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LHC is running (again)!
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ATLAS, presente e futuro 

CDS 8 LUGLIO 2024 4

• Si stanno completando le 
analisi dei dati di run 2 

• Il run 3 e in corso e durerà 4 
anni, raccogliendo circa il 
doppio di dati del run 2 

• High-Luminosity phase dal 
2029  con grossi upgrade del 
rivelatore 
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A beautiful theory

• The Standard Model encloses our current knowledge of fundamental 
interactions


• It is a complete theory, and successfully explain phenomena over a vast 
range of scales (from low-energy QED to the largest energy scales we can 
probe)


• Its Lagrangian can be cast in a very compact form
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6.1. MEASUREMENTOF THE ELECTRONANOMALOUSMAGNETICMOMENT107
applied.
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Fig. 8.1. compares the most accurate values.
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(b)

Figure 6.5: g/2 and fine structure constant. Four measurements of g/2 without (open) and
with (filled) cavity-shift corrections. The light gray uncertainty band shows the average of

the corrected data. The dark gray band indicates the expected location of the uncorrected

data given the result in Eq. (6.5) and including only the cavity-shift uncertainty. Source:

[16, p. 201]. (a) The most precise determinations of �. Source: [19, p. 264]. (b)

where

C2 = 0.500 000 000 000 00 (exact)

C4 = ⇥0.328 478 444 002 90 (60)

C6 = 1.181 234 016 827 (19)

C8 = ⇥1.914 4 (35)

C10 = 0.0 (4.6)

ahadronic = 1.682(20) · 10�12.

From Eq. (6.6) and the theoretical predictions we can on the one hand measure the cou-

pling constant � (see Fig. 6.5(b)):

��1 = 137.035 999 084 (33) (39) [0.24 ppb][0.28 ppb]

= 137.035 999 084 (51) [0.37 ppb]

and on the other hand, we can compare the measured g/2 with the expectation using �
from other measurements

g/2 = 1.001 159 652 180 73 (28) [0.28 ppt] (measured)

g(�)/2 = 1.001 159 652 177 60 (520) [5.2 ppt] (predicted).

10-12
Electron g-2

Gauge kinetic term

Matter kinetic term

Matter-Higgs interaction

Higgs kinetic term+potential
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New Physics?
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New Physics?

• We (still) believe that new physics must exist


• What is Dark Matter made of?


• Where is all the anti-matter in the universe?


• Why do particles have such innatural masses?


• …
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New Physics?

• We (still) believe that new physics must exist


• What is Dark Matter made of?


• Where is all the anti-matter in the universe?


• Why do particles have such innatural masses?


• …

• New physics must be hiding very well!


• Change of paradigm: from bump hunting to precision measurements
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Moriond QCD 2022 The University of Manchester

• Unfolded 12 differential distributions:  
 - some similar shape discrepancies between data and Madgraph as seen by ATLAS

Probing -  coupling - t γ tt̄γ

10

CMS-TOP-21-004  
2016–2018 data, 138 fb-1

JHEP 09 (2020) 049  
2015–2018 data, 139 fb-1

SM
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ggF

Precision for measurements

• Our ability to make measurements and discoveries is limited by the 
goodness of our theory predictions


• Higgs physics gives a clear example: the dominant production channel 
receives large perturbative corrections


• Without the inclusion of higher orders, ggF measured rate would be 3*SM 


• Exp. measurements are very competitive already now!
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How do we do precision calculations?
• We cannot solve exactly the SM Lagrangian: use perturbation theory

• QCD factorisation theorem


�pp!X(s) =
X

ab

Z
dx1dx2fa(x1)fb(x2)�̂ab!X(ŝ = x1x2s)
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How do we do precision calculations?
• We cannot solve exactly the SM Lagrangian: use perturbation theory

• QCD factorisation theorem


�pp!X(s) =
X

ab

Z
dx1dx2fa(x1)fb(x2)�̂ab!X(ŝ = x1x2s)

Parton distribution functions: 
must be fit to data, process 

independent

Probability of finding a parton 
into the proton

Partonic cross section: 
can be computed in perturbation 

theory, process dependent

Probability that two partons 
scatter into a given final state 

�̂ab!X = �̂(0)
ab!X + ↵s�̂

(1)
ab!X + ↵2

s�̂
(2)
ab!X + ↵3

s�̂
(3)
ab!X + . . .

LO NLO NNLO NNNLO

……

strong coupling, ~0.1

• Going higher orders, the complexity of the computation explodes
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SM ≠ QCD

• So far, we considered only QCD effects


• In the SM also electroweak effects must be accounted for 
→Multi-coupling expansion


• Since α≃αs2, EW effects cannot be neglected for precision


• EW effects grow at large energies: Sudakov enhancement 


• Luckily, NLO EW corrections have been automated in the last years 
see e.g.: Kallweit et al,1412.5157 (Sherpa+OpenLoops), Biedermann et al, 1704.05783 
(Sherpa+Recola+Collier), Frederix, Frixione, Hirschi, Pagani, Shao, MZ, 1804.10017 (MG5_aMC)

• Relevance of EW corrections also beyond SM and LHC:


• Can be O(1) at high-energy lepton colliders (specially muons)

• Sizeable effects in Dark-Matter searches, e.g. indirect-detection with heavy 

DM particles see e.g. Ciafaloni et al, 1104.2996 …, Cavasonza et al, 1409.8226
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EW corrections vs EW effects
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QCD EW

“LO”

“NLO QCD” “NLO EW”

QCD

• A general process has several contributions at LO, NLO, …


• Example: top pair


• The LO is often identified with the contribution with most αs

• At NLO the first two contributions are identified with the 
NLO QCD and NLO EW corrections


• This structures induces mixed QCD-EW effects at NLO: 
NLOi = LOi-1 ⊗ EW + LOi ⊗ QCD 
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Large EW corrections

• Despite the naive estimate α~αs2, there are cases when EW corrections 
comparable to NLO QCD or larger. It happens when:


• Large scales are probed (VBS)


• Power counting is altered (4 top: yt vs α)


• New production mechanisms, different than those at the “dominant” LO, 
enter (ttW, bbH)

9

VBS: Biedermann et al, 1708.00268
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LOQCD +NLOQCD +NLOEW

ttW

Set-up of Ref. [9] Present work DHK [9]

σLO [fb] 1.2230(4) 1.2218(2)

σNLO [fb] 1.2975(15) 1.2917(8)

Table 6: Comparison of fiducial cross sections at LO [order O
(

α6
)

] and NLO [order O
(

αsα4
)

]

for the process pp → µ+νµe+νejj against the literature in the set-up of Ref. [9]. DHK denotes

the results of Ref. [9]. The cross sections are expressed in femtobarn and the statistical

uncertainty from the Monte Carlo integration on the last digit is given in parenthesis.
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Figure 5: Transverse-momentum distributions at a centre-of-mass energy
√
s = 13TeV at

the LHC for pp → µ+νµe+νejj: (a) for the anti-muon (left) and (b) the hardest jet (right).

The upper panels show the three LO contributions as well as the sum of all NLO predictions.

The two lower panels show the relative NLO corrections with respect to the full LO, defined

as δi = δσi/
∑

σLO, where i = O
(

α7
)

,O
(

αsα6
)

,O
(

α2
sα

5
)

,O
(

α3
sα

4
)

. In addition, the NLO

photon-induced contributions of order O
(

α7
)

computed with LUXqed is provided separately.

butions are presented along with the NLO photon-induced contributions of order O
(

α7
)

. The

latter are computed for the LUXqed PDF and are thus normalised to the Born contributions

obtained with the corresponding PDF. Remember that these photon-induced contributions

are not included in our definition of the NLO corrections of order O
(

α7
)

.

In Fig. 5, two transverse-momentum distributions are displayed. Starting with the distri-

bution in the transverse momentum of the anti-muon, the upper panel in Fig. 5a shows that

the EW-induced contribution is dominant over the whole phase space. Concerning the relative

NLO corrections in the lower panel, the largest contribution is the one of order O
(

α7
)

. It

ranges from −10% at 20GeV (the cut on the transverse momentum of the charged lepton) to

−40% at 800GeV. The large corrections for high transverse momenta are due to logarithms of

– 14 –
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 EW Sudakov Logarithms

• Since gluons are massless, one must include virtual and real radiation in 
NLO QCD computations


• The W/Z/Higgs boson masses make EW corrections finite. No need to 
include heavy-boson radiation (distinguishable, in principle)


• Even if we included HBR, cancelation will only be partial


• However, at high energies, the would-be IR divergence appears via logs:


• EWSL are universal, enhance the cross section at high-energy, and can be 
resummed Denner, Rode, 2402.10503

10

QCD EW
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Universality of EWSL

11

VBS: Biedermann et al, 1708.00268
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Figure 8: Transverse momentum of the hardest vector boson in the processes of eq. (6.19)

(left panel), and transverse momentum of the Higgs boson in the processes of eq. (6.20)

(right panel). Some of the histograms in the main frames are rescaled as indicated in order

to enhance their visibility.

is loop-induced, and therefore is also ignored. As in all of the other cases treated so far,

processes obtained by means of charge conjugation from those of eq. (6.20) can be generated

without problems by MG5 aMC, but have not been considered here.

For inclusive rates (see table 2) the NLO EW corrections are �9% for pp ! HZZ,

�11% for pp ! HHZ, and �13% for pp ! HHW+, while for pp ! HW+Z they are a

positive 1.6%. At the di↵erential level, all of the four processes display the typical behaviour

of EW corrections (i.e. negative and growing in absolute value with pT ) at large transverse

momenta; however, the pT values for which these e↵ects become dominant do depend on the

specific process. In particular, as is the case for the inclusive rates, it is HW+Z production

that stands apart, since up to relatively large transverse momenta (pT ' 200 GeV) the

negative contributions due to the EW Sudakovs (which are present in the other three

processes as well) are compensated by positive contributions. Among these, the dominant

one is driven by a quasi-collinear enhancement stemming from �q ! HW+q⇤(! Zq), a

mechanism fully analogous to that already advocated for the second process in eq. (6.17),

and that cannot be present in the other three processes in eq. (6.20). Finally, we notice

that (smaller) di↵erences between the triple-boson processes of eq. (6.20) can be induced

by virtual corrections, owing to the di↵erent ways in which the bosons enter the one-loop

diagrams (chiefly, by being directly attached to the heavy-quark loop, or by resulting from

the branching of a parent particle that is directly attached to the loop).

⌥ Associated top-quark, and jet production

In the left panel of fig. 9 we consider the transverse momentum of the tt̄ pairs in the

following processes:

pp �! tt̄W+ , pp �! tt̄Z , pp �! tt̄H . (6.21)

These have been studied before in the literature [22, 25, 31, 120, 161], also with a then-

– 67 –

• EWSL enhancement is a feature of many scattering processes


• Still, other effects of different origin can appear in the same kinematic 
regime: photon PDFs, quasi-collinear enhancements, etc…
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Don’t we have  
the exact EW corrections?

