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The (two) flavour problems

1. The SM flavour problem: The measured Yukawa pattern doesn’t seem
accidental

⇒ Is there any deeper reason for that?

2. The NP flavour problem: If we regard the SM as an EFT valid below a certain
energy cutoff Λ, why don’t we see any deviations in flavour changing
processes?

⇒ Which is the flavour structure of BSM physics?
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The SM flavour problem

LYukawa ⊃ Y ij
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U(2)u

U(2)q

An approximate U(2)n is acting

on the light families!
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The NP flavour problem

L = Lgauge + LHiggs

• In the SM: accidental U(3)5 → approx U(2)n

Large Flavour symmetry

Three replica of the same

fermion fields

U(3)5 symmetry

Flavour degeneracy is broken

The breaking is

peculiar

5/38



The NP flavour problem

L = Lgauge + LHiggs +
∑

d,i

c
(d)
i

Λd−4
Odi

• In the SM: accidental U(3)5 → approx U(2)n

• What happens when we switch on NP?

Large Flavour symmetry

Three replica of the same

fermion fields

U(3)5 symmetry

Flavour degeneracy is broken

The breaking is

peculiar
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The NP flavour problem

L = Lgauge + LHiggs +
∑

d,i

c
(d)
i

Λd−4
Odi

• What is the energy scale of NP?
• Why haven’t observed any violation of accidental symmetries

yet?
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Λ

Results of BSM analysis: probing New Physics Scale

NMFV

no breaking of the U(2)n flavour symmetry at low energies

— ΛEW

— ΛUV

Pierini’s EPS talk
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Partonic vs Hadronic

b

c

W

ℓ

νℓ

Introduction and Motivation

Beam energies at B-Factories
tuned to produced B pairs
through e+e` ! ˇ(4S)! B —B.

B(ˇ(4S)! B —B) ı 96%.

Semileptonic B decays used to
extract CKM matrix elements
jVcbj, jVubj

Two approaches to measure
semileptonic B decays:

I Exclusive: a specific final state is
reconstructed (e.g. B ! ı‘⌫)

I Inclusive: All B ! Xq‘⌫ final
states within a region of phase
space are reconstructed.

‰ 3� discrepancy between inclusive
and exclusive measurements.

C. Beleño Exclusive B ! Xu‘⌫ decays ICHEP 2016 2/9

Fundamental challenge to match
partonic and hadronic descriptions

µpartonic = mb µhadronic = ΛQCD
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Old and new puzzles in flavour physics
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BABAR (429 fb-1, hadronic)1.5 ± 1.3   PRD87, 112005
BABAR (418 fb-1, semileptonic)0.2 ± 0.8   PRD82, 112002
Belle (711 fb-1, hadronic)2.9 ± 1.6   PRD87, 111103
Belle (711 fb-1, semileptonic)1.0 ± 0.6   PRD96, 091101
Belle II (63 fb-1, inclusive)1.9 ± 1.5   PRL127, 181802
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Belle II (362 fb-1, combined)2.3 ± 0.7   This analysis

SM0.497 ± 0.037
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The Vcb puzzle



The CKM matrix
Interaction basis

⇒ gauge interactions are diagonal

⇒ mass terms are not diagonal

−LY = Y ijd Q̄
i
LHd

j
R + Y iju Q̄

i
LH̃u

j
R + h.c.

Mass basis

⇒ Yukawa couplings are diagonal

⇒ The CKM matrix is the remnant of the diagonalisation

Lcc ∝ ūiLγµdjLW+
µ Vij

Non-diagonal Yukawa

CKM matrix
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The Vcb − Vub puzzle

• Large discrepancies between inclusive and exclusive determinations

• Recent work mostly on B → D∗ due to new lattice QCD form factors
determinations

• When precision increases, more puzzles arise
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B → Xc,u`ν̄

focus today
on B → D∗
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Why is Vcb important?

|Vcb| is a fundamental parameter to predict all flavour changing processes

B(Bs → µ+µ−) ∼ |Vcb|2

inclusiveexclusive
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Exclusive matrix elements

〈Hc|Jµ|Hb〉 =
∑

i

SiµFi
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Exclusive matrix elements

〈Hc|Jµ|Hb〉 =
∑

i

SiµFi

scale ΛQCD
independent

Lorentz structures

form factor
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Exclusive matrix elements

〈Hc|Jµ|Hb〉 =
∑

i

SiµFi

Form factors determinations

• Lattice QCD

• QCD SR, LCSR

Form factors parametrisations

• HQET (CLN + improvements)⇒ reduce
independent degrees of freedom

• Analytic properties→ BGL

scale ΛQCD
independent

Lorentz structures

form factor

only points at spe-
cific kinematic points

data points needed
to fix the coefficients

of the expansion
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B → D∗ before 2021
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[MB, Gubernari, Jung, van Dyk, ’19]

Other references: F. Bernlochner, Z. Ligeti, M. Papucci, M. Prim, D. Robinson, ’22
P. Gambino, M. Jung, S. Schacht, ’19
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B → D∗ from lattice away from zero recoil
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• Are these results compatible with
each other?

• Are they compatible with
experimental data?

[2304.03137]

[2306.05657]

[2105.14019]
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New B → D∗`ν̄ Belle and Belle II data

d’Agostini bias [? ]. Comparing the results of both the “lat” and “lat+exp” analyses allows

for testing the SM in a comprehensive way. Indeed, similar to [? ? ? ? ? ], we sometimes

observe that theory predictions show unexpected behaviour, and also, that results based

on di↵erent experimental data in some cases lead to conclusions that are at tension. We

analyse how this a↵ects the phenomenological predictions, and where deemed necessary,

attach a corresponding systematic error.

In what follows we first summarise the SM expression for the di↵erential decay rate of

B ! D⇤`⌫̄` decays, as well as the BGL ansatz. We then discuss the two fitting strategies

and results for the BGL parameterisations in Sec. 3 and 4, respectively. In the remaining

two sections we discuss the results for phenomenology and our conclusions.

2 Anatomy of B ! D⇤`⌫̄` decays

We briefly introduce the expression for the di↵erential decay rate for the process B ! D⇤`⌫̄`
in terms of hadronic form factors. Following that we discuss the model-independent pa-

rameterisation of the form factors, which are at the core of this study.

