New Angles on Energy Correlators

Wouter Waalewijn
UNIVERSITY OF AMSTERDAM

TUM/MPP collider seminar - May 27

Outline

- 1. Introduction to jets and jet substructure
- 2. Introduction to energy correlators
- 3. Energy-energy correlator: on track to high precision
- 4. Analytic continuation and small-x physics
- 5. New angles on energy correlators
- 6. Bonus
- 7. Conclusions

What is a jet?

Quarks and gluons produced in colliders radiate and hadronize
 → result in collimated streams of hadrons.

A brief history of jet definitions

Should be: • infrared and collinear safe

easy to implement in theory & experiment

[Cacciari, Salam, Soyez]

A brief history of jet definitions

Should be: • infrared and collinear safe

easy to implement in theory & experiment

[Cacciari, Salam, Soyez]

Jets matter

- Jets enter in most LHC analyses as signal or background.
- Study parton evolution with jets \rightarrow improve parton showers

Jets matter

- Jets enter in most LHC analyses as signal or background.
- Study parton evolution with jets → improve parton showers, probe quark-gluon plasma.

Jet substructure can e.g. identify boosted heavy particles.

2. Introduction to energy correlators

Introduction to energy correlators

- Event (or jet) shapes describe it through one number.
- Energy-Energy Correlator probes correlations in energy flow:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta} = \int \mathrm{d}\sigma \sum_{\substack{i,j \\ (\sum_{k} E_{k})^{2}}} \frac{E_{i}E_{j}}{(\sum_{k} E_{k})^{2}} \,\delta(\theta - \theta_{ij}) \\ \frac{\partial}{\partial \theta} \sim \langle \Psi | \mathcal{E}^{i}(\hat{n}_{1}) \mathcal{E}(\hat{n}_{2}) | \Psi \rangle$$
[Basham, Brown, Ellis, Love]

Introduction to energy correlators

- Event (or jet) shapes describe it through one number.
- Energy-Energy Correlator probes correlations in energy flow:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta} = \int \mathrm{d}\sigma \, \sum_{i,j} \frac{E_i E_j}{(\sum_k E_k)^2} \, \delta(\theta - \theta_{ij}) \sim \langle \mathcal{E}(\hat{n}_1) \mathcal{E}(\hat{n}_2) \rangle$$

[Basham, Brown, Ellis, Love]

$$\mathcal{E}(\hat{n}) = \lim_{r \to \infty} \int_0^\infty \mathrm{d}t \, r^2 n^i T_{0i}(t, r\hat{n})$$

Recent interest in energy correlators has been driven by:

 \checkmark Natural separation of physics at different scales.

 \checkmark Simpler theoretical description \rightarrow better interpretation.

✓ Suppression of soft contamination (no grooming).

Wide range of applications:

- Strong coupling determination,
- Top quark mass determination,
- Probing quark-gluon plasma,
- Dead cone for heavy quarks, …

Different physics at different angles

- Collinear: power-law scaling, determined by DGLAP evolution.
- Back-to-back: Sudakov, described by TMD factorization.

Collinear region

- At the LHC, $(E, \theta) \rightarrow (p_T, R)$.
- Perturbative region: ~ R^{γ} with γ set by DGLAP.
- Nonperturbative region: ~ R^2 , free hadron gas.

Scaling of EEC in perturbative and nonperturbative regimes observed by ALICE, STAR and CMS over wide energy range

(Note factor *R* difference compared to the previous slide.)

N-point energy correlator

- N-point correlators parametrized by all pairs of angles θ_{ii}
- One can project onto largest angle θ_L

$$\frac{\mathrm{d}\sigma^{[N]}}{\mathrm{d}\theta_L} = \int \mathrm{d}\sigma \sum_{i,j,k,\dots} \frac{E_i E_j E_k \cdots}{(\sum_m E_m)^N} \,\delta(\theta_L - \max\{\theta_{ij}, \theta_{ik}, \cdots\})$$
[Chen, Moult, Zhang, Zhu]

- Projected N-point correlator (ENC) again has power-law in collinear region.
- Uncertainties reduced in ratio of N-point and 2-point.