• Despite the fact we have the exact EW corrections, 
EWSL have re-gained attention in the recent years: 
 


• Can be resummed, providing NLO+NLL EW 
accuracy


• Much faster and more stable than exact NLO  
EW corrections


• Only Born-like kinematics: PS merging/matching 
simplified 
Chiesa et al, 1305.6837; Bothmann et al, 2111.13453

• Universal: can be computed also for BSM  
theories, where UV renormalisation is very  
complex or even impossible

12

see e.g. the automation in Sherpa, Bothmann et al, 2006.14635  
or OpenLoops, Lindert et al, 2312.07927
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Figure 11: Distributions of leptonic observables for pp æ e+e≠µ+µ≠
+ jets production. The baseline

prediction is given by the M�P�@N�� result in the Gµ scheme, with the grey band indicating its 7-point
scale-variation uncertainty. On top of it, loop-induced corrections and EWvirt/EWsud approximations
are applied. Shown are from top left to bottom right: the four-lepton invariant mass m2e2µ, the Z-boson
distance �R2e,2µ, the di-electron transverse momentum pT,2e, and four-lepton transverse momentum
pT,2e2µ. All predictions are calculated using S�����+OPENLOOPS/R�����.
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Bothmann et al, 2111.13453
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EWSL by Denner and Pozzorini

hep-ph/0010201 & hep-ph/0104127

• In their seminal works, D&P derived the structure of EWSL for one-loop 
matrix elements, where at least one helicity configuration is not mass-
suppressed

• All invariants must satisfy the constraint


• SM is chiral → EWSL must be computed helicity-by-helicity


• Use GBET for longitudinal polarisations


• EWSL decomposed as sum of 4 terms


• Photon and fermion masses to regulate IR divergences 


• Analytic control of expressions (for simple processes): ability to single out 
only the dominant terms in the results
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limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms
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Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give
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A glance at the anatomy of EWSL

• Soft-collinear terms originate from vector-boson exchange between 
external legs (in the eikonal approx.)


• In the strict high-energy approximation (as in D&P), terms with s/rkl are 
neglected. Their inclusion can improve angular dependence


• The imaginary part was not considered in D&P 


• Other terms originate from purely-collinear configurations and field 
renormalisation 
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Implementation of EWSL in MG5_aMC

Pagani, MZ arXiv:2110.03714
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Implementation of EWSL in MG5_aMC

Pagani, MZ arXiv:2110.03714

• Builds on the work by D&P, with some variations:


• Automate the computation of EWSL for any process, in a fully-numerical 
framework: MG5_aMC Alwall, …, MZ, 1405.0301 & Frixione, …, MZ, 1804.10017

• Translate expressions using the modern language of Dim.Reg.


• Include a missing imaginary part in D&P (relevant for 2→n, n≥3)


• Provide results for the squared amplitude, including the tree-loop 
interference, both due to EW and QCD effects


• Improve angular dependence by retaining explicit rkl dependence


• Obtain approximations for physical cross sections (Virtual+Reals), with 
the possibility that photons are clustered with charged particles 

16
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The automation of EWSL

• Use MG5_aMC to generate all the needed matrix elements:


• Born ME’s Bi, including those where V0,±→G0,±

• Isospin-linked Borns Bi,j, and their interferences with Bi

• Since external particles differ, momenta may need reshuffling to satisfy on-
shell relations


• Keep track of all terms needed for each EWSL contribution, helicity by 
helicity


• Compute ẟPR with numerical derivatives 

• No special Feynman rule needed by the model → easy to extend BSM

• Formula adapted for both Gμ and α(MZ) scheme
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and are obtained from the Born matrix element M0 = M0(e, cw, ht, hH) in the high-energy
limit by

δPRM =
δM0

δe
δe+

δM0

δcw
δcw +

δM0

δht
δht +

δM0

δhH
δheff

H

∣

∣

∣

∣

∣

µ2=s

. (5.2)

The mass ratios ht and hH are related to the top-quark Yukawa coupling and to the scalar
self coupling, respectively. They appear only in processes where these couplings enter.
The renormalization of the masses in the propagators or in couplings with mass dimension
yields only mass-suppressed contributions which are irrelevant in the high-energy limit in
amplitudes that are not mass-suppressed.

The logarithms connected to parameter renormalization can simply be obtained by the
replacements e → e+δe, cw → cw+δcw, sw → sw+δsw, ht → ht+δht and hH → hH+δheff

H

in the lowest-order matrix elements in the high-energy limit. In the case of processes with
longitudinal gauge bosons, these substitutions must be performed in the matrix elements
resulting from the equivalence theorem.

Mixing-angle renormalization

In the on-shell scheme, the renormalization of the weak mixing angle (B.5) is given by

δc2w
c2w

=
δM2

W

M2
W

−
δM2

Z

M2
Z

=
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T (M2
W)

M2
W
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2
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Z

. (5.3)

After tadpole renormalization, i.e. omitting the tadpole diagrams, the mass counterterms
give

δM2
W

M2
W

= − [bewW − 4Cew
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Z
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l(µ2), (5.4)

and contain large (m2
t/M

2
W)l(µ2) terms. However, these terms cancel in (5.3), and using

bewAZ =
cw
sw

(bewZZ − bewW ), (5.5)

which follows from (B.42), we can express the mixing-angle counterterm by the AZ com-
ponent of the β-function:

δc2w
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=
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bewAZ l(µ
2). (5.6)

Charge renormalization

In the on-shell scheme, the coupling-constant counterterms are related to the FRCs
by Ward identities. For the electric charge counterterm we have
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Isospin-linked borns

• EWSL originate from loops where EW vector bosons attach to one or 
two external legs


• This can change e.g. the flavour of a given fermion line (u→d, l→ν,…)


• In this case, the Born matrix element is interfered with an ‘isospin-linked’ 
term

18
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Validation: 
Approximated virtual amplitudes

19

Figure 4: Comparison between exact results (dots) for O(↵) NLO EW virtual corrections

and their LA (lines) in the case of squared matrix elements of representative 2 ! n processes

with n = 2, 3, 4. Solid lines include the �QCD
LA contribution, while dashed lines do not. Plots

show a scan in energy for fixed rkl/s ratios. More details are given in the text.

size depends on both the size of �QCD
LA (see eq. (3.17)) and, since in the plots shown in

Figs. 4 we have i = 2, on the LO2/LO1 ratio.

Considering simple 2 ! 2 processes, one can see how di↵erent is the impact of

⌃LO2
�
QCD
LA in the top-left and top-center plots; in the case of bb̄ ! tt̄ both �

QCD
LA and

the LO2/LO1 ratio are larger. The top-right plot refers to the process uū ! tt̄gh, the

simplest process for which all the terms of eq. (3.17) are non-vanishing. The lower plots

refer to di↵erent partonic processes entering the process pp ! tt̄tt̄. As already discussed

in Ref. [100] a large part of the NLO EW corrections are of QCD origin, and this can be

observed also in the lower plots of Fig. 4.

Given the large number of leading helicity configurations for processes with tt̄tt̄ in the

– 35 –

Figure 3: Comparison between exact results (dots) for O(↵) NLO EW virtual corrections

and their LA (lines) in the case of squared matrix elements of representative 2 ! n processes

with n = 3, 4. Solid lines include the contributions proportional to i⇡⇥(rkl), while dashed

lines do not. Plots show a scan in energy for fixed rkl/s ratios. More details are given in

the text.

the derivation of the SSCs!rkl terms is the C0 function in (2.15), which is associated to

simply the masses and the invariant mass of two external particles involved in the process.

However, already with 2 ! 2 processes, D0 functions can appear in virtual corrections,

involving also at high energies more than one invariant and leading to additional terms

when the condition (2.4) is not satisfied.

6.3 Impact of the imaginary component

As explained in Sec. 2.2, in the original work of Ref. [39] an imaginary component has been

omitted in the formulas, which on the other hand a↵ects results only for 2 ! n processes
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From amplitudes to cross sections

• D&P approximate the contribution of virtual diagrams to the cross section


• Real emissions will partly compensate it, in particular the QED part


• We introduce a purely-weak Sudakov approximation: QED effects are 
removed everywhere, except for PR renormalisation


• This assumes that photons are always clustered with charged particles 
(also massive ones!)


• Other approaches drop the IR-divergent em terms. However:


• This way QED is removed only up to MW

• But QED effects appear also elsewhere (SSC, Collinear)


• How does this compare with exact NLO corrections?

20

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6
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Predictions for cross sections

• Setup:


• 100 TeV pp collider


• Charged particles are always clustered with photons within ΔR=0.4


• Final-state particles required to be hard, central and separated (cuts are 
specific to each process considered)


• We compare exact NLO EW corrections (including and excluding initial-
state photons) with 


• The Sudakov approximation as from D&P, excluding only the em terms (SDK0)


• Our approximation for the purely-weak Sudakov corrections (SDKweak)


• Both cases are studied with or without the extra angular terms from Δs→rkl

21
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Drell-Yan (pp→e+e-)

• Charged FS: SDKweak much closer to EW corrections wrt SDK0

• 2→2 process with hard cuts: small effects due to Δs→rkl

cially a photon density following the LUXqed parameterisation [134, 135]. The renormali-

sation (µR) and factorisation (µF ) scales are both set equal to the partonic center-of-mass

energy
p
s. This set-up is common with all the other processes discussed in this section.

In the Drell-Yan simulation the following cuts are imposed on the dressed leptons:

pT (`
±) > 200 GeV , |⌘(`±)| < 2.5 , m(`+, `�) > 400 GeV , �R(`+, `�) > 0.5 .

(7.2)

On the one hand, these cuts are imposed in order to resemble realistic experimental cuts for

high-energy objects. On the other hand, they avoid additional logarithmic enhancements

from collinear splittings appearing in the real radiation processes or even at the Born level.

In Fig. 5 we show di↵erential distributions for the transverse momentum of the electron,

pT (`�), for the transverse momentum of the leading (trailing) lepton, pT (`1) (pT (`2)), and

for the dilepton invariant mass m(`+, `�).

The layout of each plot in Fig. 5, and in general of each plot in this section22, is

the following. In the main panel we show the di↵erential distribution at LO (solid blue

line) and NLO EW (solid orange line) accuracy, where the exact O(↵) corrections are

taken into account. If the NLO EW prediction turns negative, meaning that NLO EW

corrections are negative and larger than the LO in absolute value, the curve corresponds

to its absolute value and is drawn as dashed. In the first inset we show the relative

impact of EW corrections, �X ⌘ X/LO� 1, in di↵erent approximations. The solid orange

line corresponds to the one in the main panel with the same style, i.e. the exact O(↵)

corrections (NLO EW), and the dotted orange line corresponds to the same case where the

photon PDF has been set equal to zero (NLO EW, no �). The other curves correspond

to results in LA, with di↵erent assumptions. First, the solid curves include the SSCs!rkl

contribution (SDKX , s ! rkl), while the dashed ones do not (SDKX). Second, the green

lines are obtained by simply omitting the QED and IR-sensitive terms, which are dubbed

as “em” in the DP algorithm. This is analogous to the approach of e.g. Refs. [79, 91]

and dubbed here as SDK0. The red lines are instead obtained by completely removing

the QED contribution, namely, following the procedure described in Sec. 4.1, the SDKweak

approach. Both the SDK0 and SDKweak predictions, similarly to the NLO EW ones in

this section, include also the LO contribution. Needless to say, the closest a line is to

the solid orange one, the better is the approximation of the exact NLO EW corrections.

