seen in Fig. 1 with PDF uncertainties only becomes compatible with zero
upon inclusion of theoretical uncertainties. However, at larger x even with theoretical uncer-
tainties the intrinsic charm PDF di↵ers from zero by about 2.5 standard deviations (2.5�) in
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Evidence for intrinsic charm quarks in the 
proton

The NNPDF Collaboration*

The theory of the strong force, quantum chromodynamics, describes the proton in 
terms of quarks and gluons. The proton is a state of two up quarks and one down 
quark bound by gluons, but quantum theory predicts that in addition there is an 
infinite number of quark–antiquark pairs. Both light and heavy quarks, whose mass  
is respectively smaller or bigger than the mass of the proton, are revealed inside the 
proton in high-energy collisions. However, it is unclear whether heavy quarks also 
exist as a part of the proton wavefunction, which is determined by non-perturbative 
dynamics and accordingly unknown: so-called intrinsic heavy quarks1. It has been 
argued for a long time that the proton could have a sizable intrinsic component of  
the lightest heavy quark, the charm quark. Innumerable efforts to establish intrinsic 
charm in the proton2 have remained inconclusive. Here we provide evidence for 
intrinsic charm by exploiting a high-precision determination of the quark–gluon 
content of the nucleon3 based on machine learning and a large experimental dataset. 
We disentangle the intrinsic charm component from charm–anticharm pairs arising 
from high-energy radiation4. We establish the existence of intrinsic charm at the 
3-standard-deviation level, with a momentum distribution in remarkable agreement 
with model predictions1,5.We confirm these findings by comparing them to very recent 
data on Z-boson production with charm jets from the Large Hadron Collider beauty 
(LHCb) experiment6.

The foundational deep-inelastic scattering experiments at the SLAC lin-
ear collider in the late 1960s and early 1970s demonstrated the presence 
inside the proton of point-like constituents, soon identified with quarks, 
the elementary particles that interact and are bound inside the proton by 
gluons, the carriers of the strong nuclear force. It was rapidly clear, and 
confirmed in detail by subsequent studies, that these point-like constitu-
ents, collectively called partons by Feynman7, include the up and down 
quarks that carry the proton quantum numbers, but also gluons, as well as 
an infinite number of pairs of quarks and their antimatter counterparts, 
antiquarks. The description of electron–proton and proton–proton 
collisions at high momentum transfers in terms of collisions between 
partons is now rooted in the theory of quantum chromodynamics (QCD), 
and it provides the basis of modern-day precision phenomenology at 
proton accelerators such as the Large Hadron Collider (LHC) of CERN8 
as well as for future facilities including the Electron–Ion Collider9, the 
Forward Physics Facility10 and neutrino telescopes11.

Knowledge of the structure of the proton, which is necessary to 
obtain quantitative prediction for physics processes at the LHC and 
other experiments, is encoded in the distribution of momentum carried 
by partons of each type (gluons, up quarks, down quarks, up antiquarks 
and so on): parton distribution functions (PDFs). These PDFs could, in 
principle, be computed from first principles, but in practice even their 
determination from numerical simulations12 is extremely challenging. 
Consequently, the only strategy available at present for obtaining the 
reliable determination of the proton PDFs that is required to evaluate 
LHC predictions is empirical, through the global analysis of data for 

which precise theoretical predictions and experimental measurements 
are available, so that the PDFs are the only unknown8.

Although this successful framework has by now been worked through 
in great detail, several key open questions remain open. One of the 
most controversial of these concerns the treatment of so-called heavy 
quarks (that is, those whose mass is greater than that of the proton; 
mp = 0.94 GeV). Indeed, virtual quantum effects and energy–mass con-
siderations suggest that the three light quarks and antiquarks (up, down 
and strange) should all be present in the proton wavefunction. Their 
PDFs are therefore surely determined by the low-energy dynamics that 
controls the nature of the proton as a bound state. However, it is well 
known8,13–15 that in high enough energy collisions all species of quarks 
can be excited and hence observed inside the proton, so their PDFs are 
nonzero. This excitation follows from standard QCD radiation, and it 
can be computed accurately in perturbation theory.

However, then the question arises of whether heavy quarks also 
contribute to the proton wavefunction. Such a contribution is called 
intrinsic, to distinguish it from that computable in perturbation theory, 
which originates from QCD radiation. Already since the dawn of QCD, 
it was argued that all kinds of intrinsic heavy quark must be present 
in the proton wavefunction16. In particular, it was suggested1 that the 
intrinsic component could be non-negligible for the charm quark, 
whose mass (mc ≃ 1.51 GeV) is of the same order of magnitude as the 
mass of the proton.

This question has remained highly controversial, and indeed recent 
dedicated studies have resulted in disparate claims, from excluding 
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Emergent phenomena: jets
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• high-energy collisions 
ofter results into 
collimated sprays of 
particles


• why? 
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• high-energy collisions 
ofter results into 
collimated sprays of 
particles


• why? 

• in a massless theory 
emissions of collinear 
partons is enhanced 

αs ∫
dθ2

θ2
≫ 1

• quark masses shield collinear singularities


αs ∫
dθ2

θ2 + m2

E2

∼ ∫m2
E2

dθ2

θ2
∼ αs log

E2

m2 the so-called 

“dead cone”



Taking a closer look at a reconstructed splitting 25
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fraction of momentum 
carried by the emitted gluon
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The angle of each gluon emission directly probes 
the dead-cone effect 

The energy of the charm quark at each emission 
point directly sets the size of the dead-cone region

The transverse scale of each splitting will be used 
to suppress non-perturbative effects

Uncovering the QCD dead cone 29
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ALICE and the dead cone 
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Nature 605 (2022) 440-446 

• ALICE recently exploited ideas from modern jet physics (e.g. reclustering) to perform 
the first direct measurement of the dead cone

• charm jets are tagged using 



• jets are declustered and the splitting 
kinematics is recorded

D0 → K−π+

taken from N. Zardoshti’s talk at BOOST 2022 Nature | Vol 605 | 19 May 2022 | 441

techniques4 enables these aforementioned difficulties to be over-
come by reconstructing the evolution of the jet shower, giving access 
to the kinematic properties of each individual emission. These tech-
niques reorganize the particle constituents of an experimentally 
reconstructed jet, to access the building blocks of the shower and 
trace back the cascade process. Isolated elements of the recon-
structed parton shower that are likely to be unmodified by had-
ronization processes provide a good proxy for real quark and gluon 
emissions (splittings). These reclustering techniques have been 
demonstrated in inclusive (without tagging the initiating parton 
flavour) jets to successfully reconstruct splittings that are connected 
to or that preserve the memory of the parton branchings. This is 
demonstrated by measurements such as the groomed momentum 
balance15–18, which probes the Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi splitting function19, and the Lund plane20, which exposes the 
running of the strong coupling with the scale of the splittings. An 
experimental method to expose the dead cone in boosted top-quark 
events was also proposed in ref. 21.

Reclustering techniques are extended in this work to jets containing 
a charm quark based on the prescription given in ref. 22. These jets are 
tagged through the presence of a reconstructed D0 meson amongst 
their constituents, which has a mass of 1.86 GeV/c2 (ref. 1) and is com-
posed of a heavy charm quark and a light anti-up quark. The measure-
ment is performed in proton–proton collisions at a centre-of-mass 
energy of s = 13 TeV at the Large Hadron Collider (LHC), using the 
ALICE (A Large Ion Collider Experiment) detector. Further details of 
the detector apparatus and data measured can be found in the Methods. 
As the charm-quark flavour is conserved through the shower process, 
this provides an opportunity to isolate and trace back the emission 
history of the charm quark. In this way, by comparing the emission 
patterns of charm quarks to those of light quarks and gluons, the QCD 
dead cone can be directly revealed.

Selecting jets containing a D0 meson
To select jets initiated by a charm quark, through the presence of a D0 
meson in their list of constituents, the D0 mesons and jets need to be 
reconstructed in the events. The D0-meson candidates (and their anti-
particles) were reconstructed in the transverse-momentum interval 

p2 < < 36T
D0

 GeV/c, through the D0 → K−π+ (and charged conjugate) had-
ronic decay channel, which has a branching ratio of 3.95 ± 0.03%  
(ref. 1). The D0-meson candidates were identified by topological selec-
tions based on the displacement of the D0-meson candidate decay 
vertex, in addition to applying particle identification on the D0-meson 
candidate decay particles. These selection criteria largely suppress 
the combinatorial background of K∓π± pairs that do not originate from 
the decay of a D0 meson. Further details on the selection criteria are 
provided in ref. 23.