Application: α_s

- Extract $\alpha_s(m_Z)$ from slope of E3C/EEC, compare to NLO+NNLL.
- Best fit $\alpha_s(m_Z) = 0.1229^{+0.0014}_{-0.0012}$ (stat.) $^{+0.0023}_{-0.0036}$ (syst.) $^{+0.0030}_{-0.0033}$ (theory) **CMS CMS CMS**

17

Application: top quark mass

- Existing approaches offer either good theoretical control or good sensitivity to top quark mass \rightarrow try energy correlators.
- Convert the top quark peak position into a mass using W.

[Holguin, Moult, Pathak, Procura, Schofbeck, Schwarz]

Energy Weighted Observable Correlations

- Motivation: directly study correlations in e.g. mass.
- Collinear unsafe \rightarrow regularize using subjet radius r_{sub}
- Example: mass EWOC for hadronically decaying W boson

Mass EWOC for hadronic W

Shift in m_W Determination				Mass EWOC
from the peak of each distribution				
Δ	Mass EWOC k_t subjets, $r_{sub} = 0.3$	EEC	$egin{aligned} m_{ extbf{mMDT}} \ z_{ ext{cut}} = 0.1 \end{aligned}$	$More = m_{mMDT}$ m_{mMDT} m_{robust}
Smearing (cf ref. [57])	$94 { m ~MeV}$	-37 MeV	$49 { m MeV}$	
Parton vs. Hadron	-144 MeV	-1150 MeV	18 MeV	
UE (MPI) On/Off	$271 { m ~MeV}$	700 MeV	298 MeV	
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$

✓ EWOC competitive with soft drop mass.

- For EEC, it is essential to use m_W to extract m_t

[Alipour-Fard, WW]

3. Energy correlator: on track to high precision

Yibei Li

Ian Moult

Ma

Back-to-Back Lin

NNLL Collinear Resummation (Three Loop DGLAP Evolution)

Collinear Limit:

- Non-Perturbative parameter Ω extracted from thrust
- extracted fro Collins-Sope from lattice (

NNNLL Suda

Non-Perturb

Theory uncertainty band is a combination of perturbative scale variation, and variation of non-perturbative scale variation, and variation of non-perturbative scale variation.

Motivation for track-based measurements

✓Pile-up removal.

✓ Superior angular resolution \rightarrow good for jet substructure.

Charged particles:

Main message on track-based predictions

- Track-based measurements are sensitive to hadronization.
- Instead of hadronization models in parton showers, track functions offer systematically improvable framework.
- Recently extended to $\mathcal{O}(\alpha_s^2) \rightarrow$ high precision possible!

 For energy correlators, track functions are easy to implement (only moments).

Track functions 101

[[]Chang, Procura, Thaler, WW]

- $T_i(x,\mu)$ describes total momentum fraction x of initial parton i converted to tracks, i.e. $\bar{p}^{\mu} = xp^{\mu} + O(\Lambda_{\text{QCD}})$
- Nonperturbative, process-independent function.
- Conservation of probability: $\int_0^1 dx T_i(x) = 1$
- Similar matching and evolution as for PDFs and fragmentation functions, but nonlinear.

Track function evolution at NLO

 $\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2} T(x,\mu) = a_s \Big[K_{1\to1}^{(0)} \otimes T(x,\mu) + K_{1\to2}^{(0)} \otimes TT(x,\mu) \Big] \\ + a_s^2 \Big[K_{1\to1}^{(1)} \otimes T(x,\mu) + K_{1\to2}^{(1)} \otimes TT(x,\mu) + K_{1\to3}^{(1)} \otimes TTT(x,\mu) \Big]$

- Projects onto DGLAP, but also yields evolution of multi-hadron fragmentation functions
- Related IR poles needed for matching, simplifies for integer moments.
 [Chen, Jaarsma, Li, Moult, WW, Zhu]

Ingredients for track-based EEC

Collinear region ($z \rightarrow 0$)

- NNLL resummation of single logarithms of z.
- Nonperturbative plateau (modelled).
- Jet function matched onto track functions: $J_i = \mathcal{J}_{i \to j} T_j(2) + \mathcal{J}_{i \to jk} T_j(1) T_k(1)$

Back-to-back region $(z \rightarrow 1)$

- (N)NNLL resummation of double logarithms of 1-z.
- TMD factorization, nonperturbative Collins-Soper kernel.
- Jet function matched onto T(1), soft function only contributes through recoil.