Therefore, in order to better judge this characteristic, in the second inset we zoom on the

lines by simply plotting for each line in the first inset the di↵erence with the solid orange

one. Clearly, the reference prediction in LA is the solid red line, which both includes the

SSCs!rkl contribution and is obtained via the SDKweak approach.

We remind the reader that neither the SDK0 nor the SDKweak approach are equal to

the approach dubbed as SDK in Sec. 6, which concerns the LA of the interference of Born

amplitude and the IR-divergent virtual amplitude. The SDK prediction cannot be used for

IR-safe observables. Moreover, the SDK0 approach, even when the SSCs!rkl contributions

are not taken into account, is not exactly equal to the one used so far in the literature,

22An important di↵erence is present for Figs. 7 and 8 and explained later in the text.
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ZZZ production

• Neutral FS: small difference between SDKweak and SDK0

• 2→3 process: inclusion of Δs→rkl improves approximation of EW corrections 


• EW corrections exceed 100%: need for their resummation

Figure 6: Same as Fig. 5, but for ZZZ hadroproduction at 100 TeV.

7.2 ZZZ

In Fig. 6 we show plots, with the same layout of those in Fig. 5, for the process pp ! ZZZ.

This process has a neutral final state, so we do not expect large di↵erences between the

SDK0 and SDKweak approaches. On the other hand, being a 2 ! 3 process, the e↵ect of

the SSCs!rkl terms is supposed to be more relevant. The upper plots of Fig. 6 correspond

to the transverse-momentum distributions of respectively the hardest Z-boson (pT (Z1)),

the second-hardest Z-boson (pT (Z2)) and the softest one (pT (Z3)). The lower plots instead

correspond to the invariant masses m(Zi, Zj) of the three di↵erent Z-boson pairs.

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,
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WWW production

• 2→3 process with charged FS: SDKweak with Δs→rkl closest to exact EW corrections (without 
initial photons)


• Initial photons (from real radiation) have huge effects: not accounted for by Sudakov approx.

Figure 8: Same as Fig. 7, but for W+
W

+
W

� hadroproduction at 100 TeV.

fixed-order exact NLO EW corrections. On the other hand, it cannot substitute the exact

calculation. LA can be used as a starting point for improving the fixed-order NLO EW,

by e.g. resumming the large Sudakov logarithms or alternatively for performing fast sim-

ulations with MadGraph5 aMC@NLO including the EW dominant e↵ects at high-energy.

The latter option, however, should be always cross-checked with an exact calculation before

being used for phenomenological predictions.

7.4 WWW

As last example, we show in Fig. 8 distributions for the process pp ! W
+
W

+
W

�, where

for the calculations the following cuts have been employed

pT (Wi) > 1 TeV , |⌘(Wi)| < 2.5 , m(Wi,Wj) > 1 TeV , �R(Wi,Wj) > 0.5 ,

(7.5)
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Including EWSL in NLO+PS simulations 
Pagani, Vitos, MZ, 2309.00452

25
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The problem
• Matching NLO EW to QED PS is not yet solved in general


• Exact matching available only for processes with a single LO contribution 
DY: Barzè et al,1302.4606; HV(J): Granata et al, 1706.03522; 
VBS: Chiesa et al, 1906.01863, VV: Chiesa et al, 2005.12146; 
WZ@NNLO+PS: Lindert et al, 2208.12660

• Approximate solutions exist, not formally NLO-accurate, but with a decent 
phenomenological description (when target accuracy is ~10%) 
VV(J): Brauer et al, 2005.12128; top: Gutschov et al, 1803.00950;  
V+jets: Kallweit et al, 1511.08692, …

• Main issue: how to assign colour-flows to interferences (LO2 is mostly an 
interference contribution)


• However, quite often, LO2/LO1≪α/αs so that these configurations can be 
somehow neglected


• EWSL are an excellent compromise for this problem:


• They provide the bulk of the cross section, in a fast and stable manner


• In the SDKweak scheme, they can be supplemented by QED PS without double 
counting

26
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Including approximate EW 

corrections beyond NLO

• When combining NLO QCD EW 
corrections, one can approximate the 
mixed NNLO2 term by the so-called 
multiplicative approach, if both are due 
to universal effects (soft emissions for 
QCD, EWSL for EW)


• This stabilises the scale-dependence of 
EW corrections, which is now NLO-like

27

• In the context of event-generation, EWSL can improve the multiplicative 
approach:


• Each kind of events, Born-like (S) or Real-like (H), can be corrected by the 
EWSL corresponding to the event’s multiplicity


• Approach can be extended to multijet-merging Bothmann et al, 2111.13453

• A smooth transition in the soft/collinear limit of H events must be ensured

tt-, LHC13, LUXQED

(QCD+EW)/QCD (QCD×EW)/QCD (QCD2×EW)/QCD

 0.8

 1

 1.2

QCD QCD+EW

 0.6

 0.8

 1
(QCD+EW)/QCD; scale unc.

QCD QCD×EW

 0.6

 0.8

 1
(QCD×EW)/QCD; scale unc.

QCD QCD2×EW

 0.6

 0.8

 1
(QCD2×EW)/QCD; scale unc.

pT,avt [GeV]

(QCD+EW)/QCD (QCD+EW−EWres)/QCD

 0.8

 1

 0  500  1000  1500  2000  2500  3000

tt-, LHC13, NNPDF3.0QED

(QCD+EW)/QCD (QCD×EW)/QCD (QCD2×EW)/QCD

 0.8

 1

 1.2

QCD QCD+EW

 0.6

 0.8

 1
(QCD+EW)/QCD; scale unc.

QCD QCD×EW

 0.6

 0.8

 1
(QCD×EW)/QCD; scale unc.

QCD QCD2×EW

 0.6

 0.8

 1
(QCD2×EW)/QCD; scale unc.

pT,avt [GeV]

(QCD+EW)/QCD (QCD+EW−EWres)/QCD

 0.8

 1

 0  500  1000  1500  2000  2500  3000

tt-, LHC13, LUXQED

(QCD+EW)/QCD (QCD×EW)/QCD (QCD2×EW)/QCD

 0.9

 1

 1.1

QCD QCD+EW

 1

 1.5 (QCD+EW)/QCD; scale unc.

QCD QCD×EW

 1

 1.5 (QCD×EW)/QCD; scale unc.

QCD QCD2×EW

 1

 1.5 (QCD2×EW)/QCD; scale unc.

m(tt-) [GeV]

(QCD+EW)/QCD (QCD+EW−EWres)/QCD

 0.9

 1

 1.1

 0  1000  2000  3000  4000  5000  6000

tt-, LHC13, NNPDF3.0QED

(QCD+EW)/QCD (QCD×EW)/QCD (QCD2×EW)/QCD

 0.9

 1

 1.1

QCD QCD+EW

 1

 1.5 (QCD+EW)/QCD; scale unc.

QCD QCD×EW

 1

 1.5 (QCD×EW)/QCD; scale unc.

QCD QCD2×EW

 1

 1.5 (QCD2×EW)/QCD; scale unc.

m(tt-) [GeV]

(QCD+EW)/QCD (QCD+EW−EWres)/QCD

 0.9

 1

 1.1

 0  1000  2000  3000  4000  5000  6000

Figure 4. Additive (⌃QCD+EW) versus multiplicative (⌃QCD⇥EW) approach: pT,avt and m(tt̄)
di↵erential distributions at 13 TeV. The format of the plots is described in the text.

The last inset shows a comparison of the ratio ⌃QCD+EW/⌃QCD including (red line) or not

(orange line) the contribution ⌃res, where “res” stands for residual and denotes the fact

that ⌃res are contributions to ⌃EW that are expected to be small, regardless of the PDF

set used (see eq. (A.6)).

As expected, the multiplicative approach shows much smaller dependence on the scale

variation. This is particularly relevant for the tail of the pT,avt distribution, where the scale

uncertainty of ⌃EW alone is comparable in size with the one of ⌃QCD; with this reduction

of the scale uncertainty the ⌃QCD⇥EW and ⌃QCD uncertainty bands do not overlap when

LUXQED is used. In the case of m(tt̄) and yavt distributions, the ⌃QCD⇥EW central-value

predictions are typically larger in absolute value than those of ⌃QCD+EW, while they are all

almost of the same size for the y(tt̄) distribution. In the case of yavt the di↵erence between

the additive and multiplicative approaches is completely negligible compared to their scale

uncertainty. Therefore, besides the kinematic region where Sudakov e↵ects are the dom-
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Figure 4. Additive (⌃QCD+EW) versus multiplicative (⌃QCD⇥EW) approach: pT,avt and m(tt̄)
di↵erential distributions at 13 TeV. The format of the plots is described in the text.

The last inset shows a comparison of the ratio ⌃QCD+EW/⌃QCD including (red line) or not

(orange line) the contribution ⌃res, where “res” stands for residual and denotes the fact

that ⌃res are contributions to ⌃EW that are expected to be small, regardless of the PDF

set used (see eq. (A.6)).

As expected, the multiplicative approach shows much smaller dependence on the scale

variation. This is particularly relevant for the tail of the pT,avt distribution, where the scale

uncertainty of ⌃EW alone is comparable in size with the one of ⌃QCD; with this reduction

of the scale uncertainty the ⌃QCD⇥EW and ⌃QCD uncertainty bands do not overlap when

LUXQED is used. In the case of m(tt̄) and yavt distributions, the ⌃QCD⇥EW central-value

predictions are typically larger in absolute value than those of ⌃QCD+EW, while they are all

almost of the same size for the y(tt̄) distribution. In the case of yavt the di↵erence between

the additive and multiplicative approaches is completely negligible compared to their scale

uncertainty. Therefore, besides the kinematic region where Sudakov e↵ects are the dom-
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Including EWSL 

in NLO+PS samples


• in MG5_aMC, S and H events are defined as follows:


• Events from each class can be corrected by the corresponding EWSL


• This enforces the proper IR behaviour of H events


• In principle, there is also an interplay between C and the shower scale μs. 
In practice, relative impact of EWSL is independent on μs variations even 
by large factors

28

MadGraph5_aMC@NLO [67]. First, we briefly recall the basics of the MC@NLO matching,
following a very similar argument of Ref. [91]. Then we describe how in practice we use the
DP algorithm for implementing the prescription in Eqs. (2.13) and (2.14) ensuring the condition
(2.12). We remind the reader that in Appendix A we have summarised the basic structure of the
DP algorithm and its revisitation in Ref. [64], including technical aspects that are also relevant
in this section.