Tracks (reconstructed charged-particle trajectories) correspond-
ing to the D0-meson candidate decay particles were replaced by the 
reconstructed D0-meson candidate in the event, with the D0-meson 
candidate four-momentum being the sum of the decay-particle 
four-momenta. One benefit of this procedure is to avoid the case in 
which the decay products of the D0-meson candidate fill the dead-cone 
region. A jet-finding algorithm was then used to cluster the particles 
(tracks and the D0-meson candidate) in the event, to reconstruct the 
parton shower by sequentially recombining the shower particles into 
a single object (the jet). The jet containing the D0-meson candidate 
was then selected. The four-momentum of the jet is a proxy for the 
four-momentum of the charm quark initiating the parton shower. 
The jet-finding algorithm used was the anti-kT algorithm24 from the 
Fastjet package25, which is a standard choice for jet reconstruction 
because of its high performance in reconstructing the original parton 
kinematics. More details on the jet finding procedure can be found 
in the Methods.

Reconstructing the jet shower
Once jets containing a D0-meson candidate amongst their constituents 
are selected, the internal cascade process is reconstructed. This is done 
by reorganizing (reclustering) the jet constituents according to the 
Cambridge–Aachen (C/A) algorithm26, which clusters these constitu-
ents based solely on their angular distance from one another. A pictorial 
representation of this reclustering process, which starts by reconstruct-
ing the smallest angle splittings, is shown in the top panels of Fig. 1. As 
QCD emissions approximately follow an angular-ordered structure27, 
the C/A algorithm was chosen as it also returns an angular-ordered 
splitting tree.

This splitting tree is then iteratively declustered by unwinding the 
reclustering history, to access the building blocks of the reconstructed 
jet shower. At each declustering step, two prongs corresponding to 
a splitting are returned. The angle between these splitting daughter 
prongs, θ, the relative transverse momentum of the splitting, kT, and 
the sum of the energy of the two prongs, ERadiator, are registered. As the 
charm flavour is conserved throughout the showering process, the full 
reconstruction of the D0-meson candidate enables the isolation of the 
emissions of the charm quark in the parton shower, by following the 
daughter prong containing the fully reconstructed D0-meson candidate 
at each declustering step. This can be seen in the bottom part of Fig. 1, 
which shows the evolution of the charm quark reconstructed from the 
measured final state particles. Moreover, the kinematic properties 
of the charm quark are updated along the splitting tree, enabling an 
accurate reconstruction of each emission angle against the dynami-
cally evolving charm-quark direction. It was verified that in more than 
99% of the cases the prong containing the D0-meson candidate at each 
splitting coincided with the leading prong. This means that following 
the D0-meson candidate or leading prong at each step is equivalent, and 
therefore a complementary measurement for an inclusive jet sample, 
when no flavour tagging is available, can be made by following the lead-
ing prong through the reclustering history. As the inclusive sample is 
dominated by massless gluon and nearly massless light quark-initiated 
jets, it acts as a reference to highlight the mass effects present in the 
charm tagged sample.

Extracting the true charm splittings
The selected sample of splittings has contributions from jets tagged 
with combinatorial K∓π± pairs, which are not rejected by the applied 
topological and particle identification selections. The measured 
invariant mass of real D0 mesons, which corresponds to the rest mass, 
is distributed in a Gaussian (because of uncertainties in the measure-
ment of the momenta of the K∓π± pairs) with a peak at the true D0-meson 
mass. This enables the implementation of a statistical two-dimensional 
side-band subtraction procedure, which characterizes the background 
distribution of splittings by sampling the background-dominated 
regions of the D0-meson candidate invariant mass distributions, far 
away from the signal peak. In this way the combinatorial contribution 
can be accounted for and removed. Furthermore, the selections on the 
D0-meson candidates also select a fraction of D0 mesons originating 
as a product of beauty-hadron decays. These were found to contribute 
10–15% of the reconstructed splittings, with only a small influence on 
the results, which will be discussed later. The studies were performed 
using Monte Carlo (MC) PYTHIA 6.425 (Perugia 2011)28,29 simulations 
(this generator includes mass effects in the parton shower30 and was 
used for all MC-based corrections in this work), propagating the gener-
ated particles through a detailed description of the ALICE detector 
with GEANT3 (ref. 31). The finite efficiency of selecting real D0-meson 
tagged jets, through the chosen selection criteria on the D0-meson 
candidates, as well as kinematic selections on the jets, was studied and 
accounted for through MC simulations. This efficiency was found to 
be strongly pT

D0
 dependent and different for D0 mesons originating 
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New flavours 
of jet flavour 
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H → cc̄

in collaboration with Simone Caletti, Andrew Larkoski, 
and Daniel Reichelt + Les Houches participants

H → cc̄

https://cms.cern/news/jet-
cones-top-flavour
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https://cds.cern.ch/record/2771727/plots

• take the four-momenta of reconstructed 
(anti-kt) jets and B hadrons 
( )


• Assign a B to a jet if 

• If at least one B is assigned to jet J, then 

J is a b-jet

pT > pTcut ∼ 5 GeV
ΔR < R0 ∼ 0.3

a few things to pay attention to

the  labellingΔR

ΔR
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Thy jet definition shall …

12

• be simple to implement in an experimental 
analysis; 


• be simple to implement in theoretical calculations; 

• be defined at any order of perturbation theory; 

• yield finite cross-sections at any order of 

perturbation theory;

• yield cross-sections and distributions that are 

relatively insensitive to hadronisation

• jet definitions that respect this Snowmass accord made precision studies of QCD 
possible:


Theorists talk about quarks and gluons, experimentalists talk about (truth-level) 
particles … and things still make sense 

• do current definitions of heavy-flavour (HF) jet follow these rules?

• if not, can we do better? Should we? 



What can go wrong?
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• Infra-Red and Collinear Safety! We need IRC safety if we want to be able to 
compute things beyond LO


• an observable (or a jet definition) is IRC safe if, in the limit of a  collinear 
splitting, or the emission of an infinitely soft particle, the observable (jet) 
remains unchanged:

O(X; p1, . . . , pn, pn+1 � 0) � O(X; p1, . . . , pn)
O(X; p1, . . . , pn ⇥ pn+1) � O(X; p1, . . . , pn + pn+1)

• an IRC-unsafe HF jet definition with massless partons, leads to divergent results 
in perturbation theory (you just have to throw them away)


• an IRC-unsafe HF jet definition with massive quarks, leads to finite but IRC-
sensitive results in perturbation theory (large logs of )m /pT



Issue n.1: NLO
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Gauld et. al (2023)
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pq pq̄

pℓ pℓ̄
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pℓ pℓ̄

σ̂

pj

pq̄pq

• let’s consider Z+b (or c) jet

• problematic configuration at NLO:  is collinear 

divergent (with zero mass)

• this singularity cancels when we add the 

corresponding virtual correction, iff real and virtual are 
in the same flavour bin, i.e. gluon = no net flavour

g → bb̄

• this is crucial when looking at distributions that are 
inclusive over the b-jet substructure (e.g. )


• important effect at high- 

• collinear region is avoided if the splitting is resolved 

(e.g. substructure measurement)

pT
pT

https://arxiv.org/abs/2302.12844


Aside: the  on hadronspTcut
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• in this discussion we focus on 
parton-level but hadron-level cuts 
can have significant effects on 
flavour


•  labelling has a cut on the  of 
the B hadron


• if we implement it at parton level, a 
soft quark may fail the cut, turning 
the jet into a gluon one: collinear 
unsafe!