2.1 Di↵erential decay rates and hadronic form factors

The semileptonic B ! D⇤`⌫̄` decay, with the subsequent D⇤ ! D⇡ decay, is described

by four kinematic variables. First is q2, the square of the four-momentum transfer qµ =

(pB � pD⇤)µ, where pB and pD⇤ are the four-momentum of the B and the D⇤ meson,

respectively, or equivalently the hadronic recoil

w =
M2

B + M2
D⇤ � q2

2MBMD⇤
. (2.1)

Second, there are three angles ✓`, ✓v and � that describe the geometry of the decay.1 The

expression for the di↵erential decay rate in the SM in the limit of massless leptons in terms

of these kinematic variables is

d�

dwdcos(✓`)dcos(✓v)d�
=

3G2
F

1024⇡4
|Vcb|2⌘2

EW MBr2
p

w2 � 1q2

⇥
�
(1 � cos(✓`))

2 sin2(✓v)H
2
+(w) + (1 + cos(✓`))

2 sin2(✓v)H
2
�(w)

+ 4 sin2(✓`) cos2(✓v)H
2
0 (w) � 2 sin2(✓`) sin2(✓v) cos(2�)H+(w)H�(w)

� 4 sin(✓`)(1 � cos(✓`)) sin(✓v) cos(✓v) cos(�)H+(w)H0(w)

+ 4 sin(✓`)(1 + cos(✓`)) sin(✓v) cos(✓v) cos(�)H�(w)H0(w)
 

where H0, H± are the hadronic helicity form factors defined in QCD. For massive charged

leptons, an additional form factor contributes, which we denote with HS . For the discussion

1Following [? ], ✓` is the angle between the direction of movement of the charged lepton and the

direction opposite the movement of the B meson in the W rest frame, ✓v is the angle between the direction

of movement of the D0 in the D0 � ⇡ pair resulting from the decay of the D⇤, and the direction opposite

to the B meson in the D⇤ rest frame. The angle � is the angle between the two decay planes defined by

the charge-neutral lepton pair and the D0 � ⇡ pair, respectively, in the B rest frame.

– 3 –

• Between 7 to 10 bins per
kinematic variable
• Available on HEPData with

correlations
• Angular observables

analysis are available, data
just newly released

18

B
W D*!

" #s

$
l

$
V

D0

l

Figure 2.3: [B → D∗ℓν decay geometry] Geometry of B → D∗ℓν decays.

The differential decay rate is given by

dΓ(B→D∗ℓν)
dwdcosθV dcosθℓdχ

=
3G2

F

4(4π)4
|Vcb|2mBm2

D∗
√

w2 − 1(1 − 2wr + r2)×

[(1 − cosθℓ)
2sin2θV |H+(w)|2

+(1 + cosθℓ)
2sin2θV |H−(w)|2

+4sin2θℓcos2θV |H0(w)|2

−4sinθℓ(1 − cosθℓ)sinθV cosθV cosχH+(w)H0(w)

+4sinθℓ(1 + cosθℓ)sinθV cosθV cosχH−(w)H0(w)

−2sin2θℓsin
2θV cos2χH+(w)H−(w)]

where Hi(w) are called the helicity form factors. These form factors are related to

another set of form factors, hV (w), hA1(w), hA2(w) and hA3(w), as follows.

Hi = −mB
R(1 − r2)(w + 1)

2
√

1 − 2wr + r2
hA1(w)H̃i(w) (2.19)

where H̃i(w) are given by

H̃±(w) =
√

1−2wr+r2

1−r

(
1 ∓

√
w−1
w+1

R1(w)
)

H̃0(w) = 1 + w−1
1−r

(1 − R2(w))
(2.20)
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Analysis strategies

Setup

• BGL parametrisation

• Bayesian inference to apply unitarity Flynn, Jüttner, Tsang, ’23

Questions

• Combine the three LQCD datasets

⇒ Is the combination acceptable?

• Combine with experimental data

• What are the consequences for phenomenology?
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Lattice only
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[MB, A. Jüttner, ’24]

see also G. Martinelli, S. Simula, L. Vittorio, ’23,’24
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Lattice + experimental data
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• Good fit quality (p-value
∼ 18%)

• Adding experimental data
reduces the uncertainties,
especially at large w

• Especially for F1 and F2, the
shape changes when
including experimental data

[MB, A. Jüttner, ’24]

18/38



1.0 1.2 1.4
w

0

1

2

3

d
Γ
/d
w
/Γ

−1 0 1
cos(θ`)

0.2

0.4

0.6

d
Γ
/d

co
s(
θ `

)/
Γ

exp data

lat fit

lat+exp fit

exp fit

−1 0 1
cos(θv)

0.4

0.6

0.8

d
Γ
/d

co
s(
θ v

)/
Γ

0 π
2 π 3π

2
2π

χ

0.12

0.14

0.16

0.18

d
Γ
/d
χ
/Γ

1.0 1.2 1.4
w

0

1

2

3

d
Γ
/d
w
/Γ

−1 0 1
cos(θ`)

0.2

0.4

0.6

d
Γ
/d

co
s(
θ `

)/
Γ

exp data

lat fit

lat+exp fit

exp fit

−1 0 1
cos(θv)

0.4

0.6

0.8

d
Γ
/d

co
s(
θ v

)/
Γ

0 π
2 π 3π

2
2π

χ

0.12

0.14

0.16

0.18

d
Γ
/d
χ
/Γ

• Fit to HPQCD and FNAL/MILC
misses experimental points

• BGL fit to experimental and lattice
data has p−value ∼ 18%

• BGL coefficients shift of a few σ
when including experimental data

FNAL/MILC + HPQCD +HFLAV

JLQCD +HFLAV

[MB, A. Jüttner, ’24]
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Differential observables
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combination af,0 af,1 af,2 af,3 p �2/Ndof Ndof