3.1 MC@NLO matching and reweighting

The structure of a fixed-order NLO calculation of a cross section d�, as performed within Mad-
Graph5_aMC@NLO, for a 2 ! n production process can be summarised by the following
equation

d� = d�n

�
B + V + C

int
�
+ d�n+1 (R� C) . (3.1)

The terms B,V,R are respectively the Born, virtual and real emission contributions. The
term C is the local counterterm that renders the integral over the d�n+1 phase-space finite,
where d�n+1 ⌘

Q
n+1

k=1
d�̄k and d�̄k is the differential of the phase-space integration associ-

ated to the particle k. The term C
int is the integrated form of C over d�n+1/d�n, such that

C
int

�
R
C d�̄n+1 = 0. The specific form of the counterterms depends on the subtraction

scheme that is used, e.g. FKS [92] or CS [93], where the former is the one on which the Mad-
Graph5_aMC@NLO implementation is based.

In the case of matching of NLOQCD computations with PS in the MC@NLO formalism, on
top of the local counterterm C one has to also include the so-called Monte-Carlo counterterm
CMC [25], in order to avoid the double counting of PS effects on top of the B contribution. The
counterterm CMC accounts for the cross section one obtains from PS simulations by truncating
the perturbative expansion at O(↵

m+1
S ), where LO1 is of O(↵

m
S ). The MC counterterm depends

on the specific PS simulator one interfaces the calculation to6, but since the leading IR behaviour
of any PS simulator is the same as the one of R (or equivalently �V after integrating over d�̄n+1),
the analogue of Eq. (3.1) for NLOQCD + PS simulation is

d�(S)
= d�n+1

�
B + V + C

int
� d�n

d�n+1

+ (CMC � C)

�
, (3.2)

d�(H)
= d�n+1 (R� CMC) , (3.3)

where d�(S) and d�(H) are the cross sections associated to the S and H events, respectively.7
Unlike fixed-order calculations (see Eq. (3.1)), MC counterterms are such that the d�(S) and
d�(H) subtracted cross sections are separately finite and therefore Born-like (S) and real-emission
(H) events can be unweighted.

6In MadGraph5_aMC@NLO the NLOQCD + PS matching has been fully validated [94, 95] for
Pythia8 [49–51], but also Herwig++ [96, 97], Herwig6 [98, 99], Herwig7 [52] and Pythia6 [100], for
only strongly-interacting particles in the final state in the case of pT -ordered Pythia6.

7The fact that in both classes of events the integration measure d�n+1 appears is due to the fact that they
are integrated together; in the case of S events, the n+1-body phase space is simply projected on the underlying
n-body one.
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predictions we want that, similarly to the LOQCD contribution, also NLO QCD virtual and real
contributions in the Soft/collinear regions receive �

EWSL
(S) corrections. Conversely, the contribu-

tion from hard and non-collinear real emissions should be corrected by �
EWSL
(H) . At the same time,

we need to ensure that in the soft/collinear limits

�
EWSL

(H) �! �
EWSL

(S) . (2.12)

Condition (2.12) is unavoidable for two different reasons:

1. Virtual and real IR poles need to receive the same corrections from EWSL, so that the
cancellation of the divergences is preserved.

2. In the soft and/or collinear limits at least one of the kinematical invariants involving
two external states is by definition smaller than M

2

W
, invalidating the applicability of the

Sudakov approximation and the sensibility of �EWSL
(H) .

Condition (2.12), leaves freedom on how to implement the mapping between �
EWSL
(H) and �

EWSL
(S)

and we will discuss the practical implementation in Sec. 3.
The strategy adopted for correcting the different contributions by either �

EWSL
(S) or �

EWSL
(H) is

very similar to the one used in, e.g., Ref. [91] and relies on the general framework introduced in
Ref. [67]: reweighting NLO events before showering them. We will give more details in Sec. 3, but
the idea is the following. In the MC@NLO formalism two kinds of events are generated, namely
the S and H events. The latter class corresponds to the contribution from hard real emission to
NLO QCD corrections. It takes into account the contribution of the Monte Carlo (MC) counter
term, which is precisely added in order to avoid the double counting from PS effects on top of
the LOQCD. On the contrary, the rest of the contributions entering the NLO QCD predictions
corresponds to S events. Given a process pp ! X, with X having multiplicity n, S events are of
the kind 2 ! n, while H events are of the kind 2 ! n + 1. Denoting the weights of the former
as wS and the weight of the latter as wH

5, the events generated at NLOQCD accuracy with the
MC@NLO matching scheme can be promoted to NLOQCD ⌦ EWSL accuracy performing the
following reweighting before the parton shower:

S : wS =) (1 + �
EWSL

(S) )wS , (2.13)

H : wH =) (1 + �
EWSL

(H) )wH . (2.14)

After the reweighting, events can be showered obtaining predictions at NLOQCD ⌦ EWSL + PS

accuracy. Again, we will give many more details on the procedure in Sec. 3.

3 Technical details of the EW Sudakov reweighting strategy

In Sec. 2 we described the general features of the NLOQCD ⌦ EWSL + PS approximation and
the motivations behind it. In this section we provide the technical details of the reweighting
procedure, which we have implemented by extending the general-purpose reweighting module of

5In practice, since MC@NLO events are unweighted up to the sign, one has |wH| = |wS|.
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3.2 Implementation of �
EWSL

(S) and �
EWSL

(H)

In the following we describe in detail how the �
EWSL
(S) and �

EWSL
(H) functions are implemented,

starting with the case of �EWSL
(S) .

In this work, we employ the following approach:

�
EWSL

(S) = �
EW

LA

���
SDKweak

(eS) , (3.11)

where �
EW

LA
is the quantity defined in Eq. (A.11) and we have specified that it is evaluated for an

S event, denoted as eS, which is associated to a process of the form

eS : 'i1(p1) . . .'in̄(pn̄) ! 0 . (3.12)

In Eq. (3.12) we have used the same notation of Eq. (A.2) and understood that for a 2 ! n

process n̄ = n+ 2.
Equation (3.11) is actually refining the definition that was given in Eq. (2.11). The EWSL

are calculated in the SDKweak scheme, as described in Appendix A. This scheme was conceived
in Ref. [64] in order to reproduce as close as possible NLO EW corrections. Here, the final goal is
the same, but the SDKweak is actually employed in order to not double-count QED effects from
PS simulations. Equation (3.11) implies also that we assume �

QCD

LA
= 0. This assumption has

clearly no effect for all the processes for which the LO2 is zero or anyway smaller than ↵/↵S ⇠ 0.1,
i.e., the naive expectation for O(LO2/LO1). However it is also a reasonable assumption for a
much larger class of processes. Indeed, even if O(LO2/LO1) ⇠ ↵/↵S, according to Eq. (A.12)
and the related discussion, at least one of the following conditions must be satisfied for �

QCD

LA
to

be in practice relevant:

• ⌃
LO2

has a sizeable dependence on mt, e.g., due to the Yukawa interaction of the top
quark, and therefore there is a dependence on the parameter renormalisation of mt in
QCD, (�mt)

QCD.

• The LO2 involves matrix elements for partonic processes with external gluons.

• ⌃
LO2

depends on ↵S.

• s � µ
2

R
and n� 1 6= ng.

As examples, any purely EW process such as multi-boson production is free of these issues
since LO2 is not present in those cases. The processes involving top quarks in the final state are
also typically exhibiting small contributions from the perturbative order LO2.10 On the other
hand, we reckon that this approximation may miss non-negligible contributions for (multi-)boson
production in association with more than one jet, for instance Z + 3j studied in Ref. [63], since
LO2 contribution is not negligible in the tails of the distributions.

We discuss now the case of the H events, denoted in the following as eH. As we mentioned
multiple times we wish to ensure that condition (2.12) is valid if at least one of the rkl invariants,

10An important exception is four-top production, but in that case not only LO2 but also LO3 should be taken
into account for sensible results [46].
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We now specify the quantity �
EWSL
(H) . Given all the possible (k, l) pairs of external states for an

event eH we define
rmin, abs ⌘ min(|rkl|) = |r

k̂l̂
| , (3.16)

with (k̂, l̂) being the pair returning the smallest value for |rkl|. Introducing the quantity

CH!S ⌘ cH!S M
2

W , (3.17)

we define �
EWSL
(H) as

�
EWSL

(H) ⌘ �
EW

LA

���
SDKweak

(eH) ⇥(rmin, abs�CH!S)+�
EW

LA

���
SDKweak

(e
(k̂,l̂)

S
) ⇥(CH!S�rmin, abs) , (3.18)

where
e
(k̂,l̂)

S
⌘ eH

���
rk̂l̂=)sign(rk̂l̂)M

2
W

if (k̂, l̂) /2 PFKS(eH) . (3.19)

In a few words, Eq. (3.18) says that if the smallest invariant is larger in absolute value than
the M

2

W
scale the Sudakov contribution �

EWSL
(H) is calculated via the �

EW

LA

���
SDKweak

evaluated for
the process eH with the n+ 1 kinematic. Otherwise, the Sudakov contribution is calculated via
the same quantity evaluated instead for the underlying Born configuration, and the associated
n-body kinematics, that is obtained via the replacement of the FKS pair giving the smallest
invariant with its parent particle. In the unlikely (but possible) situation that the smallest
invariant is given by a pair not corresponding to a QCD branching, Eq. (3.19) says that the
EWSL are calculated directly for the process eH with the n + 1 kinematics, but within the DP
algorithm the quantity r

k̂l̂
is replaced by M

2

W
times the sign of r

k̂l̂
. Events of this kind with

|r
k̂l̂
| ⌧ M

2

W
are very unlikely, since they are not associated to any divergence. However, this

replacement ensures that events are not reweighted via artificially large Sudakov contributions
in a region where the approximation is not supposed to work.

The last point concerning the replacement is actually more general and we implemented it
in MadGraph5_aMC@NLO as a safety feature as

rkl =) sign(rkl)M
2

W 8 rkl . (3.20)

Indeed the EWSL approximation should be used only when invariants are large, but we want to
prevent that artificially large correction may arise from simulations performed for processes with
|rkl| < M

2

W
already at LOQCD accuracy. The replacement is performed not only for simulations

in the NLOQCD ⌦ EWSL + PS approximation, but also for the NLOQCD+EWSL one.
In conclusion, we can summarise the description of the NLOQCD ⌦ EWSL + PS predictions

as follows:

1. Events are generated at NLOQCD accuracy via the MC@NLO matching scheme.

2. Events are reweighted [67] via the prescription in Eqs. (2.13) and (2.14) using the SDKweak

scheme and neglecting the second term in the r.h.s. of Eq. (A.10). This leads to NLOQCD⌦

EWSL accuracy in the MC@NLO matching scheme.

3. Events are showered via a parton shower including QED effects (possibly after heavy par-
ticles are decayed using external tools).
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Figure 1: Technical test that the relative impact of EWSL on the S + H samples depends very
mildly on the value of µS . The representative case of ZZ hadroproduction with the cuts in (3.9)
is shown.

In the last inset we show the ratio between the predictions for k = 1 and k = 0.2 for the three
different sets of events. The case of the NLOQCD ⌦ EWSL + PS predictions correspond to the
dotted lines while the NLOQCD + PS case to the solid ones. First, we can see that for each set
of events (also for the set S+H) there is a visible difference between the case k = 1 and k = 0.2.
Second, one can notice how the ratio is unaffected by the presence of the EWSL contribution.
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soft and collinear emissions. Still, a µS dependence, beyond the aforementioned accuracy, is left
and it can be exploited for estimating higher-order effects.