• proper way to deal with this 
requires fragmentation functions

ΔR pT

Gauld et. al (2023)

https://arxiv.org/abs/2302.12844


Flavour recombination schemes
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Gavin Salam Flavoured Jets at the LHC, Durham, June 2024

First: flavour recombination schemes

All algorithms 
in the next 

pages can work 
with these two

13

“any flavour” b b b
simplest experimentally 
(but collinear unsafe for  

mb → 0)

net flavour b g 2b
theoretically “ideal” 

definition; but not robust 
wrt B–Bbar oscillations

flavour  
modulo 2 b g g theoretically OK; robust 

wrt B–Bbar oscillations

b + b̄ b + bb
scheme

jet contents

}
Gavin Salam's talk at Durham workshop

• NLO issues just described are easy to fix in theory-land:

• this comes with large experimental baggage (reconstruction, mistag,…)

• Can we do better? Should we?

https://conference.ippp.dur.ac.uk/event/1301/contributions/6818/attachments/5339/6936/Durham-flav-intro.pdf


Issue n.2: NNLO
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pℓ pℓ̄

σ̂

pq pq̄

pℓ pℓ̄

σ̂

pq pg

pℓ pℓ̄

σ̂

pj

pq̄pq

• theoretically, things become rather intricate at NNLO


• a soft  splitting can alter the flavour of the jet


• this leads to an IR divergence (sensitivity) for massless 
(massive) quarks


• counting net flavour is not enough for solve this one and 
we have to reconsider the jet algorithm

g → bb̄

Gauld et. al (2023)

https://arxiv.org/abs/2302.12844


• introduce flavour-sensitive metric reflects the absence of soft quark singularities:


• flavour-kt is IRC safe because it tends to recombine together the problematic soft pair;


• however, the use this algorithm in experimental analysis is far from straightforward:

• obviously, it’s not anti-kt, so resulting jets have different kinematics

• it requires knowledge of the flavour at each step of the clustering

The old solution: flavour-kt

18

problems when contaminating the flavour of gluon jets. The flavour algorithms all work
systematically better than the Durham-based algorithms, clearly vanishing faster with yD

3 .
One sees differences in normalisation between the different flavour algorithms and the
blandness requirement provides a non-negligible advantage, especially for α = 2. This
implies that the flavour misidentification involves more than one qq̄ pair. Nevertheless, the
algorithm remains infrared safe even for multiple soft or collinear qq̄ pairs, as discussed
above7 (see also the appendix for a more general outline of the discussion of IR safety).

3 Jet-flavour algorithms for hadron-hadron collisions

For hadron-hadron collisions (and DIS) the kt jet algorithm is similar to that described
in section 2, with a few modifications in the definition of the distances [7, 8]. Given that
there is no unique hard scale Q, instead of examining dimensionless yij ’s one looks at
dimensionful dij’s. These need to be invariant under longitudinal boosts and the most
widespread convention is to take

dij = min(k2
ti, k

2
tj)(∆η2

ij + ∆φ2
ij) , (8)

where ∆ηij = ηi − ηj, ∆φij = φi − φj and kti, ηi and φi are respectively the transverse
momentum, rapidity and azimuth of particle i, with respect to the beam. A particle i can
also recombine with the beam and here too one needs a distance measure, usually taken
to be

diB = k2
ti . (9)

It is the smallest of the diB and the dij that determines which recombination takes place.
If it is diB that is smallest at a given step, then i recombines with the beam (or else gets
called a jet, in the “inclusive” version of the algorithm).

The modification of the dij needed to obtain a flavour-safe jet algorithm is directly
analogous to that used for the e+e− algorithm:

d(F )
ij = (∆η2

ij + ∆φ2
ij) ×

{

max(k2
ti, k

2
tj) , softer of i, j is flavoured,

min(k2
ti, k

2
tj) , softer of i, j is flavourless,

(10)

where by ‘softer’ we now mean that having lower kt and where temporarily, for simplicity,
we consider only the case α = 2.

It is less obvious how to modify the beam distance. The problem is that diB involves just
a single scale, k2

ti, and so there is no “minimum” that one can replace with a “maximum”.
However one could imagine that diB is actually the minimum of k2

ti and some transverse
scale associated with the beam, k2

tB, which has never been explicitly needed so far because
7Note though that for a fixed degree of softness, the presence of multiple qq̄ pairs, spread densely in

rapidity from large-angles all the way to the hard-fragmentation region can lead to a systematic worsening
of the flavour identification.
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Banfi Salam Zanderighi (2006)
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Figure 3: Reconstructed Higgs boson transverse momentum, see text for details,

calculated at NLO (upper plots) and NNLO (lower plots) for central values of the

renormalization and factorization scales. Lower panes show ratios of massless to massive

results. See text for details.

such a clustering starts to occur earlier in case of the flavor-kt jet algorithm, the massless

result falls off more rapidly than the massive one. To some extent, this difference can be

mitigated if a smaller clustering radius for the flavor-kt jet algorithm is chosen while the jet

radius for the usual anti-kt algorithm is kept fixed. We have verified that such choices lead

to increased values of pt,H(bb̄) at which massive and massless results start to depart from each

other.

Finally, we show the transverse-momentum distribution of the leading b jet in Fig. 4 and the

angular distance between the two b jets �RH(bb̄) in Fig. 5. We observe significant differences

between massive and massless results at large values of pt,b and at �RH(bb̄) ⇠ R. Deviations

at large transverse momenta in the pt,b distribution have the same origin as differences

12
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Figure 4: The transverse momentum distribution of the leading b jet calculated at NNLO

for central values of the renormalization and factorization scales. Lower panes show ratios

of massless to massive results. See text for details.

Figure 5: The distance �RH(bb̄) between the two b jets used for Higgs boson

reconstruction calculated at NNLO for central values of the renormalization and

factorization scales. Lower panes show ratios of massless to massive results. See text for

details.

observed in pt,H(bb̄) distributions. As we discussed earlier, they are related to differences in

the clustering of two b jets into a single jet in the massive and massless cases.

In case of the �RH(bb̄) distributions, the massless to massive ratio is flat for large �RH(bb̄) &
0.75 jet separation but they become different for smaller values of �RH(bb̄). Again, these

features are closely related to the behavior of the pt,H(bb̄) distributions since a small angular

separation of the two b jets corresponds to a boosted configuration from a Higgs boson with

13

Behring et. al (2020)

https://link.springer.com/article/10.1140/epjc/s2006-02552-4
https://arxiv.org/pdf/2003.08321
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Interleaved Flavour Neutralisation (IFN) 2 / 12

I Cluster particles with a generalised-kt algorithm (e.g.
anti-kt and C/A),
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NGL logs ~ jet  avour NNLO issue
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~

● The two 
phenomena are 
generated by 
similar kinematical 
contributions

● We know NGLs can 
be eliminated by 
Soft Drop

What’s the impact of 
SD on jet flavour?

x
1. use Soft Drop to remove soft 

quarks

needs JADE as a 
recluster, known 
to fail at 3 loops

Caletti, Larkoski, SM, 
Reichelt (2022)

4. interleaved flavour neutralisation

neutralise = remove 
the (opposite) flavour 
of both 1 & 2 while 
maintaining kinematics 

Caola, Grabarczyk, 
Hutt, Salam, Scyboz, 

Thaler (2023)

3. construct a flavour dressing for a given jet
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Vanishing mis-identification of flavours in the fully unresolved regime = IRC safety

Naive dressing unsafe,  
flavour dressing safe!Any gen-  algo is safe!kt
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flavour information 
in order to assign 
the flavour of a jet

Gauld, Huss, Stagnitto (2022)

i.e. the transverse momentum of the softer pseudo-jet. The algorithm is made infrared safe

by the following modified distance measure [5]:

d
(F )
ij = R

2
ij ⇥

(⇥
max(kT,i, kT,j)

⇤↵ ⇥
min(kT,i, kT,j)

⇤2�↵
, if softer of i, j is flavoured,

min(k2
T,i, k

2
T,j) , if softer of i, j is unflavoured,

(2.3)

where 0 < ↵  2 and most analyses are performed with ↵ = 2. This jet algorithm modification

prevents the unwanted soft-hard recombination if the softer pseudo-jet is flavoured, while

it still leads to soft-soft recombination. One can additionally require recombination into

pseudo-jets of well-defined flavour only, by forbidding, for example, charm and beauty to be

recombined. This is the “bland” version of the algorithm in Ref. [5].