Fixed-order region

• Order α_s^3 from CoLoRFulNNLO.

All regions:

- Leading nonperturbative correction described by Ω_1 , rescaled by $T_g(1)$
- Transition between regions using profile functions.

Results for track-based EEC

A first comparison to archived ALEPH data:

Collinear Limit:

- NNLL Collinea (Three Loop D
- Non-Perturba extracted fron

[Y.-C. Chen's talk at Hard Propes 2024 Theory in the flat "plateau" regions are due to non-perturbative Measurement constrains these regions, first constraint to the back-to-ba

Theory uncertainties

✓ Uncertainties reduce at higher orders.

 Important remaining uncertainty from leading nonperturbative correction, for which we don't have complete resummation.

4. Analytic continuation and small-x physics

Motivation for analytic continuation

- N-point correlator has power-law scaling ~ $R_L^{\gamma(N)}$ with $\gamma(N)\sim \int_0^1 {\rm d}x\, x^N P(x)$

the N-th moment of the DGLAP splitting functions P(x).

• For $N \rightarrow 0$ we can study small-x physics using jets.

Motivation for analytic continuation

- N-point correlator has power-law scaling ~ $R_L^{\gamma(N)}$ with $\gamma(N)\sim \int_0^1 {\rm d}x\, x^N P(x)$

the N-th moment of the DGLAP splitting functions P(x).

- For $N \rightarrow 0$ we can study small-x physics using jets.
- This scaling follows from:

$$\int_{0}^{R_{L}} dR'_{L} \frac{d\sigma^{[N]}}{dR'_{L}} = \int_{0}^{1} dx \, x^{N} \vec{H}\left(x, \frac{Q}{\mu}\right) \cdot \vec{J}^{[N]}\left(\ln \frac{R_{L} xQ}{\mu}\right)$$

$$\stackrel{\text{hard scattering}}{\text{hard scattering}} \quad \text{jet formation}$$
where *H* satisfies the usual DGLAP evolution.

Analytic continuation in N

• The projected correlator can be rewritten as:

$$\frac{d\sigma^{[N]}}{dR_L} = \sum_X \int d\sigma_X \sum_{S \subset X} \mathcal{W}^{[N]}(S) \,\delta(R_L - \max\{R_{ij}\}_{i,j \in S}),$$
$$\mathcal{W}^{[N]}(\emptyset) = 0, \qquad \mathcal{W}^{[N]}(S) = \left(\sum_{i \in S} z_i\right)^N - \sum_{\substack{S' \subseteq S \\ \neq S}} \mathcal{W}^{[N]}(S').$$

[Chen, Moult, Zhang, Zhu]

• E.g. for two particles:

$$\mathcal{W}^{[2]} = (z_1 + z_2)^2 - z_1^2 - z_2^2 = 2z_1 z_2$$
$$\mathcal{W}^{[3]} = (z_1 + z_2)^3 - z_1^3 - z_2^3 = 3z_1^2 z_2 + 3z_1 z_2^2$$

Analytic continuation in N

• The projected correlator can be rewritten as:

$$\frac{d\sigma^{[N]}}{dR_L} = \sum_X \int d\sigma_X \sum_{S \subset X} \mathcal{W}^{[N]}(S) \,\delta(R_L - \max\{R_{ij}\}_{i,j \in S}),$$
$$\mathcal{W}^{[N]}(\emptyset) = 0, \qquad \mathcal{W}^{[N]}(S) = \left(\sum_{i \in S} z_i\right)^N - \sum_{S' \subsetneq S} \mathcal{W}^{[N]}(S').$$

[Chen, Moult, Zhang, Zhu]

• E.g. for two particles:

$$\mathcal{W}^{[2]} = (z_1 + z_2)^2 - z_1^2 - z_2^2 = 2z_1 z_2$$
$$\mathcal{W}^{[3]} = (z_1 + z_2)^3 - z_1^3 - z_2^3 = 3z_1^2 z_2 + 3z_1 z_2^2$$

- This form can be analytically continued in N.
- Prohibitive computation time: $\mathcal{O}(2^{2M})$ for *M* particles.