Since the NLOQCD ⌦ EWSL + PS accuracy is an ad hoc approximation for accounting for
the dominant EW corrections together with PS effects, the question “At what order is the µS-
dependence emerging?” is rather academic. We want to elaborate anyway on that in the follow-
ing, since it will help to understand the consistency of our approach and the relevance of the 1

st

motivation for the prescription (2.12). Concerning the pure-QCD contributions, it is exactly the
same situation of NLOQCD + PS: it appears beyond NLO QCD accuracy. Taking into account
EW corrections, the µS-dependence can emerge only at one order of ↵S beyond the EWSL in
Eq. (2.6).

In addition to this, if µS ⇠ MW ⌧
p
s, in the relevant region of the matching where the

transition between S and H events take place, condition (2.12) actually takes the form �
EWSL
(S) =

�
EWSL
(H) . As it will be explained in Sec 3.2, the condition (2.12) is ensured if any of the invariants

is smaller or equal to M
2

W
. Therefore no dependence on µS related to EWSL is present at all.

If instead µS ⇠
p
s > MW , a dependence on µS can be present at one order ↵S beyond the

EWSL in Eq. (2.6). It is important to note that this dependence is often due to the unbalance
between the �

EWSL
(S) for a given process of the form (A.2) and �

EWSL
(H) of the same form with an

additional gluon (either in the initial or final state), which does not interact electroweakly. Thus,
these effects are in fact expected to be even smaller than their naive estimate: O(↵S)⇥O(EWSL).

We show a concrete example of what we have discussed in this section. In Fig. 1 we consider
the case of ZZ hadroproduction where we have set the cuts

pT (Z) > 600 GeV , m(ZZ) > 1200 GeV , (3.9)

in order to probe the region µS ⇠
p
s > MW . We show results for two different values of the

shower scale µS , in particular µS = k ⇥ HT /2 with k = 1 and k = 0.2. The case k = 1 is the
standard value9, while k = 0.2 is an ad hoc value which has been chosen just for our purpose.

In the main panel of Fig. 1 we show the NLOQCD+PS predictions for the two different values
of k, denoted in the plot as S + H (blue) and separately the results for the S (orange) and H

(green) events alone. The case k = 1 corresponds to the solid lines, the case k = 0.2 to the dashed
ones. It is important to notice that different values of k return very different contributions from
the S events and the H ones and a non-negligible dependence on k, as expected, is left also in
the total prediction S+H. In the first inset we show the ratio

rEWSL ⌘
NLOQCD ⌦ EWSL + PS

NLOQCD + PS
, (3.10)

for the three different sets of events and two different shower scales. It is manifest how the impact
of the EWSL is very different for the S, or H, events alone when k = 1 or k = 0.2, while in the
case of the full set of events S + H there is almost no dependence on the shower-scale choice.
This supports our previous argument regarding the fact that although a dependence on µS of
O(↵S)⇥O(EWSL) can be present, it is actually expected to be even smaller.

9For more details on the shower scale settings see Refs. [10, 101].
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Figure 2: Differential distributions for pT (H) in tt̄H production at 13 TeV. Left: no cuts applied.
Right: cuts as defined in (4.1) applied.

• NLOQCD + PS (grey),

• NLOQCD ⌦ EWSL + PS (blue),

• NLOQCD+EWSL + PS (red).

In the first inset we display the scale uncertainty band for the same three predictions normalised
to the central value of NLOQCD+PS, where the uncertainty has been evaluated by independently
varying the renormalisation and factorisation scale by a factor of two up and down (the usual 9-
point scale variation). The band for NLOQCD+PS is obviously centred around one and we show
only the upper and lower bounds as dashed grey lines. In the last inset we show the ratio of the
NLOQCD⌦EWSL+PS and NLOQCD+PS predictions for different values of the parameter cH!S,
introduced in Eq. (3.13) and entering Eq. (3.18). We remind the reader that cH!S parametrises
how the condition (2.12) is implemented,13 as can be seen from the aforementioned equations.

13Roughly speaking this means �EWSL
(H) = �EWSL

(S) if an invariant connected to a soft/collinear limit is smaller in
absolute value than cH!SM

2
W .
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Figure 5: Differential distributions for pT (j1) in tt̄H production at 13 TeV. Left: no cuts applied.
Right: cuts as defined in (4.1) applied.

An exception is the case of m(tt̄) in Fig. 4, where we observe the opposite trend: EWSL are
not flat and NLOQCD+EWSL + PS and NLOQCD ⌦ EWSL + PS predictions are different. We
verified that indeed the QCD K-factor increases at large values of m(tt̄). Similarly to what has
been observed and discussed in Refs. [73, 37, 133] for the case of tt̄ production in a similar context,
one can notice that the scale uncertainty band is smaller in the case of NLOQCD ⌦ EWSL+ PS

predictions than in the case of NLOQCD+EWSL + PS. This is not a surprise since in the former
setup the EWSL multiply NLO QCD corrections, while in the latter one they multiply only the
LOQCD component, which has a LO dependence on the factorisation and renormalisation scales.
This improvement is clearly not present in the pT (j1) distribution (Fig. 5), since this distribution
is not even present at LOQCD at fixed order. On the other hand, it is interesting to notice that for
large values of pT (j1), where NLOQCD +PS is dominated by hard matrix-element contributions
and not PS effects, NLOQCD+EWSL + PS converges to exactly NLOQCD + PS at variance with

QCD corrections are not dominated by hard emissions, such as e.g. in the case of the pT (t) spectrum, the difference
between the r.h.s. and l.h.s. of Eq. (4.4) amounts to typically 1-5% of the NLOQCD + PS prediction.
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4 Numerical results

In this section we present numerical results for phenomenologically relevant physical distributions
from two different production processes at hadron colliders: the top-quark pair and Higgs boson
associated production (tt̄H), and the associated production of three Z gauge bosons (ZZZ).
Here we focus on the presentation of the EWSL-based predictions, and we do not perform any
comparison with the exact NLO EW corrections. Still, we remind the reader that EWSL are an
approximation for the NLO EW corrections. Hence, the quality of such an approximation should
always be checked, at the differential level, before relying on it for phenomenological predictions.
For both processes considered here we show inclusive results (without any cut applied) as well
as applying the following cuts:

pT (X) > 400 GeV , �R(X,Y ) > 0.5 , (4.1)

where X,Y is any of the particle in the final state at the Born level, pT is the transverse
momentum and �R ⌘

p
(��)2 + (�⌘)2 with �� being the azimuthal angle between X and Y

and �⌘ is the difference between their pseudorapidities.
The results have been obtained by generating events with MadGraph5_aMC@NLO and us-

ing Pythia8 as parton shower. Hadronisation is disabled in the parton shower. Input parameters
are defined in the Gµ scheme for what concerns EW renormalisation:

MZ = 91.188 GeV, MW = 80.419 GeV, Gµ = 1.16639⇥ 10
�5 GeV�2

, (4.2)

and the top quark and Higgs boson masses are set to

MH = 125 GeV, mt = 173.3 GeV. (4.3)

We employed the NNPDF4.0 parton-distribution-functions [108], with NNLO evolution and
↵S(MZ) = 0.118. The renormalisation and factorisation scales have been set equal to HT /2,
where HT is the scalar sum or the transverse energies of all the particles in the final state, before
showering the event. For what concerns the shower starting scale, we use the default setting in
MadGraph5_aMC@NLO, which, for processes with massive or colourless particles in the final
state, is a value proportional to HT [10, 101]. Jets are clustered via the anti-kT algorithm [109]
as implemented in FastJet [110], with R = 0.4 and are required to have pT,min = 10 GeV.

We remind the reader that concerning tt̄H and ZZZ production several SM calculations
including higher-order effects have already been performed. The literature is vast, both for the
former [111–118, 10, 70, 119, 12, 16, 120–123, 74, 124–128] and the latter [129, 130, 10, 131, 16].

4.1 tt̄H

We discuss results for the following differential distributions from tt̄H production in proton–
proton collisions at 13 TeV: pT (H) in Fig. 2, pT (t) in Fig. 3, the invariant mass of the top-quark
pair m(tt̄) in Fig. 4, and pT (j1) in Fig. 5, where j1 is the hardest jet. In each of the Figs. 2–5
we show inclusive results without cuts in the left plot and those with cuts (4.1) in the right one.
The layout and the rationale of each plot is the following. In the main panel we show the central
values for predictions with the three different accuracies:

17

X,Y ∈ {t̄, t H}

Effect of EW corr.

rather mild for ttH
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Results:  
ZZZ

31
Figure 6: Differential distributions for pT (Z1) in ZZZ production at 13 TeV. Left: no cuts
applied. Right: cuts as defined in (4.1) applied.

NLOQCD ⌦ EWSL + PS, which includes EWSL corrections also to the first real emission from
hard matrix-element.

If the cuts (4.1) are applied, we can clearly see that the impact of the EWSL increases
and similarly the discrepancy between the NLOQCD+EWSL + PS and NLOQCD ⌦ EWSL + PS

predictions increases. In the case of pT (j1) distribution (Fig. 5) we see a flat contribution and
a change at very large values for pT (j1), where the simulation starts to be dominated by hard
matrix-element contributions. One should notice, in particular for this distribution but also for
all the remaining ones, that the NLOQCD ⌦EWSL+PS is completely insensitive to the value of
cH!S if varied by a factor of two up and down w.r.t. the reference value cH!S = 1.

Finally we comment on several checks that we performed and are not directly documented
in the plots. The tt̄H cross section at LO involves contributions not only of order ↵

2
S↵ but

also of order ↵S↵
2 (and ↵

3). Therefore tt̄H is one of those process that potentially may involve
EWSL contributions from the quantity �

QCD

LA
(see Eqs. (A.9)–(A.12)) that we do not include

(see Eq. (3.11)). We have explicitly verified at fixed order that the impact of this term is at

22

4 Numerical results

In this section we present numerical results for phenomenologically relevant physical distributions
from two different production processes at hadron colliders: the top-quark pair and Higgs boson
associated production (tt̄H), and the associated production of three Z gauge bosons (ZZZ).
Here we focus on the presentation of the EWSL-based predictions, and we do not perform any
comparison with the exact NLO EW corrections. Still, we remind the reader that EWSL are an
approximation for the NLO EW corrections. Hence, the quality of such an approximation should
always be checked, at the differential level, before relying on it for phenomenological predictions.
For both processes considered here we show inclusive results (without any cut applied) as well
as applying the following cuts:

pT (X) > 400 GeV , �R(X,Y ) > 0.5 , (4.1)

where X,Y is any of the particle in the final state at the Born level, pT is the transverse
momentum and �R ⌘

p
(��)2 + (�⌘)2 with �� being the azimuthal angle between X and Y

and �⌘ is the difference between their pseudorapidities.
The results have been obtained by generating events with MadGraph5_aMC@NLO and us-

ing Pythia8 as parton shower. Hadronisation is disabled in the parton shower. Input parameters
are defined in the Gµ scheme for what concerns EW renormalisation:

MZ = 91.188 GeV, MW = 80.419 GeV, Gµ = 1.16639⇥ 10
�5 GeV�2

, (4.2)

and the top quark and Higgs boson masses are set to

MH = 125 GeV, mt = 173.3 GeV. (4.3)

We employed the NNPDF4.0 parton-distribution-functions [108], with NNLO evolution and
↵S(MZ) = 0.118. The renormalisation and factorisation scales have been set equal to HT /2,
where HT is the scalar sum or the transverse energies of all the particles in the final state, before
showering the event. For what concerns the shower starting scale, we use the default setting in
MadGraph5_aMC@NLO, which, for processes with massive or colourless particles in the final
state, is a value proportional to HT [10, 101]. Jets are clustered via the anti-kT algorithm [109]
as implemented in FastJet [110], with R = 0.4 and are required to have pT,min = 10 GeV.