Until now, we have ignored initial state radiation and the related singularities. In the

standard kT algorithm, one defines a distance to the beam, d
iB̄

( ) = k
2
T,i. If it is minimal, then

the pseudo-jet i is removed from the list of pseudo-jets in the inclusive formulation. In the

flavoured kT algorithm, the distance to the beam is modified as well. Indeed this is necessary,

since if i contains a soft flavoured quark while there is another soft anti-quark of the same

flavour that would not be removed from the list, but rather clustered with a hard jet, then

infrared safety would be spoiled. The beam distance is thus defined in analogy to the case of

final-state pseudo-jets as follows:

d
(F )

iB̄
( ) =

8
<

:

⇥
max(kT,i, kT,B̄

( )(yi))
⇤↵ ⇥

min(kT,i, kT,B̄
( )(yi))

⇤2�↵
, if softer of i, j is flavoured,

min(k2
T,i, k

2
T,B̄

( )(yi)) , if softer of i, j is unflavoured.

(2.4)

The now required transverse momentum of the beam, B, and “anti-”beam, B̄, is taken to be

[5]:

kT,B(y) =
X

i

kT,i
�
⇥(yi � y) + ⇥(y � yi) eyi�y

�
, (2.5)

kT,B̄(y) =
X

i

kT,i
�
⇥(y � yi) + ⇥(yi � y) ey�yi

�
, (2.6)

with ⇥(0) = 1/2.

2.3 The flavoured anti-kT algorithm

The distance measure of the standard anti-kT algorithm [27] is:

dij = R
2
ij min(k�2

T,i, k
�2
T,j) . (2.7)

In this case, condition 1) is not fulfilled, since the double-soft limit, Ei, Ej ! 0, does not lead

to a vanishing dij . We propose the following modification:

d
(F )
ij ⌘ dij ⇥

8
<

:
Sij , if both i and j have non-zero flavour of opposite sign,

1 , otherwise.
(2.8)

– 6 –

Figure 3. Comparison of di↵erential distributions of the hardest jet’s rapidity (left panel) and trans-
verse momentum (right panel) for the process pp ! Z/�

⇤(! `¯̀) + b-jet obtained using di↵erent jet
algorithms at NNLO accuracy.
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Figure 4. Same as Fig. 3 but with NLO+PS (parton shower simulation matched at NLO QCD)
accuracy.

in the di↵erence between the flavoured anti-kT and the standard anti-kT algorithm. This

cannot be studied at NNLO QCD, since the standard algorithm is IR safe only through NLO,

but we can still employ a parton shower event-generator matched at NLO in QCD. We use

MadGraph5 aMC@NLO [35] v.3.1.1 and refer to the results as NLO+PS. As expected,

the NLO+PS distributions obtained with the new algorithm shown in Fig. 4 are closest to

those of the standard anti-kT algorithm for the smallest value of a, while for the largest value

of a the di↵erences between the distributions obtained with these two algorithms amount to

about 5%. This is consistent with the 10% di↵erence between distributions obtained with the

flavoured kT and the standard anti-kT algorithm.

In order to study the influence of the a-parameter on perturbative convergence, we plot

– 12 –

2. define a flavour algorithm that 
resembles anti-kt

Czakon, Mitov, 
Poncelet (2022)

still needs 
some (small) 
unfolding

Four(!) new ideas

https://arxiv.org/pdf/2306.07314.pdf
https://arxiv.org/pdf/2208.11138.pdf
https://arxiv.org/pdf/2205.11879.pdf
https://arxiv.org/pdf/2205.11879.pdf
https://arxiv.org/pdf/2205.11879.pdf


Aside: Soft Drop (mMDT)

Jesse Thaler — New Physics Gets a Boost 41

Soft Drop Declustering

[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

Original Jet

=

Clustering Tree

courtesy of J. Thaler

• efficient and robust grooming and tagging 
have been developed and exploited at the 
LHC


• Soft Drop aims to clean up a jet by 
removing soft radiation

Jesse Thaler — New Physics Gets a Boost 42

Soft Drop Declustering

Groomed
Clustering Tree

=

Groomed Jet

[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

zg

1–zg
θg

⇒

zg > zcut θgβcourtesy of J. Thaler

zg =
min(pT1, pT2)

pT1 + pT2
zg < zcut✓

�
g

• compute momentum sharing and if it 
fails the soft drop condition, remove the 
branch

Larkoski, SM, Soyez, Thaler (2014)
20

Dasgupta, Fregoso, SM, Salam (2013)

https://link.springer.com/article/10.1007/JHEP05(2014)146
https://inspirehep.net/literature/1240687
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● The two 
phenomena are 
generated by 
similar kinematical 
contributions

● We know NGLs can 
be eliminated by 
Soft Drop

What’s the impact of 
SD on jet flavour?

  

NGL logs ~ jet  avour NNLO issue

10

~

● The two 
phenomena are 
generated by 
similar kinematical 
contributions

● We know NGLs can 
be eliminated by 
Soft Drop

What’s the impact of 
SD on jet flavour?

• grooming algorithms remove soft radiation from jets


• in particular is Soft Drop is beneficial in the context of non-global logarithms 


• the problematic configurations are similar  

What about Soft Drop jets?

21

Larkoski, Marzani, Soyez, Thaler (2014)

x x

jet boundary • so the idea is:


• cluster jets with any algorithm 
you wish 


• apply Soft Drop and measure 
the flavour


• this is experimentally viable, it is 
IRC safe?

https://link.springer.com/article/10.1007/JHEP05(2014)146


6 Practical Jet Flavour Through NNLO
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q̄

Fig. 1 The configuration that renders jet flavour definition infrared unsafe at NNLO is

depicted: a quark Q emits an intermediate soft gluon that subsequently splits into a quark–

anti-quark qq̄ pair. Only one of the gluon’s decay products, say q, is clustered with the

original quark Q and so the jet flavour is determined by soft physics. Note that the dotted

oval can either represent the boundary of the original jet or the e↵ective boundary induced

by SD.

2.2.1 Elimination of Soft Quark Ambiguities

The configuration in Fig. 1 in which the dashed oval represents the jet bound-
ary is essentially the same configuration of particles that are the leading
contribution to non-global logarithms (NGLs) [12]. Though at NNLO, the jet
consists of only two particles, and so the implementation of SD on the jet is
identical to that at NLO. The softer of the two constituents of the jet is elim-
inated by the groomer if it fails the SD constraint. With a finite value of zcut

and �, an arbitrarily soft quark q will always fail the SD constraint, and so
after grooming the jet will consist exclusively of the hard quark Q. Thus, in the
soft limit, the jet flavour would be identified as the same flavour as Q, which
is also the flavour of the jet from corresponding virtual corrections. Thus, this
configuration has no infrared ambiguities. 1

Further, because of the relationship to NGLs, all-orders statements about
the jet flavour from this configuration can be made. It has been proven that
SD and mMDT grooming eliminate NGLs of observables like the jet mass
to all orders in perturbation theory [13, 14, 22]. NGLs arise from soft par-
ticles that are sensitive to the boundary of the jet. Correspondingly, the jet
flavour as defined by application of SD has no infrared divergences arising from
soft emissions near the boundary of the jet. By contrast, SD is inclusive over
collinear emissions at the jet center, and we will demonstrate that this feature
is problematic for jet flavour.

2.2.2 Failure of IRC Safety of SD with kT Clustering

In the original and most widely-studied definitions of SD grooming, emissions
in the jet are re-clustered with a generalised kT algorithm, typically the Cam-
bridge/Aachen (C/A) algorithm [3–5] in which emissions are ordered by their
relative angle. While this prescription does eliminate the NGL-like infrared

1Kinematically, the two quarks Q and q can become collinear, thus passing the SD condition.
However, no collinear singularity is associated with this configuration.

• if the dashed oval represents the 
effective grooming boundary 
(clustering log configuration), Soft 
Drop fails to screen the singularity 

Soft Drop flavour at NNLO
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• if the dashed oval represents the 
jet boundary (NGLs configuration), 
Soft Drop screens the singularity

Why is that?
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' d⇧3 |M(xq, xq̄)|
2 ⇥(✓2Qq̄ � ✓

2
Qq)⇥(✓2qq̄ � ✓

2
Qq)⇥ (xq � 1) ⇥ (1 � xq̄) .

Here, ' means equal up to order-1 factors. This change of variables decou-
ples the energy fractions and splitting angles to leading power, and exposes
the collinear divergence of the matrix element, rendering SD flavour with the
Cambridge/Aachen algorithm IRC unsafe at NNLO. This IRC unsafe argu-
ment extends to SD with general kT reclustering because the constraint on
the orderings of the branches is homogeneous in the energy fraction of the soft
quarks and so the rescaling of Eq. 7 does not dominantly change the branching
structure.