Speeding up

- Avoid nested sums over subsets by storing intermediates: Time: $\mathcal{O}(2^{2M}) \to \mathcal{O}(2^M)$, Memory: $\mathcal{O}(M) \to \mathcal{O}(M2^M)$
- Approximation: replace M by subjets instead of particles, with a maximum number of subjets n_{sub}

✓Validation:

Power-law as function of N

- Fit CMS open data to power law.
- Due to quark/gluon mixing not just one power-law exponent
 → plot both DGLAP eigenvalues.
- Interestingly, approaches BFKL for $N \rightarrow 0$.

5. New angles on energy correlators

Issues

- Computation time: $\mathcal{O}(M^N)$ or $\mathcal{O}(2^M)$.
- Parametrization in terms of all distances is redundant:

$$\binom{N}{2} > 2N - 3 \quad \text{for} \quad N > 3.$$

• Orientation is not preserved. E.G. $for(\hat{\mathcal{B}}_{+}) = for(\hat{\mathcal{B}}_{+}) = 0$ all 6 permutations are mapped to same R_L, R_M, R_S .

New parametrization

Isolate a special point s and only consider the distance to it:

$$\frac{\mathrm{d}\sigma^{[N]}}{\mathrm{d}R_1} = \int \mathrm{d}\sigma \sum_{\mathbf{s}} z_{\mathbf{s}} \sum_{i,j,k,\dots} z_j z_k \cdots \delta(R_1 - \max\{R_{\mathbf{s}i}, R_{\mathbf{s}j}, \dots\})$$

- Time is $\mathcal{O}(M^2 \ln M)$ for projected correlator for all N!
- Clear from cumulative:

$$\Sigma^{[N]}(R_1) = \int^{R_1} \mathrm{d}R'_1 \, \frac{\mathrm{d}\sigma^{[N]}}{\mathrm{d}R'_1} = \int \mathrm{d}\sigma \, \sum_s z_s [z_{\mathrm{disk}}(s,R)]^{N-1}$$

New parametrization

Isolate a special point s and only consider the distance to it:

$$\frac{\mathrm{d}\sigma^{[N]}}{\mathrm{d}R_1} = \int \mathrm{d}\sigma \sum_{\mathbf{s}} z_{\mathbf{s}} \sum_{i,j,k,\dots} z_j z_k \cdots \delta(R_1 - \max\{R_{\mathbf{s}i}, R_{\mathbf{s}j}, \dots\})$$

- Time is $\mathcal{O}(M^2 \ln M)$ for projected correlator for all N!
- Clear from cumulative:

$$\Sigma^{[N]}(R_1) = \int^{R_1} \mathrm{d}R'_1 \, \frac{\mathrm{d}\sigma^{[N]}}{\mathrm{d}R'_1} = \int \mathrm{d}\sigma \, \sum_s z_s [z_{\mathrm{disk}}(s,R)]^{N-1}$$

- $R_1 \leq R_L \leq 2R_1$, so R_1 is good measure of overall scale.
- Same theory framework. First difference is in $\mathcal{O}(\alpha_s^2)$ constant \rightarrow NNLL effect $\rightarrow R_L = R_1[1 + \mathcal{O}(\alpha_s)].$

Comparing old and new projected correlator

• Difference small. Most visible in transition region.

Comparing old and new projected correlator

• Difference small. Most visible in transition region.

✓ New parametrization is much faster.

Resolved energy correlator

- Use polar coordinates around the special point.
- Nonredundant.

Resolved energy correlator

Old definition

- Use polar coordinates around the special point.
- Nonredundant.
- Maintains orientation.

Bulls-eye for different jets

- Comparing QCD and W jets.
- Qualitative differences

Bulls-eye for different jets

- Comparing QCD and W jets.
- Qualitative differences, not visible in old parametrization.

Radial distribution for different jets

 Old and new agree on "lower half".

Radial distribution for different jets

6. Bonus

Higgs + 1 jet at aNNLL'+NNLO

Higgs + 1 jet production with a veto on additional jets:

- Extra "N" compared to previous study [Liu, Petriello].
- Resum leading nonglobal logarithms, logarithms of jet radius.