Belle 23 0.01223(11) 0.0153(60) -0.30(19) -0.02(44) 0.25 1.12 58

BelleII 23 0.01226(11) 0.0161(61) -0.47(16) -0.03(39) 0.18 1.17 56

HFLAV 23 0.01224(11) 0.0157(56) -0.50(16) -0.05(39) 0.13 1.21 58

combination aF1,0 aF1,1 aF1,2 aF1,3 p �2/Ndof Ndof

Belle 23 0.002050(19) -0.0023(13) 0.018(34) 0.11(41) 0.25 1.12 58

BelleII 23 0.002054(19) -0.0004(12) 0.010(33) -0.09(37) 0.18 1.17 56

HFLAV 23 0.002052(19) -0.0008(11) 0.011(31) 0.00(37) 0.13 1.21 58

combination aF2,0 aF2,1 aF2,2 aF2,3 p �2/Ndof Ndof

Belle 23 0.04958(89) -0.148(26) 0.38(36) 0.03(45) 0.25 1.12 58

BelleII 23 0.04998(88) -0.128(26) 0.22(39) 0.00(46) 0.18 1.17 56

HFLAV 23 0.04996(85) -0.132(25) 0.26(38) 0.02(46) 0.13 1.21 58

combination ag,0 ag,1 ag,2 ag,3 p �2/Ndof Ndof

Belle 23 0.03135(76) -0.064(23) -0.13(44) -0.01(46) 0.25 1.12 58

BelleII 23 0.03035(77) -0.089(23) -0.27(41) -0.04(45) 0.18 1.17 56

HFLAV 23 0.03072(72) -0.082(22) -0.26(42) -0.01(46) 0.13 1.21 58

Table 7. Results for the Bayesian (Kf , KF1
, KF2

, g) = (4, 4, 4, 4) BGL fits to Belle 23, Belle

II 23 or HFLAV 24, in each case jointly with the lattice data sets FNAL/MILC 21, HPQCD 23

and JLQCD 23. The quality of the corresponding frequentist fit is given in the right-most three

columns.

lattice and experimental data, where the observed shifts are also visible, comparing to the

lattice-only “lat” fit in the top panel. We also note that the inclusion of experimental data

in the case of FNAL/MILC 21 appears to pull the result for aF2,2 towards the upper limit

of what is allowed by the unitarity constraint. This is not happening for HPQCD 23 and

JLQCD 23, respectively. As stated above, FNAL/MILC 21 did not impose the kinematic

constraint in Eq. (2.4) that relates F1 and F2 in their form-factor parameterisation, and

this might provide the key to the observed behaviour.

We can now have a first look at two angular observables for the decay B ! D⇤(!
D⇡)`⌫̄`. Introducing the normalisation

Nm`
= Im`

✓
1 +

m2
`

2q2

◆�
H2

0 + H2
� + H2

+

�
+

3

2
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`

q2
H2

S

�
, (4.1)

the forward-backward asymmetry is

A`
FB =

R 1
0 �

R 0
�1 d cos ✓`d�/d cos ✓`R 1

0 +
R 0
�1 d cos ✓`d�/d cos ✓`

=
3

4
Im`


H2

� � H2
+ � 2m2

`

q2
H0HS

�
/Nm`

, (4.2)

and the longitudinal D⇤ polarisation fraction [58]

F `
L = Im`


H2

0

✓
1 +

m2
`

2q2

◆
+

3m2
`

2q2
H2

S

�
/Nm`

, (4.3)
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• The combined lattice + experimental precision makes it possible to study the
differences in the shape

• It is clear that there is a distinct difference between JLQCD and
FNAL/MILC+HPQCD

• Difficult to understand what is going on, JLQCD errors are also a bit larger
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Figure 4. Asymmetries A`
FB and F `

L in the limit of massless charged leptons and based on

(Kf , KF1
, KF2

, g) = (4, 4, 4, 4) BGL fits to lat, lat+exp and exp, based on Belle II 23 for experiment

and JLQCD 23 (top row), and HPQCD 23 and FNAL/MILC 21 (bottom row) for lattice.

where

Im`
[f ] =

1

MBMD⇤

Z q2
max

m2
`

p
w2 � 1 q2(1 � m2

`/q2)2f(q2)dq2 . (4.4)

The plots in Fig. 4 show these ratios before phase-space integration in the numerator and

denominator, respectively, in the case of massless charged leptons in the final state. These

plots are instructive, since they provide another illustration of the di↵erence in shape of

the lattice form factors. The plots show again the fit based on only JLQCD 23 (top row)

on the one side, and FNAL/MILC 21 and HPQCD 23 (bottom row) on the other side.

In the former case the shapes are largely compatible between the “lat”, “lat+exp” and

experiment-only fits. As already observed in [34], a clear and significant di↵erence in the

shapes can be observed in the latter case. We will return to this tension below when

discussing the integrated versions, i.e., A`
FB and F `

L, respectively, which allows for a more

quantitative statement of this observation.

To summarise, for the data sets at hand a number of tensions appear between lattice

and experimental data sets in the analysis following the two strategies “lat” and “lat+exp”.

Some of these tensions have been observed before in [33, 34] based on the “lat” analysis

within the dispersive-matrix method. Here we provide a complementary view in terms of

the results of the “lat+exp” analysis of all three lattice data sets and the Belle 23 and

Belle II 23 experimental data sets. The Bayesian-inference framework based on the BGL

expansion used here, allows to relate the observations to tensions in the BGL coe�cients.

– 17 –
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dispersive matrix Fedele et al. “lat+exp” [34]
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Bordone et al. [70]

Bobeth et al. [71]

Figure 8. Comparison of results based on BGL fits to lattice data (squares), simultaneous BGL fit

to experiment (see legend) and lattice data (triangles), fits to only experimental data (circles) by

Belle [1, 2, 67, 68], Belle II [3, 4, 66], LHCb [69] and the HFLAV-Moriond 24-average [65, 72–81],

where available or visible within the shown range along the horizontal axis, and other work we

comment on in the text (also circles). All shown BGL fits are for (Kf , KF1
, KF2

, Kg)=(4,4,4,4).