3 Soft Drop Flavour with JADE Reclustering

The key issue with the IRC safety of SD flavour was due to the features of
kT reclustering. As observed in [7], the kT class of algorithms does not favor
clustering two soft particles together first, if there is a hard particle around
at smaller angle. However, if the soft quark–anti-quark pair were clustered
together first, then SD would simply groom them away, which would produce
no e↵ect on the jet flavour as simply defined from the hard quark Q. Therefore,
we will modify the SD grooming procedure to ensure that the softest pair of
particles is clustered first. This can be accomplished through NNLO with the
JADE algorithm [17, 18].

Our procedure for achieving an IRC safe definition of jet flavour through
at least NNLO accuracy of an arbitrary collection of particles in a pre-defined
jet is as follows. We express the procedure in phase space coordinates appro-
priate for jets produced in e

+
e
� collisions and for jets in hadron collisions,

one exchanges energies for momentum transverse to the beam and angles for
longitudinal boost-invariant angles.

1. Recluster the jet with the JADE algorithm which has a metric dij corre-
sponding to the pairwise mass of particles:

d
JADE
ij = 2EiEj(1 � cos ✓ij) . (9)

2. At each stage of the clustering, require that particles i and j pass the SD
grooming requirement, where:

min[Ei, Ej ]

Ei + Ej
> zcut

 
✓
2
ij

R2

!�

, (10)

with the initial jet radius R, angular exponent � > 0, and energy scale
parameter 0 < zcut < 1/2.

3. If the stage in the clustering passes the grooming requirement, terminate
and return the sum of flavours of particles in the jet. If the grooming require-
ment fails, then remove the softer of the two branches, and continue to the
next stage of the JADE clustering along the harder branch.
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ambiguities in jet flavour, reclustering with a kT -like algorithm means that the
emission that first passes the groomer sets an e↵ective jet radius below which
all emissions are still included in the jet. Thus, a configuration as illustrated
in Fig. 1 can still exist, where now the dashed oval represents the e↵ective
groomed jet region. That is, grooming can eliminate a soft, wider-angle anti-
quark from the jet, but render the jet flavour ambiguous because a soft quark
passes the groomer. In this section, we will make this precise, and explicitly
demonstrate that a default implementation of the SD groomer still fails to give
an IRC safe jet flavour at NNLO.

For simplicity of expressions, we will restrict our analysis here to consider-
ation of C/A clustering of emissions in the jet. Our jet of interest will initially
consist of a hard quark Q and a soft quark–anti-quark pair qq̄ from intermedi-
ate gluon emission. Then, on this collection of particles we will groom with SD,
necessarily assuming that the angular exponent � > 0 to ensure IRC safety at
NLO. Then, the SD constraint represented by Fig. 1 in which the anti-quark
is at a wider angle than the quark to Q and the anti-quark fails the groomer
while the quark passes is

⇥C/A
SD (6)

= ⇥(✓2Qq̄ � ✓
2
Qq)⇥(✓2qq̄ � ✓

2
Qq)⇥

0

@zq � zcut

 
✓
2
Qq

R2

!�
1

A⇥

0

@zcut

 
✓
2
Qq̄

R2

!�

� zq̄

1

A ,

where we assume that the soft quark and anti-quark energy fractions zq, zq̄ ⌧

1. Pairwise angles between particles are labeled; i.e., ✓Qq is the angle between
the hard quark Q and the soft quark q. The first two ⇥ functions are the
implementation of the C/A clustering, while the latter two ⇥ functions are the
SD groomer constraints on the soft quark and anti-quark.

To isolate the problematic, IRC-unsafe configuration, we can rescale the
energy fractions in the collinear limit as

zq = xqzcut

 
✓
2
Qq

R2

!�

, zq̄ = xq̄zcut

 
✓
2
Qq̄

R2

!�

, (7)

for some new quantities xq, xq̄. Assuming that the ratio of the angles with
respect to the hard quark stays constant in approaching the collinear limit,
✓Qq . ✓Qq̄ ⌧ R, this change of variables exposes the collinear singularity. In
this limit, the matrix element |M(zq, zq̄)|2 can be thought of as essentially the
triple collinear splitting function, for which we give an explicit expression in
App. B. Under the above rescaling the matrix element and di↵erential phase
space measure d⇧3 are only modified by an order-1 amount set by the ratio
✓Qq/✓Qq̄ in the soft and collinear limit:

d⇧3 |M(zq, zq̄)|
2 ⇥SD (8)
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triple collinear splitting function, for which we give an explicit expression in
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d⇧3 |M(zq, zq̄)|
2 ⇥SD (8)

which is singular in the collinear limit
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C/A clustering 
quark passes Soft Drop antiquark fails Soft Drop

rescaling: 



  

SD  avour with JADE
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1) Recluster the jet with the JADE algorithm which has the metric dij 
corresponding to the pairwise mass of the particles:

2) At each stage of the clustering, require that particles i and j pass 
the SD grooming requirement, where:

with the initial jet radius R, angular exponent K>0, and 
energy scale parameter 0<zcut<1/2.

3)  If the stage in the clustering passes the grooming requirement, 
terminate and return the sum of flavours of particles in the jet. If 
the grooming requirement fails, then remove the softer of the two 
branches, and continue to the next stage of the JADE clustering 
along the harder branch. 

● the kT class of algorithms 
does not favor clustering 
two soft particles together 
first, if there is a hard 
particle around at smaller 
angle.

• Can we modify Soft Drop to save the day?


• we can change the algorithm used for reclustering


• gen-kt algorithms do not cluster two soft particles together, if there is a hard 
particle around at smaller angle, but Jade does 


• let’s look at the problematic configuration with Jade reclustering

Jade Soft Drop
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3.1 Argument for IRC Safety Through NNLO

With this new flavour algorithm, we return to the configuration of Fig. 1 and
explicitly show that its contribution to the jet flavour is IRC safe. With JADE

clustering for SD, this problematic configuration has phase space constraints
of the form:

⇥JADE
SD = ⇥(m2

Qq̄ � m
2
Qq)⇥(m2

qq̄ � m
2
Qq) (11)
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1
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0

@zcut
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Qq̄
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!�

� zq̄

1

A ,

where now pairwise particle invariant masses are compared in the first two ⇥
functions. Under the same change of variables as Eq. 7, the mass orderings
take a di↵erent form where

⇥(m2
Qq̄ � m

2
Qq) = ⇥

0

@zQxq̄zcut
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2
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R2

!�
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2
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A . (13)

In writing these expressions, we are working in the collinear limit for all
pairwise masses and assume that the hard quark Q takes (nearly) all of the
energy, zQ ! 1. In these coordinates, the SD constraint with JADE reclustering
becomes:

⇥JADE
SD = ⇥

⇣
xq̄✓

2(�+1)
Qq̄ � xq✓

2(�+1)
Qq

⌘
⇥
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A (14)

⇥ ⇥ (xq � 1) ⇥ (1 � xq̄) .

Now we see immediately that the ordering of emissions that JADE imposes
regulates the divergent regions. For example, if the anti-quark q̄ that fails
SD becomes arbitrarily soft, xq̄ ! 0, the constraint that m

2
qq̄ > m

2
Qq fails.

Instead, we could take the collinear limit, where all angles ✓
2
! 0 at a similar
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SD becomes arbitrarily soft, xq̄ ! 0, the constraint that m

2
qq̄ > m

2
Qq fails.

Instead, we could take the collinear limit, where all angles ✓
2
! 0 at a similar

Practical Jet Flavour Through NNLO 9

3.1 Argument for IRC Safety Through NNLO

With this new flavour algorithm, we return to the configuration of Fig. 1 and
explicitly show that its contribution to the jet flavour is IRC safe. With JADE

clustering for SD, this problematic configuration has phase space constraints
of the form:

⇥JADE
SD = ⇥(m2

Qq̄ � m
2
Qq)⇥(m2

qq̄ � m
2
Qq) (11)
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where now pairwise particle invariant masses are compared in the first two ⇥
functions. Under the same change of variables as Eq. 7, the mass orderings
take a di↵erent form where
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In writing these expressions, we are working in the collinear limit for all
pairwise masses and assume that the hard quark Q takes (nearly) all of the
energy, zQ ! 1. In these coordinates, the SD constraint with JADE reclustering
becomes:

⇥JADE
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⇥ ⇥ (xq � 1) ⇥ (1 � xq̄) .