We remind the reader that concerning tt̄H and ZZZ production several SM calculations
including higher-order effects have already been performed. The literature is vast, both for the
former [111–118, 10, 70, 119, 12, 16, 120–123, 74, 124–128] and the latter [129, 130, 10, 131, 16].

4.1 tt̄H

We discuss results for the following differential distributions from tt̄H production in proton–
proton collisions at 13 TeV: pT (H) in Fig. 2, pT (t) in Fig. 3, the invariant mass of the top-quark
pair m(tt̄) in Fig. 4, and pT (j1) in Fig. 5, where j1 is the hardest jet. In each of the Figs. 2–5
we show inclusive results without cuts in the left plot and those with cuts (4.1) in the right one.
The layout and the rationale of each plot is the following. In the main panel we show the central
values for predictions with the three different accuracies:

17

X,Y ∈ {Z1,Z2,Z3}

Figure 9: Differential distributions for pT (j1) in ZZZ production at 13 TeV. Left: no cuts
applied. Right: cuts as defined in (4.1) applied.

especially when the cuts defined in (4.1) are applied. We anticipate that, similarly to the case
of tt̄H production, we do not observe a dependence on the value of cH!S.

In the case of the pT (Z1) distribution (Fig. 6) we can clearly see how EWSL are sizeable,
especially in the right plot where cuts are present. The same argument applies to the discrepancy
between NLOQCD ⌦ EWSL+ PS and NLOQCD+EW +PS. We reckon absolute rates are smaller
than what could be reasonably measured at LHC, even after the HL program, however, in the
tail of the distribution, the effect of EWSL should be not only taken into account but also
resummed.15 The same considerations are valid and even stronger for the case of the pT (Z3)

distribution in Fig. 7.
Turning to the m(Z1Z2) distribution (Fig. 8), we can see that the previous discussion for

pT distributions is valid also here, although with much weaker effects in the case without cuts
15While the leading EWSL of the form ↵k

log
2k
(s/M2

W ) can be in principle resummed via a simple exponen-
tiation, the next-to-leading case ↵k

log
2k�1

(s/M2
W ) is not straightforward, as can be seen in Refs. [59, 139] and

further references therein.
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Effect of EWSL  
independent on C

Difference between 
mult. and add. 

approach visible and 
larger than QCD 

scale unc.

Effect of EW corr.

(very) large for 3Z
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• Events reweighed with the EWSL can 
be further processed with other tools, 
e.g. MadSpin Artoisenet et al, 1212.3460

• Decays are included keeping tree-level 
spin correlations (neglects non-
resonant and virtual/EWSL-induced 
effects)


• The weak-only version of EWSL can 
be combined with QED PS without 
double counting

32

Results:  
ZZZ (decayed)

Figure 10: Differential distributions for the transverse momentum (left) of the hardest (top) or
softest (bottom) negatively-charged electron jet, and its invariant mass with the corresponding
positively-charged one (right).

28
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EWSL for BSM simulations:  
top-pair production in the SMEFT 

El-Faham, Mimasu, Pagani, Severi, Vryonidou, MZ, 24XX.YYYYY
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EW corrections in the SMEFT

• Typical searches for BSM effects look at tails of distributions, where the 
high-energy behaviour may be different from the SM


• A comprehensive approach for BSM searches is the usage of Effective 
Theories, such as the SMEFT


• Currently, SMEFT is simulated without EW corrections


• Computing EW corrections in the SMEFT is a very challenging: so far, only 
available for very simple processes 
μ decay: Pruna et al, 1408.3565 
H decay: Hartmann et al, 1505.02646 & 1507.03568; Ghezzi et al, 1505.03706; Gauld et al, 1512.02508; 
Dawson et al, 1801.01136 & 1807.11504; Dedes et al, 1805.00302 & 1903.12046; Cullen et al, 1904.06358 & 
2007.15238; 
Z/W pole obs.: Hartmann et al, 1611.09879; Dawson et al, 1808.05948 & 1909.02000;  
Drell-Yan: Dawson et al, 2105.05852


• Can we use EWSL in the SMEFT?

34
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Mass suppressed amplitudes  
in the SMEFT

• While in the SM processes with a mass-suppressed amplitude are very 
rare, they are quite common in the SMEFT


• The D&P algorithm works only for non-mass suppressed amplitudes


• One cannot use EWSL in general for SMEFT processes


• However, for those operators which are not mass suppressed, EWSL can 
give us the bulk of EW corrections at high energy

35
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A class of non-mass-suppressed 
contributions: four fermion operators

• 4f operators are a class of non mass-suppressed 
operators 


• They are relevant for Drell-Yan, top pair production, …


• We can use them to validate D&P in a non-trivial BSM 
case, and to estimate, for the first time, the impact of 
EW corrections on these processes in the SMEFT.  
Are EW corrections the same as in the SM?


• If we restrict ourselves to 4f operators, the 3-coupling 
expansion of the amplitudes (QCD, EW, 1/Λ) greatly 
simplifies


• In the case of qq→̄tt ̄

36

In the following we show how adding an additional layer of complexity, NP contributions
from SMEFT at dimension six, can lead to the proliferation of new terms. We stress that
the term �

EW
SM can be calculated via the DP algorithm, and it has been formally derived

and demonstrated. The additional terms we are going to discuss is what can be naturally
expected generaliseing this structure, as in the SM for the case of �QCD

SM . We will at the
end show for the specific processes considered in the paper that several simplifications are
present, and how to calculate them.

Starting from an amplitude at tree-level involving contributions from dimension-six
operators, which will denote as M

NP
0 , the structure of O(↵) corrections, which we denote

as M
NP
1 , are clearly more involved. First of all we understand that in order to define loop

corrections, similarly to the SM case, MNP
0 must involve only a single power combination

of ↵s and ↵. However, but there can be additional combinations, and we denote as M
NP0
0

the tree level contribution factorising one power more in ↵ and one power less in ↵s. Thus,
M

NP
1 receives contributions from “SM EW” loops on top of MNP

0 , from “SM QCD” loops
on top of M

NP0
0 , but also “NP loops” on top of M

SM0
0 . Moreover, the “NP loops” either

involve additional QCD or EW interactions, so the NP corrections can be itself of either
“NP EW” or “NP QCD” kind. We stress that, also in this case, this categorisation is not
well defined and there can be diagrams that cannot be unambiguously associated to one
of the category or the other.5.Nevertheless, similarly to the SM case, this categorisation is
expected to match the structure of IR and UV limits and thus in the dimension-six case
the analogue of Eq. (2.9) reads

lim
M

2
W /s!0

M
NP
1 = �M

NP = M
NP
0 �

EW
SM +M

NP0
0 �

QCD
SM +M

SM
0 �

EW
NP +M

SM0
0 �

QCD
NP , (2.10)

where again for clarity we have dropped indices and momenta.
The underlying assumptions in the power expansion is that if

M
SM
0 / ↵

n

s↵
m⇤0

, (2.11)

with n and m positive integers then

M
SM0
0 / ↵

(n�1)
s ↵

(m+1)⇤0
, (2.12)

M
NP
0 / ↵

n

s↵
m⇤�2

, (2.13)
M

NP0
0 / ↵

(n�1)
s ↵

(m+1)⇤�2
, (2.14)

and

�
EW
SM / ↵⇤0

, (2.15)
�
QCD
SM / ↵s⇤

0
, (2.16)

�
EW
NP / ↵⇤�2

, (2.17)
�
QCD
NP / ↵s⇤

�2
. (2.18)

5[DP: A simple example to show better what is meant to put here]

– 7 –

=0 for color octets

=0 for 4F op.

=0 for q≠b

four-fermion operators. Conversely, the relevant dipole operators, specifically the chromo-
magnetic dipole, induce flips in the helicity of the top quark, necessitating the insertion of
the vacuum expectation value (vev) into the amplitudes. Such feature has substantial and
rather non-trivial implications for Sudakov Logarithms, a subject that we will discuss in
detail later.

Here we consider the same partonic process as Section 5.1, namely:

u ū ! t t̄. (5.13)

Our focus on four-quark contact interactions is motivated by their marked impact on
kinematic distributions. [DP: ...and the fact that they are the only one that we are able
to calculate ..]When considering the QCD-induced leading order channel in top quark pair
production, it is only the colour-octet operators, namely,

O
8
tu =

P2
f=1(t�µT

A
t)(uf�

µ
TAuf), (5.14)

O
8
td

=
P3

f=1(t�µTAt)(df�
µ
T
A
df), (5.15)

O
8
tq =

P2
f=1(t�

µ
T
A
t)(qf�µTAqf), (5.16)

O
8
Qu =

P2
f=1(Q�µTAQ)(uf�

µ
T
A
uf), (5.17)

O
8
Qd

=
P3

f=1(Q�µTAQ)(df�
µ
T
A
df), (5.18)

O
1,8
Qq

=
P2

f=1(Q�µT
A
Q)(qf�

µ
TAqf), (5.19)

O
3,8
Qq

=
P2

f=1(Q�µT
A
�IQ)(qf�

µ
TA�

I
qf). (5.20)

that interfere with the SM processes. Said operators exhibit distinct behaviours under
top charge conjugation, affecting their contributions to the top quark pair production, as
detailed in [? ].

To ensure an homogeneous power counting of SM couplings between different orders in
1/⇤, we will assume that the Wilson coefficients of (5.14)-(5.20) are O(g2s), so that there is
no B5 contribution.

The helicity amplitudes are:

Bi(hu, hū, ht, ht̄) =

8
<

:

s

⇤2
ci (1 + huht cos ✓)

2
, if hu 6= hū and ht 6= ht̄,

0, otherwise,
(5.21)

with the couplings given in Table 3.
We have verified that the general structure of the high-energy limit of electroweak

corrections that has been extracted in the SM also applies to four-fermion operators.
As a validation, we compare NLO EW corrections in the high energy limit compared

in two different ways:

a. An analytical calculation based on FeynArts and FeynCalc, identical to [a] of Section
5.1.

b. The Sudakov approximation of NLO EW corrections implemented in [2].