The vertical blue band indicates our central results presented in Eq. (5.6), the vertical dashed line is

the corresponding statistical error, and the dash-dotted grey lines indicate the range for the results

that we would obtain using PDG error inflation (see text after Eq. (5.6)).

lat R⌧/µ(D⇤) Ropt(D⇤) Re/µ(D⇤) Ae
FB F e

L F ⌧
L P ⌧

JLQCD 23 0.2482(81) 1.0919(77) 1.00464(23) 0.221(22) 0.515(31) 0.447(17) -0.508(11)

HPQCD 23 0.270(13) 1.068(12) 1.00409(32) 0.264(31) 0.432(45) 0.398(24) -0.545(19)

FNAL/MILC 21 0.2748(89) 1.0805(47) 1.00395(21) 0.258(14) 0.456(20) 0.4202(93) -0.5277(74)

JLQCD 23 HPQCD 23 0.2558(60) 1.0854(59) 1.00444(17) 0.238(17) 0.488(23) 0.431(12) -0.5183(87)

FNAL/MILC 21 HPQCD 23 0.2734(70) 1.0794(42) 1.00399(17) 0.256(12) 0.457(17) 0.4191(83) -0.5290(66)

JLQCD 23 FNAL/MILC 21 0.2596(58) 1.0841(39) 1.00433(15) 0.252(12) 0.475(16) 0.4255(84) -0.5204(60)

JLQCD 23 HPQCD 23 FNAL/MILC 21 0.2616(52) 1.0832(36) 1.00428(14) 0.252(10) 0.473(15) 0.4241(73) -0.5221(56)

lat+exp R⌧/µ(D⇤) Ropt(D⇤) Re/µ(D⇤) Ae
FB F e

L F ⌧
L P ⌧

JLQCD 23 0.2548(17) 1.0918(36) 1.004497(52) 0.2187(64) 0.5215(42) 0.4505(35) -0.5096(49)

HPQCD 23 0.2556(20) 1.0927(55) 1.004483(67) 0.2197(64) 0.5213(42) 0.4499(53) -0.5085(76)

FNAL/MILC 21 0.2560(16) 1.0937(25) 1.004470(45) 0.2227(55) 0.5203(40) 0.4497(33) -0.5070(34)

JLQCD 23 HPQCD 23 0.2549(16) 1.0922(30) 1.004495(48) 0.2197(59) 0.5203(40) 0.4493(34) -0.5090(41)

FNAL/MILC 21 HPQCD 23 0.2558(16) 1.0928(23) 1.004479(44) 0.2232(54) 0.5193(39) 0.4484(32) -0.5082(32)

JLQCD 23 FNAL/MILC 21 0.2548(15) 1.0921(22) 1.004502(43) 0.2241(53) 0.5188(39) 0.4476(29) -0.5091(30)

JLQCD 23 HPQCD 23 FNAL/MILC 21 0.2548(15) 1.0919(20) 1.004503(42) 0.2243(50) 0.5179(38) 0.4470(29) -0.5094(28)

Table 8. Summary of results. The top panel of the table is based on BGL fits to only lattice data,

while the bottom panel is based on combined BGL fits to lattice and experimental data (HFLAV

24). A summary of these results is also provided in Fig. 8.

– 23 –

• Significant scatter between various combinations of lattice results

• We apply a systematic error to account for the spread

• Consistent scatter of the experimental results independently of the lattice
information

[MB, A. Jüttner, ’24]

⇒ see also: Fedele et al, ’23
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for each bin (see Tab. 9 for experimental input), where we define �0 = �/|Vcb|2. A final

result can then in principle be obtained as the result of a constant correlated fit over all

results for |Vcb|↵,i. In practice however, we often find that such fits have acceptable p values

only after dropping bins, or, the fit result does not appear to represent the data well, an
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possible (in terms of fit quality, such that 0.05  p  0.95)
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[? ? ? ? ? ] for other recent uses or discussions of the AIC). Contrary to the analysis

in [? ], no PDG inflation [? ] of the error at intermediate steps of the analysis is required
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respectively. The first term under the square-root corresponds to a systematic error from

the variation of results under the AIC averaging, while the remaining terms correspond to

the standard expression for the variance.

3.2 Fit strategy two: “lat+exp”

Contrary to the strategy of the previous section, the simultaneous fit imposes the SM shape

on the experimental data as well as unitarity bounds. The “lat+exp” strategy discussed in

this section is, however, still interesting, since it provides complementary information for

the search for NP. For su�ciently high precision of the lattice and experimental data, the

– 7 –

1.0 1.1 1.2 1.3 1.4 1.5
w

0.038

0.040

0.042

0.044

0.046

|V
cb
|

|Vcb|AIC = 0.03983(94)
|Vcb|Frequ. = 0.03965(88) (p,¬2/Ndof , Ndof = (0.43, 1.01, 8)

°1.0 °0.5 0.0 0.5 1.0
cos µv

0.038

0.040

0.042

0.044

0.046

|V
cb
|

|Vcb|AIC = 0.0424(18)
|Vcb|Frequ. = 0.0388(13) (p,¬2/Ndof , Ndof = (0.00, 2.82, 8)

°1.0 °0.5 0.0 0.5 1.0
cos µ`

0.038

0.040

0.042

0.044

0.046

|V
cb
|

|Vcb|AIC = 0.0403(17)
|Vcb|Frequ. = 0.0390(12) (p,¬2/Ndof , Ndof = (0.05, 1.93, 8)

°º °º
2 0 °º

2 +º

¬

0.038

0.040

0.042

0.044

0.046

|V
cb
|

|Vcb|AIC = 0.0418(16)
|Vcb|Frequ. = 0.0407(14) (p,¬2/Ndof , Ndof = (0.08, 1.76, 8)Blue band

• Frequentist fit p−value ∼ 0%

• Affected by d’Agostini Bias

Red band
• Frequentist fit p−value ∼ 0%

• Akaike-Information-Criterion analysis: average over all possible fits with at least
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• The AIC nicely reduces the
d’Agostini bias

• Some lattice data behave strangely

• Would it be safer to discard the
angular distributions?

• Combining the three lattice datasets
doesn’t help, shape driven by
FNAL/MILC and HPQCD

see also G. Martinelli, S. Simula, L. Vittorio, ’23,’24

FNAL/MILC

HPQCD

JLQCD
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|Vcb| - Summary
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inclusive (Bernlochner et al. [60])
inclusive (Bordone, Capdevila, Gambino [61]) Belle 23
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HFLAV 24

Figure 7. |Vcb| results obtained from the analyses in this paper and comparison with the literature

(top). The results from the AIC analysis based on the w di↵erential decay rate are shown in stronger

colours. The blue band corresponds to our nominal result as in Eq. (5.1), where we employ the

results from the w distribution for the combined fit to all LQCD data sets and the HFLAV 24

experimental average. The dashed vertical lines are shown only to guide the eye.