Now we see immediately that the ordering of emissions that JADE imposes
regulates the divergent regions. For example, if the anti-quark q̄ that fails
SD becomes arbitrarily soft, xq̄ ! 0, the constraint that m

2
qq̄ > m

2
Qq fails.

Instead, we could take the collinear limit, where all angles ✓
2
! 0 at a similar

• with Jade reclustering energies and angles are coupled even after 
rescaling: the singularity is successfully screened 



• Jade Soft Drop ( ) allows us to formulate a definition of flavour which 
is 


• viable from an experimental view point (original jets can be anti-kt and 
the flavour algorithm is applied after jet clustering)


• IRC safe through NNLO so that it can be used with state-of-the-art 
calculation


• however, the algorithm is unsafe at N3LO: maybe one can think of applying                              
recursive/iterative Soft Drop?

β > 0

Problems at N3LO and beyond
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Fig. 2 Illustration of a configuration of particles that renders SD flavour with JADE reclus-

tering IRC unsafe at NNNLO. The jet boundary is illustrated in the dashed oval, with the

hard quark Q and hard gluon g with the largest pairwise mass and pass SD. An arbitrarily

soft quark q lands in the jet and is therefore never groomed away, rendering the jet flavour

ambiguous.

rate. However, with � > 0, we observe again that the constraint m
2
qq̄ > m

2
Qq

fails. Finally, we can consider a correlated soft/collinear limit such that the
constraint m

2
qq̄ > m

2
Qq is satisfied. We can isolate this limit by introducing the

scaling parameter � > 0 and require that

xq̄ ! �xq̄ , ✓
2
! �

� 1
� ✓

2
, (15)

for any pairwise angle ✓
2. This scaling preserves the constraint that

xq̄zcut

 
✓
2
Qq̄

R2

!�

✓
2
qq̄ > ✓

2
Qq , (16)

by construction. However, the constraint that m
2
Qq̄ > m

2
Qq is rescaled to

xq̄✓
2(�+1)
Qq̄ > xq✓

2(�+1)
Qq ! �xq̄✓

2(�+1)
Qq̄ > xq✓

2(�+1)
Qq , (17)

which is clearly violated for su�ciently small �. Therefore, the jet flavour
defined as the sum of flavours that remain in a jet after SD with JADE

reclustering is IRC safe, through NNLO.
However, we do not expect this jet flavour definition to be IRC safe at

higher perturbative orders. We illustrate one configuration at next-to-next-
to-next-to-leading order (NNNLO) in Fig. 2 that demonstrates the problem.
The jet boundary is illustrated by the dashed oval, and the particles in the jet
consist of a hard quark Q, a hard gluon g, and a soft quark q. The partner
soft anti-quark q̄ is not clustered into the jet. We assume that the hard quark
and gluon are su�ciently collinear and have the largest pairwise mass, and are
therefore de-clustered first with JADE. With � > 0, collinear particles always
pass SD, and so the soft quark q is not groomed and necessarily remains in
the jet. This remains true for an arbitrarily low energy of the quark, and so
this definition of jet flavour will not be IRC safe at NNNLO.

However, several modifications to SD have been proposed that may solve
this IRC unsafety issue. In particular, techniques that continue to apply soft

this system has the 
smallest invariant mass 

and passes SD

soft quark can 
alter the flavour



Les Houches 2023 study
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• It is important to investigate IRC safety, resilience against non-perturbative effects 
and experimental viability of the 4 algorithms;


• a detailed study of these 4 algorithms was started at Les Houches 2023;


• regular biweekly meetings led to interesting studies;


• many results, here just a few ones to trigger discussion


• results are still preliminary!!!



Z+b jet @ NNLO (central rapidity)
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• new algorithms agree at the percent 
level for most distributions

• more b-tags reduce the differences 
(less freedom for the algorithms)

plots by Rene Poncelet
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Z+b jet @ NNLO (central rapidity)
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• perturbative convergence is good (remember that SDflavour not IRC safe 
beyond NNLO)

plots by Rene Poncelet
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Z+b jet @ NLO+PS (central rapidity)

plots by Rene 
Poncelet and Daniel 

Reichelt

[]

10°3

10°2

10°1

dæ
/d

p T
(b

1)
[p

b/
G

eV
]

LHC 13 TeV
FlavAlgAnalysis, PS level: HADRON

LO FJ IFN

NLO FJ IFN

NNLO FJ IFN

Sherpa dipole (fixed)

H7 angular bias

H7 dipole bias

50 100 150 200 250 300

pT (b1) [GeV]

0.5

1.0

1.5

2.0

ra
ti
o

to
N

L
O

P
re

li
m

in
ar

y

[]

10°3

10°2

10°1

dæ
/d

p T
(b

1)
[p

b/
G

eV
]

LHC 13 TeV
FlavAlgAnalysis, PS level: HADRON

LO FJ GHS

NLO FJ GHS

NNLO FJ GHS

Sherpa dipole (fixed)

H7 angular bias

H7 dipole bias

50 100 150 200 250 300

pT (b1) [GeV]

0.5

1.0

1.5

2.0

ra
ti
o

to
N

L
O

P
re

li
m

in
ar

y

[]

10°3

10°2

10°1

dæ
/d

p T
(b

1)
[p

b/
G

eV
]

LHC 13 TeV
FlavAlgAnalysis, PS level: HADRON

LO CMP≠ a = 0.1

NLO CMP≠ a = 0.1

NNLO CMP≠ a = 0.1

Sherpa dipole (fixed)

H7 angular bias

H7 dipole bias

50 100 150 200 250 300

pT (b1) [GeV]

0.5

1.0

1.5

2.0

ra
ti
o

to
N

L
O

P
re

li
m

in
ar

y

[]

10°3

10°2

10°1

dæ
/d

p T
(b

1)
[p

b/
G

eV
]

LHC 13 TeV
FlavAlgAnalysis, PS level: HADRON

LO FJ SoftDrop

NLO FJ SoftDrop

NNLO FJ SoftDrop

Sherpa dipole (fixed)

H7 angular bias

H7 dipole bias

50 100 150 200 250 300

pT (b1) [GeV]

0.5

1.0

1.5

2.0

ra
ti
o

to
N

L
O

P
re

li
m

in
ar

y

• some differences appear with the parton shower

• only IFN can handle massless quarks in the shower (H7 dipole)

• this leads to importante differences at high pT and for c-jets
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Comparison to experimental strategies

plots by Rene Poncelet and Daniel Reichelt

• NLO+PS with just anti-kt jets but different strategies 

anti-kt with net flavour  
(OK at NLO but not at NNLO)

cone with any flavour 
(proxy to ATLAS)

Rivet b-tagging with any flavour 
(proxy to CMS)

• large differences with current experimental strategies, likely due to net-flavours 
VS any-flavour
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Does any of this matter?
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• recent ATLAS measurements or Z+HF (b/c) jet

• important measurements for SM tests and PDFs
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• at large  non-perturbative 
corrections are small and 
comparison to fixed-order 
makes sense


• however, unfolding to IRC 
safe algorithms can be 
sizeable (sometimes bigger 
than the NNLO correction)


• most of the effect is likely 
due to any-flavour vs net-
flavour

pT

ATLAS (2024)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-43/
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It does!
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ATLAS (2024)
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(apologies for the ugly 
correction-factor plots)
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hadron to parton correction: less than 20%

unfolding to IRC safe algorithm: up to 40-50%

• We must to better if we want 
to do NNLO phenomenology

• recent ATLAS measurements or Z+HF (b/c) jet

• important measurements for SM tests and PDFs

• at large  non-perturbative 
corrections are small and 
comparison to fixed-order 
makes sense


• however, unfolding to IRC 
safe algorithms can be 
sizeable (sometimes bigger 
than the NNLO correction)


• most of the effect is likely 
due to any-flavour vs net-
flavour

pT

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-43/


Heavy flavour jet 
substructure 
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H → cc̄
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• jet substructure techniques are being exploited to measure the dead-cone effect 
at the LHC 