Figure 4 shows the outcome of our comparison, in the same format as Figure 2. We find
that the energy growth of the virtual amplitude is correctly capured by the DP algorithm.

– 20 –

q

q ̄
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Validation of one-loop results

37

Helicity Coupling for (5.21)

hu, hū, ht, ht̄ c0 c1 c2 c3 c4

1, -1, -1, 1 4g2sc
8
Qu

4g2sc
8
Qu

2g2s(c
8
Qu

+ c
8
Qd

) 0 0

1, -1, 1, -1 4g2sc
8
tu 2g2sc

8
tu 2g2s(c

8
tu + c

8
td
) 0 0

-1, 1, -1, 1 4g2s(c
1,8
Qq

+ c
3,8
Qq

) 4g2sc
1,8
Qq

4g2sc
1,8
Qq

4g2sc
3,8
Qq

4g2sc
3,8
Qq

-1, 1, 1, -1 4g2sc
8
tq 2g2sc

8
tq 4g2sc

8
tq 0 0

Table 3. Couplings entering the Born amplitudes (5.21), helicity by helicity.

Figure 4. Comparison between methods [a], solid line, and [b], dashed line, for NLO EW corrections
to uū ! tt̄ with the inclusion of all four-quark operators (5.14)–(5.20), at order 1/⇤4.

– 21 –

• We compute 1-loop EW 
corrections to uu→̄tt ̄and we 
compare with the D&P algorithm


• Loops are computed with 
FeynCalc+Feynarts+PackageX.  γ5 
is treated in the BHMV scheme


• EWSL are computed with 
MG5_aMC, on top of the 1/Λ4 
Born


• Difference between EWSL and 
exact virtual approaches a 
constant
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EW Corrections to 

top-pair production

38

QCD

EW(SL)

• Relative impact of EWSL is different between SM, 1/Λ2, 1/Λ4 terms. Pattern 
of corrections depend on operator


• Difference related to isospin-linked contributions (single-logaritmic)


• EFT contributions show cancelations between QCD and EW


• It is inaccurate to propagate SM K-factors to SMEFT contributions 


• Impact of EW corrections about 10% at 1 TeV
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Lifting degeneracy between operators

39

• EW corrections lift degeneracy of different operators, removing flat 
directions in global fits

Cross-section [pb]
1.5TeV < Top pT < 1.8TeV

LO SUD
SM 8.30 · 10�4 6.84 · 10�4

Linear Quadratic
LO SUD LO SUD

c
1,8
Qq

9.32 · 10�4 6.69 · 10�4 1.39 · 10�3 0.99 · 10�3

c
3,8
Qq

4.33 · 10�4 3.63 · 10�4 1.39 · 10�3 1.19 · 10�3

c
8
tq 9.34 · 10�4 7.31 · 10�4 1.39 · 10�3 1.08 · 10�3

c
8
tu 6.82 · 10�4 6.13 · 10�4 1.02 · 10�3 0.92 · 10�3

c
8
Qu

6.83 · 10�4 5.70 · 10�4 1.02 · 10�3 0.85 · 10�3

c
8
td

2.50 · 10�4 2.25 · 10�4 3.61 · 10�4 3.26 · 10�4

c
8
Qd

2.50 · 10�4 2.08 · 10�4 3.61 · 10�4 3.00 · 10�4

Cross-section [pb]
Top pT > 1.8TeV

LO SUD
SM 2.01 · 10�4 1.61 · 10�4

Linear Quadratic
LO SUD LO SUD

c
1,8
Qq

3.78 · 10�4 2.56 · 10�4 9.04 · 10�4 6.06 · 10�4

c
3,8
Qq

2.20 · 10�4 1.72 · 10�4 9.04 · 10�4 7.41 · 10�4

c
8
tq 3.78 · 10�4 2.86 · 10�4 9.04 · 10�4 6.80 · 10�4

c
8
tu 3.00 · 10�4 2.68 · 10�4 7.30 · 10�4 6.50 · 10�4

c
8
Qu

2.99 · 10�4 2.43 · 10�4 7.30 · 10�4 5.88 · 10�4

c
8
td

7.95 · 10�5 7.12 · 10�5 1.74 · 10�4 1.56 · 10�4

c
8
Qd

7.92 · 10�5 6.45 · 10�5 1.74 · 10�4 1.41 · 10�4

Table 5. Total cross-sections for the SM and at order O(c/⇤2) and O(c2/⇤4) for the process
pp ! tt̄ with the inclusion of the four fermion operators we considered, at LO and with the Sudakov
approximation of NLO EW. The scale ⇤ is set to 1TeV. The MC uncertainty is approximately ±1
on the least significant digit. [CS: Similar tables available for all pT bins]

Similarly to the tt̄ case we will assume that the Wilson coefficients of (7.8)-(7.14) are O(e2),
so that there is an homogeneous power counting of SM couplings between different orders
in 1/⇤.

[CS: —————- A lot of plots go here ——————]
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Wrapping up…

• LHC is restarting: a challenging physics programme is awaiting us!


• Search for new physics relies on accurate knowledge of SM processes 
→ Inclusion of QCD and EW corrections crucial


• EW corrections dominated by Sudakov logarithms at high energies


• EWSL provide a fast and stable approximation for EW corrections, with 
some practical advantages


• Possibility to deliver predictions at NLO+NLL EW


• Easy matching/merging


• Straightforward extension to BSM scenarios


• However, large EW effects can also come via other mechanisms (photon 
PDF, quasi-collinear configurations, etc)  
→ the validity of the EWSL approximation should be assessed process by 
process and observable by observable

40
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Conclusion & Outlook

• We have automated EWSL in MG5_aMC, based on the work of 
Denner&Pozzorini, with a couple of extensions 


• EWSL thoroughly validated vs exact virtual amplitude


• For physical cross-sections, we have devised a weak-only version of EWSL


• EWSL contributions can be included in NLO+PS samples via reweighting


• For the moment, our method neglects terms originating from LO2, therefore 
it can be applied only for processes where LO2/LO1≪α/αs

• EWSL in the SDKweak approach can be combined with QED PS


• WIP for the application of EWSL in the SMEFT


• Care should be used to avoid mass-suppressed terms


• Results for 4 fermion operators: simplest case


• Relative impact is different on 1/Λ4, 1/Λ2, and SM. Important for EFT fits

• EW corrections lift degeneracy between operators 

41
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Thank You!
42
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Backup

43
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Dominant helicities

• The derivation of D&P crucially relies on the amplitude not being mass-
suppressed


• If d is the dimensionality of a squared matrix element (for 2→n, d=2-n ), 
the D&P algorithm applies only if |M|2 scales with s as sd

• A notable exception: Higgs VBF, for which |M|2~MW2/s2

44

3.3. The lowest order amplitude and VBF event topology 23

H

V ∗

2

V ∗

1

P1

P2

X1

X2

q1

q2

Figure 3.1: Higgs production via the VBF process.

at higher orders.

The reason of such a formulation will become more clear in what follows.

3.3 The lowest order amplitude and VBF event topo-

logy

p1

p2 p4

p3

q1

q2

Figure 3.2: LO VBF Feynman diagram.
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• In ZHH production, at large pT(Z), EWSLs fail to reproduce EW corrections

Don’t buy everything they sell

μμ coll.
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• These configurations are dominated by low M(HH) and are mass-suppressed 
(dominated by the trilinear diagram)
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Sudakov logarithms work very well at 
low pt and very bad at high pt.

ZHH
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• In ZHH production, at large pT(Z), EWSLs fail to reproduce EW corrections

Don’t buy everything they sell
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Some first results, 2→2

46

Figure 2: Same as Fig. 2, but for a di↵erent set of processes.

main purpose of this conventional choice is to probe and select via a numerical method all

the helicity configurations that are not mass suppressed.12 In the first inset we show the

ratio between the O(↵) virtual corrections and the LO in di↵erent approximations. We

display as separate dots the exact results obtained via MadLoop (Virt) for selected values

of s, while as lines13 the LA approximation of Sudakov logarithms that are obtained via the

12If at least one helicity configuration is not-mass suppressed and it is the dominant, the ratio of its

squared amplitude and the one of another helicity configuration that is not mass suppressed asymptotically

converges to a positive constant at high energies. Therefore, leading helicities can be present over the entire

s range if and only if they are not mass suppressed and this ratio is larger than 103. In other words, if

an helicity configuration is mass suppressed, it is for sure not tagged as leading, while if it is not mass

suppressed can be not tagged as leading, but it means its contribution is at less than per-mill level of the

dominant-helicity squared amplitude.
13Lines are obtained via the interpolation of the results obtained for the same s values of the exact

one-loop results from MadLoop.
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Figure 1: Comparison between exact results (dots) for O(↵) NLO EW virtual corrections

and their LA (lines) in the case of squared matrix elements of representative 2 ! 2 pro-

cesses. Solid lines include the SSCs!rkl contributions, while dashed lines do not. Upper

plots show a scan in energy for a fixed t/s value, while lower plots a scan in the angle ✓

between the momenta of the first and third particle. More details are given in the text.

p
s, while the lower plots show their ✓ dependence. In the following, we describe the layout

of the plots and how they should be interpreted.

In the first panel we show the value of the LO squared matrix-element, separately for

each leading-helicity configuration and possibly their sum if there is more than one. In

order to improve the readability of the legends in the plots, therein we display not only

the helicity of any external particle, but also a conventional number associated to the

ordering of the helicity configurations within MadGraph5 aMC@NLO. Conventionally,

leading-helicity configurations have been identified as those with a value, for their squared

amplitudes, that is at least 10�3 times the one of the dominant helicity configuration. The

– 28 –

LO amplitude, for each leading helicity

Loop or Sudakov (in different approxs.) 
 over LO

(Loop-Sudakov)/LO 
must be a constant if logs are correct


(this is verified also with a fit)

We see that the inclusion of the 
angular dependent 

Δs→rkl term in general reduces 
the constant
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Figure 3: Comparison between exact results (dots) for O(↵) NLO EW virtual corrections

and their LA (lines) in the case of squared matrix elements of representative 2 ! n processes

with n = 3, 4. Solid lines include the contributions proportional to i⇡⇥(rkl), while dashed

lines do not. Plots show a scan in energy for fixed rkl/s ratios. More details are given in

the text.

the derivation of the SSCs!rkl terms is the C0 function in (2.15), which is associated to

simply the masses and the invariant mass of two external particles involved in the process.

However, already with 2 ! 2 processes, D0 functions can appear in virtual corrections,

involving also at high energies more than one invariant and leading to additional terms

when the condition (2.4) is not satisfied.