Higgs + 1 jet at aNNLL'+NNLO

Higgs + 1 jet production with a veto on additional jets:

- Extra "N" compared to previous study [Liu, Petriello].
- Resum leading nonglobal logarithms, logarithms of jet radius.
- Missing pieces parametrized by theory nuisance parameters.

- For color-singlet production, cancel IR divergences by q_T slicing $\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \int_0^{\delta} \mathrm{d}q_T \, \frac{\mathrm{d}\sigma_{\mathrm{SCET}}}{\mathrm{d}X\,\mathrm{d}q_T} [1 + \mathcal{O}(\delta^p)] + \int_{\delta}^{\infty} \mathrm{d}q_T \, \frac{\mathrm{d}\sigma_{\mathrm{QCD}}}{\mathrm{d}X\,\mathrm{d}q_T}$ [Catani, Grazzini]
- q_T fails for jets, because emissions inside jets leave $q_T = 0$.

- For color-singlet production, cancel IR divergences by q_T slicing $\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \int_0^{\delta} \mathrm{d}q_T \, \frac{\mathrm{d}\sigma_{\mathrm{SCET}}}{\mathrm{d}X\,\mathrm{d}q_T} [1 + \mathcal{O}(\delta^p)] + \int_{\delta}^{\infty} \mathrm{d}q_T \, \frac{\mathrm{d}\sigma_{\mathrm{QCD}}}{\mathrm{d}X\,\mathrm{d}q_T}$ [Catani, Grazzini]
- q_T fails for jets, because emissions inside jets leave $q_T = 0$.
- N-jettiness can be used for jets [Stewart, Tackmann, WW; Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh],
 but soft function complicated [Bell, Dehnadi, Mohrmann, Rahn].
- k_T -ness also works with jets [Buonocore, Grazzini, Haag, Rottoli, Savoini], but no factorization formula.

- For color-singlet production, cancel IR divergences by q_T slicing $\frac{\mathrm{d}\sigma}{\mathrm{d}X} = \int_0^{\delta} \mathrm{d}q_T \, \frac{\mathrm{d}\sigma_{\mathrm{SCET}}}{\mathrm{d}X\,\mathrm{d}q_T} [1 + \mathcal{O}(\delta^p)] + \int_{\delta}^{\infty} \mathrm{d}q_T \, \frac{\mathrm{d}\sigma_{\mathrm{QCD}}}{\mathrm{d}X\,\mathrm{d}q_T}$ [Catani, Grazzini]
- q_T fails for jets, because emissions inside jets leave $q_T = 0$.
- N-jettiness can be used for jets [Stewart, Tackmann, WW; Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh],
 but soft function complicated [Bell, Dehnadi, Mohrmann, Rahn].
- k_T -ness also works with jets [Buonocore, Grazzini, Haag, Rottoli, Savoini], but no factorization formula.
- $\checkmark q_T$ works when using winner-take-all axis [Salam; Bertolini, Chan, Thaler].
- Planar processes: component transverse to plane is simple.

[Fu, Rahn, Shao, WW, Wu]

Proof of concept at NLO.

Proof of concept at NLO. At NNLO:

- For planar case ($\delta \phi$) only need constant of two-loop gluon jet.
- For q_T also need two-loop soft function (expand in R).

Conclusions

- Energy correlators separate scales, suppress soft radiation, simple(r) theory \rightarrow applications: α_s , m_{top} , ...
- Track-based energy correlators can be calculated at high precision, and only involve a few moments of track functions.
- Analytic continuation in N gives access to small x in jets.
- New parametrization enables fast evaluation of higher-point correlators and qualitative differences between jet samples.
- Now studying nonperturbative effects, back-to-back region, as well as new applications (heavy ions) with new definition.

Conclusions

- Energy correlators separate scales, suppress soft radiation, simple(r) theory \rightarrow applications: α_s , m_{top} , ...
- Track-based energy correlators can be calculated at high precision, and only involve a few moments of track functions.
- Analytic continuation in N gives access to small x in jets.
- New parametrization enables fast evaluation of higher-point correlators and qualitative differences between jet samples.
- Now studying nonperturbative effects, back-to-back region, as well as new applications (heavy ions) with new definition.

Thank you!