And hence, as far as |Vcb| is concerned, the SM assumptions entering the BGL fit are

compatible with the shape of the di↵erential decay rates.

5.1.3 Discussion

The central result for |Vcb| in this paper, Eq. (5.1), is shown as vertical blue band in Fig. 7.

At the top of this scatter plot we also show results from other analyses of both exclusive

and inlcusive decays. The dispersive-matrix analyses in [30–34] are close in spirit to ours, in

that both apply the unitarity constraint within the dispersive-matrix approach. The work

in [33], which on top of Belle 23 and Belle II 23 also includes the earlier Belle data set [43],

and is the most recent in a series of papers [30–32], leads to a result that is fully compatible

with ours. Their analysis within the “lat” approach includes results from all three lattice

collaborations, and for di↵erential decay rates for all channels w, cos ✓`, cos ✓v and �. In

– 21 –

• Residual 2σ difference with inclusive

• The AIC produces slightly larger uncertainties, overall all results are quite
consistent

[MB, A. Jüttner, ’24]
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What about other datasets?
Belle angular observables

2

d�(B̄ ! D⇤`⌫̄`)
dw dcos ✓` dcos ✓V d�

=
2G2

F⌘
2
EW|Vcb|2m4

BmD⇤

2⇡4
⇥
✓

J1s sin2 ✓V + J1c cos2 ✓V

+ (J2s sin2 ✓V + J2c cos2 ✓V) cos 2✓` + J3 sin2 ✓V sin2 ✓` cos 2�

+ J4 sin 2✓V sin 2✓` cos� + J5 sin 2✓V sin ✓` cos� + (J6s sin2 ✓V + J6c cos2 ✓V) cos ✓`

+ J7 sin 2✓V sin ✓` sin� + J8 sin 2✓V sin 2✓` sin� + J9 sin2 ✓V sin2 ✓` sin 2�

◆
. (2)

The expression depends on Fermi’s coupling constant GF,
the electroweak correction ⌘EW [4], the CKM matrix el-
ement Vcb, and the masses of B (mB) and D⇤ (mD⇤)
mesons.

We determine the angular coe�cients in bins of w, J̄i =R
�w

Ji(w)dw, from experimental data with the definition
from Ref. [5]:

J̄i =
1

Ni

8X

j=1

4X

k,l=1

⌘�i,j⌘
✓`
i,k⌘

✓V

i,l Rjkl . (3)

The normalization factor Ni stems from trigonometric in-
tegrals. The angles ✓`, ✓V , and � are divided into bins of
size ⇡/4. The weight factors ⌘↵i,n with ↵ 2 {�, ✓`, ✓V } are
given in Ref. [5] and the product of these factors define
a specific phase-space bin where signal is extracted. The
factor Rjkl represents the partial rate in the correspond-
ing phase-space bin jkl. We combine phase-space bins
with identical products of the weights ⌘↵i,n during signal
extraction, resulting in yields of total 36 merged bins to
obtain 12 Ji coe�cients using Eq. (3) in each bin of w. In
the limit of massless charged leptons, the angular coe�-
cient J6c vanishes. Furthermore, the angular coe�cients
J7, J8, and J9 are zero within the SM of particle physics,
only contributing to scenarios involving new physics.

We reconstruct two B meson candidates, a tag B and a
signal B. Signal B meson candidates are reconstructed as
follows: We consider both charged and neutral B mesons
with the decay chains B0 ! D⇤+`⌫`, D⇤+ ! D0⇡+,
D⇤+ ! D+⇡0, and B� ! D⇤0`⌫` with D⇤0 ! D0⇡0 [6].

To select charged tracks, we apply the following crite-
ria: dr < 2 cm and |dz| < 4 cm, where dr is the impact
parameter perpendicular to the beam-axis and with re-
spect to the interaction point and dz is the z coordinate
along the beam-axis of the impact parameter. Tracks
are also required to have transverse momenta pT >
0.1 GeV/c. In addition, we utilize particle identification
subsystems to identify electrons, muons, charged pions,
kaons, and protons. Electron (muon) tracks are required
to have momenta in the lab frame pLab > 0.3 GeV/c
(pLab > 0.6 GeV/c). The momenta of particles identified
as electrons are corrected for bremsstrahlung by includ-
ing photons within a 2� cone defined around the electron
momentum at the point of closest approach to the inter-
action point (IP).

Photon selection criteria are based on their energies:

E� > 100 MeV for the forward endcap (12� < ✓ < 31�),
150 MeV for the backward endcap (132� < ✓ < 157�),
and 50MeV for the barrel region (32� < ✓ < 129�) of the
calorimeter. ⇡0 candidates are formed from pairs of pho-
tons with invariant mass within the range of 104MeV/c2

to 165 MeV/c2. The di↵erence between the reconstructed
⇡0 mass and the nominal mass (m⇡0 = 135 MeV/c2 [7])
must be smaller than three times the estimated mass res-
olution.

K0
S mesons are reconstructed from oppositely charged

track pairs within a reconstructed invariant mass window
of 398 MeV/c2 to 598 MeV/c2 and selected with a mul-
tivate method. For details on the multivariate method
used, see Ref. [8]. The reconstructed K0

S mass has to dif-
fer from the nominal value (mK0

S
= 498 MeV/c2 [7]) by

less than 3� of the estimated mass resolution.

We reconstruct the following decays of the D mesons:
D+ ! K�⇡+⇡+, D+ ! K�⇡+⇡+⇡0, D+ !
K�⇡+⇡+⇡+⇡�, D+ ! K0

S⇡
+, D+ ! K0

S⇡
+⇡0, D+ !

K0
S⇡

+⇡+⇡�, D+ ! K0
SK+, D+ ! K+K�⇡+, D0 !

K�⇡+, D0 ! K�⇡+⇡0, D0 ! K�⇡+⇡+⇡�, D0 !
K�⇡+⇡+⇡�⇡0, D0 ! K0

S⇡
0, D0 ! K0

S⇡
+⇡�, D0 !