6.3 Impact of the imaginary component

As explained in Sec. 2.2, in the original work of Ref. [39] an imaginary component has been

omitted in the formulas, which on the other hand a↵ects results only for 2 ! n processes
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The missing i𝝿𝛉(rkl) factor

• 2→2 amplitudes (as those considered by D&P) are always real (optical 
theorem). Any missing imaginary part in the logs drops out when 
considering


• For 2→n, n≥3, imaginary parts from the logs can combine with those of 
BB’*, giving rise to single-logarithmic terms


• They must be included in order to claim NLL accuracy
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constant V-SDK 
 helicity by helicity

V-SDK ~log(s) 
if i𝝿𝛉(rkl) neglected
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From IR masses to Dim.Reg. 
(and the treatment of QED effects)

• Consider e.g. the LSC term, in the D&P formalism. A photon mass appears


• The QED contribution is split in two parts:


• from to MW in Lem

• from MW to s in L(s)


• Consider the divergent part: 𝝺 (and mk) acts as a regularisation scale for 
the IR divergences


• We can promote 𝝺 to Q, the IR regularisation scale of Dim.Reg., without 
losing any logarithmic term


• We can then set Q2=μ2R, and compare the Sudakov approximation with 
the exact virtuals
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The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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• In the SSC terms, this leads to a vanishing contribution if the rij/s part is 
dropped

49

From IR masses to Dim.Reg. 
(and the treatment of QED effects)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same as Ref. [39]. The

expressions for the electroweak Casimir operator C
ew
i
0
kik

(k), the squared Z-boson coupling

(IZ(k))2
i
0
kik

, and the charge Q
2
k
for a generic particle k and a specific polarisation can

be found in Ref. [39]. It is important to note that the first two quantities have indexes

and can be non-diagonal. We will return to this point discussing the implementation in

MadGraph5 aMC@NLO. Using DR the electromagnetic DL reads

L
em(s,Q2

,m
2
k
) ⌘ 2l(s) log

✓
M

2
W

Q2

◆
+ L(M2

W , Q
2)� L

reg(m2
k
, Q

2) , (2.20)

with

L
reg(m2

k
, Q

2) ⌘

(
0 if m2

k
= 0 ,

L(m2
k
, Q

2) otherwise .
(2.21)

2.4 SSC: Subleading soft-collinear contributions

Unlike the LSC terms, the SSC ones remain a sum over pairs of external legs of the form

�
SSC

M
i1...in =

nX

k=1

X

l<k

X

Va=A,Z,W±

�
Va,SSC
i
0
kiki

0
lil
(k, l)M

i1...i
0
k...i

0
l...in

0 . (2.22)

This part is the one with the largest di↵erences w.r.t. Ref. [39]. The exchange of soft

neutral gauge bosons contributes with

�
A,SSC
i
0
kiki

0
lil
(k, l) =


2
�
l(s) + l(M2

W , Q
2)
�✓

log
|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
W )

�
I
A

i
0
kik

(k)IA
i
0
lil
(l),

�
Z,SSC
i
0
kiki

0
lil
(k, l) =


2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
Z)

�
I
Z

i
0
kik

(k)IZ
i
0
lil
(l), (2.23)

and charged gauge bosons yields

�
W

±
,SSC

i
0
kiki

0
lil

(k, l) =


2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+�s!rkl(rkl,M

2
W )

�
I
±
i
0
kik

(k)I⌥
i
0
lil
(l), (2.24)

The quantity �s!rkl(rkl,M2) is set equal to zero when the condition (2.4) is assumed and

the LA is applied in a strict sense, as done in Ref. [39]. Taking instead into account the

fact that s � rkl � M
2, this quantity reads

�s!rkl(rkl,M
2) ⌘ L(|rkl|, s) + 2l(M2

W ,M
2) log

|rkl|

s
� 2i⇡⇥(rkl)l(|rkl|, s) , (2.25)

and precisely corresponds to the SSCs!rkl logarithms of eq. (2.17).

The quantities I
A, IZ and I

± are the couplings with respectively the photon, the Z

boson and the W
± boson, where we have omitted the indices i

0
j
ij . While I

A is always
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More on the QED contribution

(towards the extension to QCD)

• In LSC, QED enters in Lem and in the term ~L(s)


• In the D&P formulation, MW acts as a separator from the low-energy 
(𝝺2→MW2) to the high-energy regime (MW2→s)


• If Q2=s, the QED contribution vanishes in LSC (also in SSC) for massless 
particles


• Warning! This is not equivalent to just saying that Lem can be dropped


• For massive particles (e.g. top), a term ~ L(s, mt) remains


• QED contributions appear also in the C and PR terms


• QCD terms are analogous to those from QED (only top is massive)
50

irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover we keep track of

the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M

2
W

M2
| {z }

LSC

+2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆

| {z }
SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

cannot be identified neither as LSC nor as SSC. On the other hand, since they depend on

rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same of Ref. [39].

The expressions for the electroweak Casimir operator Cew, the squared Z-boson coupling

(IZ(k))2
i
0
kik

and charge Q
2
k
for a generic particle k and a specific polarisation can be found

in Ref. [39]. It is important to note that the first two quantities have indexes and can

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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The inclusion of QCD effects

• Remember: NLOi = LOi-1 ⊗ EW + LOi ⊗ QCD


• So far, we have focused on approximating EW corrections


• The corrections of QCD origin stemming on top of LO2 are analogous to 
the QED-type corrections


• Since in QCD we always cluster massless patrons into jets, a remarkably-
simple structure appears 
 
 
 
with
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1 3

1 2 3 4

LO

NLO

2

As already mentioned at the end of Sec. 2.4, if one setsQ2 = s and�s!rkl(rkl,M2) = 0,

as in the formal derivation of Ref. [39], then the SSC contribution from purely QED origin

vanishes. Similarly, simplifications in the rest of the expressions of Sec. 2 happen. Setting

Q
2 = s and �s!rkl(rkl,M2) = 0, these simplifications are present also for the case of QCD.

Especially, the SSC contribution vanishes also in the case of QCD corrections. As we will

see later in Sec. 4.1, these two assumptions are innocuous for what concerns �
QCD
LA in LA

when physical observables are considered.

With these two assumptions, if M̃0 / ↵
n↵S
S ↵

n↵ we can write

�M̃ ⌘ M̃0

"⇣
nt L

t(s) + n↵S l
↵S (µ2

R)� ng l
↵S (s)

⌘
+

�M̃0

�mt

(�mt)
QCD

#
, (3.11)

where nt and ng are the number of top quarks and gluons in the external legs, respectively.

The quantities Lt(s), l↵S (µ2) and (�mt)QCD are defined as

L
t(s) ⌘

CF

2

↵S

4⇡

✓
log2

s

m
2
t

+ log
s

m
2
t

◆
, (3.12)

l
↵S (µ2) ⌘

1

3

↵S

4⇡
log

µ
2

m
2
t

, (3.13)

(�mt)
QCD

⌘ �3CF

↵S

4⇡
log

s

m
2
t

, (3.14)

with CF = 4/3, and have a very di↵erent origin, as explained in the following.

The terms proportional to L
t(s) can be obtained by performing the substitution

Q
2
t

↵

4⇡
! CF

↵S

4⇡
, (3.15)

in the purely electromagnetic component of the LSC and C contributions for top quarks

(eqs. (2.19) and (2.28)). The reason why the top quark is special is that we are under-

standing the use of the five-flavour scheme. If other fermions f are treated as massive

(mf 6= 0), the corresponding logarithms with t ! f should be also taken into account.

This is true also for the remaining contributions discussed in this section. Indeed, for all

the other massless quarks, if one sets Q
2 = s and �s!rkl(rkl,M2) = 0, not only the SSC

but also the LSC and C contributions to �
QCD
LA vanish.

The term proportional to l↵S (s) can be derived from the diagonal C contribution for the

photon by applying the substitution (3.15). These logarithms are the virtual counterpart

of the quasi-collinear logarithms emerging from g ! tt̄ splittings. The term proportional

to l
↵S (µ2

R
) has instead a di↵erent origin; it is connected to the MS renormalisation of

↵S. While the renormalisation of the EW sector can be performed without introducing a

renormalisation-scale dependence, this is unavoidable in QCD. With five active flavours,

the logarithmic-enhanced part of the ↵S counter-term reads

�↵S

↵S

=
↵S

4⇡

h
�0 log

µ
2
R

Q2
+

2

3
log

µ
2
R

m
2
t

i
, (3.16)

where µR is the renormalisation scale and the quantity �0 = 11� 2
3nf is the leading term

of the QCD � function in the SM (nf = 6). We are assuming Q
2 = s and it is reasonable

to assume also µ
2
R
⇠ s, which let us to ignore the term proportional to log

µ
2
R

Q2 in eq. (3.11).
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LA vanish.
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of the quasi-collinear logarithms emerging from g ! tt̄ splittings. The term proportional

to l
↵S (µ2

R
) has instead a di↵erent origin; it is connected to the MS renormalisation of

↵S. While the renormalisation of the EW sector can be performed without introducing a

renormalisation-scale dependence, this is unavoidable in QCD. With five active flavours,

the logarithmic-enhanced part of the ↵S counter-term reads

�↵S

↵S

=
↵S

4⇡

h
�0 log

µ
2
R

Q2
+

2

3
log

µ
2
R

m
2
t

i
, (3.16)

where µR is the renormalisation scale and the quantity �0 = 11� 2
3nf is the leading term

of the QCD � function in the SM (nf = 6). We are assuming Q
2 = s and it is reasonable

to assume also µ
2
R
⇠ s, which let us to ignore the term proportional to log

µ
2
R

Q2 in eq. (3.11).
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Figure 4: Comparison between exact results (dots) for O(↵) NLO EW virtual corrections

and their LA (lines) in the case of squared matrix elements of representative 2 ! n processes

with n = 2, 3, 4. Solid lines include the �QCD
LA contribution, while dashed lines do not. Plots

show a scan in energy for fixed rkl/s ratios. More details are given in the text.

size depends on both the size of �QCD
LA (see eq. (3.17)) and, since in the plots shown in

Figs. 4 we have i = 2, on the LO2/LO1 ratio.

Considering simple 2 ! 2 processes, one can see how di↵erent is the impact of

⌃LO2
�
QCD
LA in the top-left and top-center plots; in the case of bb̄ ! tt̄ both �

QCD
LA and

the LO2/LO1 ratio are larger. The top-right plot refers to the process uū ! tt̄gh, the

simplest process for which all the terms of eq. (3.17) are non-vanishing. The lower plots

refer to di↵erent partonic processes entering the process pp ! tt̄tt̄. As already discussed

in Ref. [100] a large part of the NLO EW corrections are of QCD origin, and this can be

observed also in the lower plots of Fig. 4.

Given the large number of leading helicity configurations for processes with tt̄tt̄ in the

– 35 –

Figure 4: Comparison between exact results (dots) for O(↵) NLO EW virtual corrections

and their LA (lines) in the case of squared matrix elements of representative 2 ! n processes

with n = 2, 3, 4. Solid lines include the �QCD
LA contribution, while dashed lines do not. Plots

show a scan in energy for fixed rkl/s ratios. More details are given in the text.

size depends on both the size of �QCD
LA (see eq. (3.17)) and, since in the plots shown in

Figs. 4 we have i = 2, on the LO2/LO1 ratio.

Considering simple 2 ! 2 processes, one can see how di↵erent is the impact of

⌃LO2
�
QCD
LA in the top-left and top-center plots; in the case of bb̄ ! tt̄ both �

QCD
LA and

the LO2/LO1 ratio are larger. The top-right plot refers to the process uū ! tt̄gh, the
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