• for instance Soft Drop is a very-well understood grooming techniques (high-
precision calculation, many measurements)

Jet substructure to expose the dead-cone
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Measurements of groomed charm-jet substructure ALICE Collaboration
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Figure 1: The Ig distribution of prompt D0-tagged jets compared to that of inclusive jets for 15  ?
jet ch
T < 30 GeV/2

in pp collisions at
p
B = 13 TeV, normalised to the total number of jets . Model/data ratios are shown in the bottom

panels for PYTHIA 8 [32–34] and POWHEG [36] + PYTHIA 6 [33] simulations.
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Figure 2: The 'g (left) and =SD (right) distributions of prompt D0-tagged jets compared to those of inclusive jets
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T < 30 GeV/2 in pp collisions at

p
B = 13 TeV. Model/data ratios are shown in the bottom panels for

PYTHIA 8 [32–34] and POWHEG [36] + PYTHIA 6 [33] simulations.
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Soft Drop Declustering

Groomed
Clustering Tree

=

Groomed Jet

[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

zg

1–zg
θg

⇒

zg > zcut θgβ

ALICE collaboration (2022)

• How well do understand and model HF jet substructure?

https://arxiv.org/abs/2208.04857
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All-orders calculations with HF
• heavy-flavour jets are characterised by a variety of scales

• hard scale of the process Q (c.o.m energy, jet pT, …)


• heavy flavour mass m (much larger than  ) 


• scale vQ set by the HF property we want to measure (e.g. a substructure variable)

ΛQCD

• (multiple) resummations become relevant and it is important to understand the 
hierarchy between the different scales 


• we focus our attention on the (normalised) cumulative distribution
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Lund plane with masses
log
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dead-cone effect  
collinear radiation off 
massive quarks is not 

logarithmically enhanced

• the presence of masses introduce new 
vertical (purple) boundary, the so-called 
dead-cone effect


• the collinear limit should be replace by 
the quasi-collinear one (angles and 
mass are small but of the same order)


• running coupling with variable flavour 
number: the horizontal (red) line marks 
the  boundary


• the NLL (both  and ) radiator reads 

nf = 4, 5

v ξ
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Jet angularities (on light jets)
• jet angularities allow us to probe the internal QCD dynamics of jets                               
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Figure 9. NLO+NLL′ +NP and hadron-level SH-MC@NLO predictions for the differential cross
section in the Les Houches Angularity λ1

0.5 for ungroomed (top row) and groomed (bottom row)
R = 0.4 anti-kt jets with pT,jet ∈ [120, 150] GeV, compared to data from CMS [30]. The left and
middle panel correspond to the central and forward jet in dijet events, respectively, the right one to
the leading jet in Z+jet production. The NP corrections to the perturbative NLO+NLL′ prediction
have been obtained with the transfer-matrix approach.

Alongside the NLO + NLL′ + NP results we present hadron-level simulations with
SHERPA at NLO QCD accuracy, as described in section 3.1. The perturbative uncertainty
of the SH-MC@NLO predictions are taken as the envelope of 7-point variations of µF and
µR in the matrix elements and the parton shower.

In figure 9 we present NLO+NLL′+NP and SH-MC@NLO predictions for normalised
differential cross sections in λ1

0.5 and compare them with the CMS experimental data. The
top row of plots thereby corresponds to ungroomed jets, while the bottom row ones are
obtained with SoftDrop (β = 0, zcut = 0.1) applied to the jets prior to the observable
evaluation. The left-hand plots correspond to LHA measurements on the central jet, the
middle ones on the forward jet in dijet events, respectively, and the right-hand ones on the
leading jet in Z+jet production.

Overall, our resummed and matched predictions when corrected of NP effects (shown in
red) provide a good description of the hadron-level data, with the exception of the last (and
in some cases the second to last) bin at large values of the angularity. The corresponding
region of phase space is outside the jurisdiction of the all-orders calculation and one might
have hoped that it would be well-described by the NLO contribution. However, the last bin
contains the kinematic endpoint of the fixed-order calculation, accordingly, this part of the
distribution is very sensitive to the effect of multiple emissions. Indeed the SH-MC@NLO
predictions (in blue) are able to populate this region of phase space through additional
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CMS collaboration (2021)

Reichelt, Caletti, Fedkevych, SM, 
Schumann, Soyez (2021)

• a wealth of high-
quality data 
combined with solid 
theory description


• a lot of interesting 
phenomenology!

https://link.springer.com/article/10.1007/JHEP01(2022)188
https://arxiv.org/pdf/2112.09545.pdf
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Detailed pheno studies 
• measurements of distributions Z+jet and dijets in different transverse momentum and 

rapidity bins allows us to probe samples with rather different quark/gluon components
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configuration type of jet pT,jet [GeV] g-enriched q-enriched
(1) ungroomed R = 0.4 [120,150] dijet central Z+jet
(2) ungroomed R = 0.4 [1000,4000] dijet central dijet forward
(3) ungroomed R = 0.8 [120,150] dijet central Z+jet
(4) ungroomed R = 0.4 (tracks only) [120,150] dijet central Z+jet
(5) SoftDrop (β = 0, zcut = 0.1) R = 0.4 [120,150] dijet central Z+jet

Table 2. Configurations selected in ref. [30] to test theory predictions for gluon-enriched and
quark-enriched samples.
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Figure 11. Jet-angularity mean values for the phase-space regions enriched with gluon- and quark
jets in dijet and Z+jet production, respectively. See table 2 for details on the configurations and
the respective process considered as g- and q-enriched.

difference in the description of the g- or q-enriched samples. Note that, both in the data
and in the predictions, we observe smaller jet angularity mean values for the q-enriched
samples compared to the g-enriched case. This is theoretically anticipated given that gluons
carry more colour charge and accordingly radiate more. For the high-pT configuration (2)
this effect is, as expected, rather marginal, since the fractions of gluon jets are relatively
similar in the central and forward cases. Our theoretical calculations nicely capture this
effect even quantitatively. As seen for the LHA already, the theoretical uncertainties on
the NLO+NLL′ +NP predictions appear to be much larger than the SH-MC@NLO ones,
motivating to consider the evaluation of the NNLL, and eventually NNLO, corrections.

– 23 –

J
H
E
P
0
3
(
2
0
2
2
)
1
3
1

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

(5)
(4)
(3)
(2)
(1)

(5)
(4)
(3)
(2)
(1)

(5)
(4)
(3)
(2)
(1)

(1) [120, 150] GeV, AK4
(2) [1, 4] TeV, AK4
(3) [120, 150] GeV, AK8
(4) [120, 150] GeV, AK4 Ch.
(5) [120, 150] GeV, AK4, SD

g-enriched ⟨λ1α⟩
q-enriched ⟨λ1α⟩

⟨λ1
0.5⟩

⟨λ1
1⟩

⟨λ1
2⟩

CMS data

NLO + NLL′ + NP /CMS data

Figure 12. Ratio of jet-angularity mean values for the gluon- and quark-enriched samples in the
five phase-space regions detailed in table 2. The results obtained from the NLO + NLL′ + NP
calculation (left) and the SH-MC@NLO simulation (right) here get divided by the respective value
reported by CMS [30].

From these considerations we can conclude that for the calculations considered here, i.e.
NLO+NLL′+NP and SH-MC@NLO, QCD radiation off both hard quarks and hard gluons
is well-modelled. This is interesting as it was noted before [32, 33] that general-purpose
MC event generators do not always agree in their description of QCD radiation off gluons,
while they largely do for radiation off quarks, heavily constrained by tunes on LEP data.
However, it has to be noted that, although the considered samples are certainly q- and
g-enriched, they still contain significant contributions from the respective other flavour
channel, cf. figure 6.