K0
S⇡

+⇡�⇡0, and D0 ! K�K+. We apply a decay-
channel-optimized mass window selection to the D meson
candidates. The ⇡0 daughters from D meson candidates
are required to have center-of-mass momenta pCMS

⇡0 >
0.2 GeV/c, except for the decay D0 ! K�⇡+⇡+⇡�⇡0

where this criterion is not applied. To reduce combina-
torial background, the reconstructed D mesons within
an event are ranked based on the absolute di↵erence
between the reconstructed mass and the nominal mass
(mD+ = 1.870 GeV/c2, mD0 = 1.865 GeV/c2 [7]), and
up to ten candidates with the smallest mass di↵erence
are selected.

D⇤ mesons are reconstructed in three decay channels:
D⇤0 ! D0⇡0

slow, D⇤+ ! D+⇡0
slow, and D⇤+ ! D0⇡+

slow.
Charged slow pions must have a center-of-mass momen-
tum below 0.4 GeV/c, and the mass di↵erence between
the reconstructed masses MX of the D⇤ and D candidates
�M = MD⇤ � MD has to be smaller than 0.155 GeV/c2

(0.160 GeV/c2) for D⇤+ (D⇤0) mesons.

Signal-B meson candidates are reconstructed by com-
bining selected D⇤ candidates and a lepton candidate.
The loose selection 1GeV/c2 < MD⇤` < 6 GeV/c2 is ap-
plied to reduce combinatorial background.

We perform global-decay-chain vertex fitting using
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40
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B(B → D∗`ν̄) = (4.97± 0.12)%
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Results are consistent with
our previous analysis

[MB, O. Heald, A. Jüttner, in preparation]
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Can a different parametrisation help?
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[MB, N. Gubernari, M. Jung D. van Dyk, ’25]
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Outlook and prospects on BSM



What about BSM?

Joel Swallow
CERN Seminar

Results in context
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ℬ16−22
πνν̄ = (13.0+3.3
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• NA62 results are consistent 

• Central value moved up (now 1.5—1.7  above SM) 

• Fractional uncertainty decreased: 40% to 25% 

• Bkg-only hypothesis rejected with significance Z>5
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RD(∗) = B(B→D(∗)τν̄)

B(B→D(∗)`ν̄)

0 2 4 6 8 10105 × Br(B+→K + νν̄)

Average1.3±0.4

BABAR (429 fb-1, hadronic)1.5 ± 1.3   PRD87, 112005
BABAR (418 fb-1, semileptonic)0.2 ± 0.8   PRD82, 112002
Belle (711 fb-1, hadronic)2.9 ± 1.6   PRD87, 111103
Belle (711 fb-1, semileptonic)1.0 ± 0.6   PRD96, 091101
Belle II (63 fb-1, inclusive)1.9 ± 1.5   PRL127, 181802
Belle II (362 fb-1, inclusive)2.7 ± 0.7   This analysis
Belle II (362 fb-1, hadronic)1.1 ± 1.1   This analysis
Belle II (362 fb-1, combined)2.3 ± 0.7   This analysis

SM0.497 ± 0.037
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The EFT approach

• Since we haven’t observed any clear sign of NP yet at low energies, we can
work in an EFT context

⇒ Agnostic of the nature of new physics, describe more than one UV model with the
same operators

⇒ Try to derive model-independent bounds

• We use the SMEFT

⇒ Build all possible operators with SM fields and respecting SM symmetries

• The remnant of high-energy new physics is contained in the Wilson
Coefficients

⇒ With flavour, we have a lot of free degrees of freedom

⇒ We need a criterium to infer their magnitude

28/38



The U(2)n symmetry for BSM

q3L ∼ (1,1) `3L ∼ (1,1)

QL = (Q1
L, Q

2
L) ∼ (2̄,1) LL = (`1L, `

2
L) ∼ (1, 2̄)

Unbroken U(2)5

Yu = yt

(
0 0
0 1

) q̄3LΓq3L 3

q̄3LΓQ 7
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L, Q

2
L) ∼ (2̄,1) LL = (`1L, `

2
L) ∼ (1, 2̄)

Vq ∼ (2,1) V` ∼ (1,2)

Unbroken U(2)5

Yu = yt

(
0 0
0 1

)

Soft symmetry breaking

Yu = yt

(
∆ Vq
0 1

)

q̄3LΓq3L 3

q̄3LΓQ 7

q̄3LΓq3L 3

q̄3LΓ(VqQ) 3

29/38



Flavour Non-Universal New Physics

Basic idea:

• 1st and 2nd have small masses and small
couplings to NP because they are generated
by dynamics at a heavier scale

• 3rd generation is linked to dynamics at lower
scales and has stronger couplings

Flavour deconstruction:
fermion families interact with different gauge
groups and flavour hierarchies emerge as
accidental symmetries

Energy

— ΛEW

— Λ3

— Λ2

— Λ1

Dvali, Shifman, ’00
Panico, Pomarol, ’16

MB, Cornella, Fuentes-Martin, Isidori ’17
Allwicher, Isidori, Thomsen ’20
Barbieri, Cornella, Isidori, ’21

Davighi, Isidori ’21
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Flavour Non-Universal New Physics

Energy

— ΛEW

— Λ3

— Λ2

— Λ1

Energy

— ΛEW

— O(TeV) G12 ×G3

U(2)n limit

NP coupled
to 3rd gen only

broken U(2)n

Dvali, Shifman, ’00
Panico, Pomarol, ’16

MB, Cornella, Fuentes-Martin, Isidori ’17
Allwicher, Isidori, Thomsen ’20
Barbieri, Cornella, Isidori, ’21

Davighi, Isidori ’21
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Which operators?

Q±`q = (q̄3Lγ
µq3L)(¯̀3

Lγµ`
3
L)±(q̄3Lγ

µσaq3L)(¯̀3
Lγµσ

a`3L) QS = (¯̀3
LτR)(b̄Rq

3
L)
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Which operators?
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3
L)±(q̄3Lγ

µσaq3L)(¯̀3
Lγµσ

a`3L) QS = (¯̀3
LτR)(b̄Rq

3
L)

• Only left-handed neutrinos

• q3L ≡ qbL + V̂ ·QL

qbL =

(
V ∗j3u

j
L

bL

)
QiL =

(
V ∗jiu

j
L

diL

)
V̂q ≡ −εVts

(
κVtd/Vts

1

)

q3L

qbL

qtL

θq

SU(2) tripletSU(2) singlet scalar
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(q̄3Lγµq3L)(¯̀
3Lγ

µ`3L)

CKM or V̂

(c̄LγµbL)(ν̄τγ
µτL)

V̂

(s̄LγµbL)(ν̄τγ
µντ )

two insertion of V̂

(s̄LγµdL)(ν̄τγ
µντ )
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(q̄3Lγµq3L)(¯̀
3Lγ

µ`3L)

CKM or V̂

(c̄LγµbL)(ν̄τγ
µτL)

V̂

(s̄LγµbL)(ν̄τγ
µντ )

two insertion of V̂

(s̄LγµdL)(ν̄τγ
µντ )

Correlations among all these modes
is essential to prove NP scenarios
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What do we expect in the SMEFT?

LEFT ⊃ Cbcττ
Λ2

(b̄LγνcL)(ν̄τγ
µτL)

Using SU(2)L invariance, we have

LEFT ⊃ Cijττ
Λ2

(d̄iLγνd
j
L)(ν̄τγ

µντ )

From U(2)n ⇒ Cbcττ ∼ VcbO(1)

From RD(∗) ⇒ Λ ∼ O(TeV)

K+ → π+νν̄
From U(2)n ⇒ Csdττ ∼ 10−1VcbO(1)

B+ → K+νν̄
From U(2)n ⇒ Cbsττ ∼ VcbO(1)
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On the Vcb puzzle (again)

B(K+ → π+νν̄) ∝ |λts|2 λts ≡ λ|Vcb|2
[
(ρ̄− 1)

(
1− λ2

2

)
+ iη̄

(
1 +

λ2

2

)]
+O(λ4)
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B(K+ → π+νν̄) ∝ |λts|2 λts ≡ λ|Vcb|2
[
(ρ̄− 1)

(
1− λ2

2

)
+ iη̄

(
1 +

λ2

2

)]
+O(λ4)

B(K+ → π+νν̄)SM = (8.09± 0.63)× 10−11

B(KL → π0νν̄)SM = (2.58± 0.30)× 10−11

35/38



• The U(2)n symmetry creates a natural link between all this observables

• The complementarity between low- and high-energy data is useful to probe the
parameter space

[L. Allwicher, MB, G. Isidori, G. Piazza, A. Stanzione, ’24]
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Further data is essential!
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Experimental prospects
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CMS 2010, 7 TeV, 45.0 pb⁻¹
2011, 7 TeV, 6.1 fb⁻¹
2012, 8 TeV, 23.3 fb⁻¹
2015, 13 TeV, 4.3 fb⁻¹
2016, 13 TeV, 41.6 fb⁻¹
2017, 13 TeV, 49.8 fb⁻¹
2018, 13 TeV, 67.9 fb⁻¹
2022, 13.6 TeV, 41.5 fb⁻¹
2023, 13.6 TeV, 32.7 fb⁻¹
2024, 13.6 TeV, 122.2 fb⁻¹

• Experimental facilities are delivering
unprecedented datasets

• The experimental reach supported by new
analysis techniques already superseded the
expectations

• Theoretical advancements are crucial for
achieving greater precision in understanding
flavor processes and evaluating potential signs of
new physics
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Summary

• Flavour physics has the potential to test for possible hints of extensions of the
SM

• The main showstopper is the theoretical precision

• A lot of progress has been made, but a few pivotal puzzles persist

• There are hints for possible BSM directions, but more efforts and more data are
needed to shed light on their nature
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Compatiblity of lattice data
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• Similar results with HPQCD

• There are some differences in the
slopes

• How good is the compatibility?

• Do the differences yield significant
pheno consequences?
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Strategy A

Frequentist fit

Kf KF1 KF2 Kg af,0 af,1 af,2 af,3

2 2 2 2 0.01223(12) 0.0118(58) - -

3 3 3 3 0.01221(12) 0.0136(63) -0.16(24) -

4 4 4 4 0.01221(11) 0.0133(64) -0.14(23) -0.01(49)

Kf KF1 KF2 Kg aF1,0 aF1,1 aF1,2 aF1,3

2 2 2 2 0.002049(19) -0.0042(15) - -

3 3 3 3 0.002046(19) -0.0039(16) -0.019(36) -

4 4 4 4 0.002047(19) -0.0038(17) -0.016(42) -0.00(46)

Kf KF1 KF2 Kg aF2,0 aF2,1 aF2,2 aF2,3

2 2 2 2 0.04903(95) -0.187(30) - -

3 3 3 3 0.04896(90) -0.201(41) -0.04(56) -

4 4 4 4 0.04906(94) -0.199(39) -0.02(47) 0.00(51)

Kf KF1 KF2 Kg ag,0 ag,1 ag,2 ag,3

2 2 2 2 0.03133(80) -0.058(25) - -

3 3 3 3 0.03129(81) -0.062(27) -0.10(55) -

4 4 4 4 0.03134(86) -0.061(25) -0.10(50) -0.04(49)

Table 2. Results for the simultaneous correlated Bayesian BGL fit to JLQCD 23 [11], HPQCD

23 [10] and FNAL/MILC 21 [9].

Kf KF1 KF2 Kg af,0 af,1 af,2 af,3 p �2/Ndof Ndof

2 2 2 2 0.01223(11) 0.0120(60) - - 0.95 0.62 30

3 3 3 3 0.01221(12) 0.0136(70) -0.19(31) - 0.90 0.67 26

4 4 4 4 0.01221(12) 0.0136(89) -0.19(50) -0.3(7.6) 0.79 0.75 22

Kf KF1 KF2 Kg aF1,0 aF1,1 aF1,2 aF1,3 p �2/Ndof Ndof

2 2 2 2 0.002049(19) -0.0041(16) - - 0.95 0.62 30

3 3 3 3 0.002046(19) -0.0038(17) -0.021(63) - 0.90 0.67 26

4 4 4 4 0.002046(21) -0.0038(20) -0.02(11) -0.2(2.3) 0.79 0.75 22

Kf KF1 KF2 Kg aF2,0 aF2,1 aF2,2 aF2,3 p �2/Ndof Ndof

2 2 2 2 0.04903(93) -0.186(31) - - 0.95 0.62 30

3 3 3 3 0.04904(94) -0.200(43) -0.1(1.3) - 0.90 0.67 26

4 4 4 4 0.04902(94) -0.195(62) -0.4(3.0) 0.4(22.8) 0.79 0.75 22

Kf KF1 KF2 Kg ag,0 ag,1 ag,2 ag,3 p �2/Ndof Ndof

2 2 2 2 0.03138(87) -0.059(24) - - 0.95 0.62 30

3 3 3 3 0.03131(87) -0.046(36) -1.2(1.8) - 0.90 0.67 26

4 4 4 4 0.03126(87) -0.017(48) -3.7(3.3) 49.9(53.6) 0.79 0.75 22

Table 3. Results for the simultaneous correlated frequentist BGL fit to JLQCD 23 [11], HPQCD

23 [10] and FNAL/MILC 21 [9].