To further study the quality in the modelling of gluon and quark jets, we next consider
ratios of the angularity mean values in the g- and q-enriched samples for the five phase-space
selections. In figure 12 we present our corresponding theoretical predictions, normalised
to the result reported by CMS. While the left-hand plot contains the results for the
NLO+NLL′+NP calculation, the right-hand plot shows corresponding predictions obtained
from SH-MC@NLO. For both calculational methods the central values agree remarkably
well with the measured ones i.e. have a ratio to data centred close to unity. For the
SH-MC@NLO simulation we observe the largest deviation, about 10%, for the jet-thrust
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similar in the central and forward cases. Our theoretical calculations nicely capture this
effect even quantitatively. As seen for the LHA already, the theoretical uncertainties on
the NLO+NLL′ +NP predictions appear to be much larger than the SH-MC@NLO ones,
motivating to consider the evaluation of the NNLL, and eventually NNLO, corrections.
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• mean values confirm standard 
picture: g’s radiate more than 
q’s 


• our calculation tends to 
underestimate the mean values


• however, it does so 
democratically for q’s and g’s: 
no appreciable bias


• beware! NLO corrections can 
significantly alter q/g fractions

• Can we study HF jets at the same level of precision?
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Jet angularities (on HF jets)
• what is a sensible definition of jet angularities for HF jets? 


• standard definition vs dot-products: the devil’s in the details!

λα = ∑
i

pti

pt ( ΔRi

R0 )
α

where the sum over i, j runs over constituents of the jet clustered with the anti-kt algorithm [121]
and pt is the transverse momentum of the jet. The distance �Rij =

p
(yi � yj)2 + (�i � �j)2, where

pti, yi,�i denote the transverse momentum, the rapidity and the azimuthal angle of the i
th particle

and R0 is the jet radius parameter. The concept of IRC safety requires ↵ > 0. The second definition
instead uses scalar (dot) products (hence its symbol):

ė
↵
2 =

X

i 6=j

ptiptj

p
2
t

✓
2pi · pj

ptiR0 ptjR0

◆↵
2

. (2.2)

We note that, if we neglect the particle masses, e↵2 and ė
↵
2 have the same behaviour in the small �Rij

limit. However, the ECFs defined as in eq. (2.1) and eq. (2.2) differ in the case of massive particles.
To illustrate this point, we take the quasi-collinear limit of eq. (2.2), which leads to:

ė
↵
2 '

X

i 6=j

ptiptj

p
2
t

 
m

2
i

p
2
tiR

2
0

+
m

2
j

p
2
tjR

2
0

+
�R

2
ij

R
2
0

!↵
2

. (2.3)

Thus, ė
↵
2 does not reduce to the standard definition of eq. (2.1) in the quasi-collinear limit, due

to the presence of the masses mi and mj . This observable was first studied, in conjunction with
SoftDrop in [88] using the SCET formalism.

Now let us consider a set of closely related observables generally known as jet angularities. The
standard jet angularity is defined as

�
↵ =

X

i

pti

pt

✓
�Ri

R0

◆↵

, (2.4)

where, unlike eq. (2.1), the distance �Ri in eq. (2.4) is calculated with respect to the jet axis, which
we define by reclustering the jet using the Cambridge/Aachen (C/A) algorithm [122, 123] with the
Winner-Takes-All (WTA) [124] recombination scheme. The jet angularites defined as in eq. (2.4) are
commonly used for the jets seeded by massless partons, see e.g. [61, 62]. In the case of heavy jets,
however, it is interesting to consider different definitions of the reference axis in eq. (2.4) to highlight
the effects due to the quark masses. In order to do that we introduce two different four-vectors: n0 is
a massless four-vector with the same rapidity y and azimuth � of the WTA axis, and unit transverse
momentum, while in n we keep the mass of the particle that is aligned with the WTA axis:

n0 =(cosh y, cos�, sin�, sinh y), (2.5a)

n =

✓
mt

pt
cosh y, cos�, sin�,

mt

pt
sinh y

◆
, (2.5b)

where m
2
t = p

2
t + m

2
n. With these considerations in mind, we define four additional variants of jet

angularities:

�̇
↵
0 =

X

i
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ptiR
2
0

◆↵
2

, �̇
↵ =

X

i

pti
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2pi · n
ptiR

2
0

◆↵
2

, (2.6a)

�̊
↵
0 =

X

i 6=n

pti

pt

✓
2pi · n0

ptiR
2
0

◆↵
2

, �̊
↵ =

X

i 6=n

pti

pt

✓
2pi · n
ptiR

2
0

◆↵
2

, (2.6b)

where the sum i is over the jet’s constituents. We note that while eq. (2.4) only made use of the
transverse momentum fraction of i

th particle and its distance from the WTA axis in the azimuth-
rapidity plane, the definitions in eqs. (2.6a) and (2.6b) instead consider the scalar products between

– 4 –

 is (massless) 4-vector built with the WTA axisn (n0)

• all definitions coincide in the collinear limit with massless partons (and axis)


• all definitions share the same NLL behaviour even with massive objects


• dot-product definitions can simplify calculations 

Lee, Shrivastava, Vaidya (2019)

+

https://inspirehep.net/literature/1717194
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A first look at b-jets with MCs

• dotted-distributions exhibit peaks and kinematical 
end-points (behaviour magnified for groomed jets)


• their origin can be understood by looking at the 
quasi-collinear limits


• for groomed jets also circled-observables have 
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Mass effects: kinematics vs dynamics
• dot-products induce kinematic mass dependence in the observables


• this effect is large and completely overshadows dynamical mass effects in the 
matrix elements


• dot-product observables exhibit strong sensitivity to the quark (hadron) mass: 
good for tagging (and perhaps mass measurements?)


• but they should be avoided if we want to study the dead cone!
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Mass effects: kinematics vs dynamics
• dot-products induce kinematic mass dependence in the observables


• this effect is large and completely overshadows dynamical mass effects in the 
matrix elements


• dot-product observables exhibit strong sensitivity to the quark (hadron) mass: 
good for tagging (and perhaps mass measurements?)


• but they should be avoided if we want to study the dead cone!

• Before computing resummed distributions: how big we expect non-perturbative 
corrections to be?

• groomed distributions seem 
robust provided we 
reconstruct the decay of the 
B hadron!


• on-going studies for 
experimental feasibility (e.g. 
CMS talk at BOOST 2024)

https://agenda.infn.it/event/37093/contributions/234284/attachments/124152/182470/Kalipoliti_boost2024.pdf
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Resummation vs MC for  λα

z = 1

ΔR
R0

= ξ = m
ptR0

kt

ptR0
= ξ

log R0
ΔR

nf = 5

nf = 4

log kt

ptR0

α = 1

z = 1

α = 1
kt

ptR0
= ξ

log kt

ptR0

log R0
ΔR

nf = 5

nf = 4
β = 0

kt

ptR0
=

zcut ξ

ΔR
R0

= ξ = m
ptR0

λα=1

λα=1
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Soft Drop Declustering

Groomed
Clustering Tree

=

Groomed Jet

[Larkoski, Marzani, Soyez, JDT, 2014; see also Butterworth, Davison, Rubin, Salam, 2008; Dasgupta, Fregoso, Marzani, Salam/Powling, 2013]

zg

1–zg
θg

⇒

zg > zcut θgβ
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Towards HF jet phenomenology
• NLL resummation formalism for b/c jets 

worked out:


• angularities 


• energy correlation functions


• Soft Drop variables  


• work in progress on the Lund plane 
density

θg, zg

• What’s left to do? 


• implementation in the SHERPA resummation plugin order to do deal with actual 
process and fiducial cuts


• NLO matching


• hadronisation corrections (transfer matrix approach)

z = 1

κ = zc

kt

pt
= ξ

kt

pt
= μ̃np

θ = mb

ptR0

κ = mb

ptR0

κ =

θg = θ −log θ
= log R0

Δ

log κ
= log kt

ptR0

κ = Λ
ptR0

κ = mc

ptR0

nf = 5

nf = 4

nf = 3

zcm1+β
b

(ptR0)1+β



• Q1: How can we define flavoured jets in a sensible way?                   


• New flavoured jet algorithms have been devised;


• they are IRC safe either at NNLO or to all orders;


• their behaviour in realistic experimental settings is currently under scrutiny 
(Les Houches study and internal work by the experiments); 


• Q2: How well do we understand QCD final states with heavy-flavours?                  


• We have performed a thorough study of kinematic and dynamic mass 
effects on jet substructure observables;


• we have developed a formalism to perform resummation for HF jets (NLL for 
both mass and observable logs);


• we have started its implementation in the SHERPA resummation plugin to 
perform actual phenomenology.

Conclusions and Outlook
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THANKS FOR YOUR ATTENTION