– 11 –

• good fit quality
• lattice data are compatible
• no unitarity

Bayesian Fit

Kf KF1 KF2 Kg af,0 af,1 af,2 af,3

2 2 2 2 0.01230(11) 0.0064(44) - -

3 3 3 3 0.01225(12) 0.0172(60) -0.52(17) -

4 4 4 4 0.01226(11) 0.0161(61) -0.47(16) -0.03(39)

Kf KF1 KF2 Kg aF1,0 aF1,1 aF1,2 aF1,3

2 2 2 2 0.002061(18) -0.00033(55) - -

3 3 3 3 0.002053(19) -0.0004(11) 0.005(21) -

4 4 4 4 0.002054(19) -0.0004(12) 0.010(33) -0.09(37)

Kf KF1 KF2 Kg aF2,0 aF2,1 aF2,2 aF2,3

2 2 2 2 0.05031(85) -0.123(17) - -

3 3 3 3 0.04998(88) -0.131(28) 0.28(43) -

4 4 4 4 0.04998(88) -0.128(26) 0.22(39) 0.00(46)

Kf KF1 KF2 Kg ag,0 ag,1 ag,2 ag,3

2 2 2 2 0.03018(76) -0.101(21) - -

3 3 3 3 0.03034(78) -0.087(24) -0.34(45) -

4 4 4 4 0.03035(77) -0.089(23) -0.27(41) -0.04(45)

Table 5. Results for the simultaneous correlated Bayesian BGL fit to JLQCD 23 [11], HPQCD

23 [10], FNAL/MILC 21 [9] and Belle II 23 [3].

the lattice data is at the same time least constraining due to large statistical errors or

essentially due to the absence of lattice data points. A similar behaviour was also observed

in [34]. It might at first be surprising that the form factor F2 is modified by the addition of

experimental data. This form factor is proportional to HS (cf. Eq. (2.3)), which only enters

the expression for the di↵erential decay rate for massive leptons. However, the kinematical

constraint in Eq. (2.4) relates it to F1, which is controlled by the experimental data in the

limit of massless leptons. The variation in BGL coe�cients is smaller when varying the

experimental input while keeping the lattice input fixed, as summarised in Tab. 7. There,

the coe�cients aF1,1 and ag,0 exhibit the largest tension. Due to its smaller errors for the

normalised di↵erential decay rate, it is the Belle-II 23 data that dominates in the fit to the

HFLAV 24 data set, as can be seen in Tab. 7. The results for the CKM matrix element

|Vcb| that can be determined from the simultaneous fit to lattice and experimental data

following Eq. (3.9) will be discussed in Sec. 5.1.

4.3 Comparison of fit results

Fig. 3 shows the HFLAV 24 di↵erential decay rates together with the BGL fits to JLQCD

23 (top two rows) and FNAL/MILC 21 and HPQCD 23 (bottom two rows). While the

lattice-only fit from Sec. 4.1 (red line and band) based on JLQCD 23 nicely agrees with the

shapes of the di↵erential decay rate, which is a highly non-trivial outcome, the result of

the combined fit to FNAL/MILC 21 and HPQCD 23 appears to miss many experimental

– 13 –

• unitarity regulates higher orders
• truncation dependent

[MB, A. Jüttner, ’24]

2/16



What’s the problem for BSM?

B-physics Kaon physics

τ decays EWPO

Higgs physics
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What’s the problem for BSM?

B-physics Kaon physics

τ decays EWPO

Higgs physics
SU(2)L

RGE RGE

How to satisfy all
the constraints

at the same time?
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Theory framework

• Missing higher-order terms limit the prediction 

•  

• Assess theoretical uncertainties 

• Reduce impact of theory correlations

αs(μs), mkin
b (μWC), mc(μc), μ2

G(μg)

Why higher order corrections?
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Theory framework for B → Xc`ν̄

Double expansion in 1/m and αs

Γsl = Γ0f(ρ)
[
1 + a1

(αs
π

)
+ a2

(αs
π

)2

+ a3

(αs
π

)3

−
(

1

2
− p1

(αs
π

)) µ2
π

m2
b

+
(
g0 + g1

(αs
π

)) µ2
G(mb)

m2
b

+ d0
ρ3
D

m3
b

− g0
ρ3
LS

m3
b

+ . . .
]

• The coefficients are known

• µ2
π(µ) = 1

2mB
〈B|b̄v(i ~D)2bv|B〉µ µ2

G(µ) = 1
2mB
〈B|b̄v i2σµνGµνbv|B〉µ

⇒ No Lattice QCD determinations are available yet

• Use for the first time of α3
s corrections [Fael, Schönwald, Steinhauser, ’20]

• Ellipses stands for higher orders

⇒ proliferation of terms and loss of predictivity
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How do we constrain the hadronic parameters?

We need information from kinematic distributions
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Measurement
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• Traditional method: Extract the hadronic parameters from moments of
kinematic distributions in El and MX

• New idea: Use q2 moments to exploit the reduction of free parameters due to
RPI [Fael, Mannel, Vos, ’18, Bernlochner et al, ’22]

• Measurements of branching fractions are needed and are at the moment quite
old

• Can we do it on the lattice? [Gambino, Hashimoto, ’20, ’23, Hashimoto, Jüttner, et al, ’23]

6/16



Global fit

mkin
b mc µ2

⇡ µ2
G ⇢3

D ⇢3
LS 102BRc`⌫ 103|Vcb| �2

min(/dof)

without 4.573 1.092 0.477 0.306 0.185 �0.130 10.66 42.16 22.3
q2-moments 0.012 0.008 0.056 0.050 0.031 0.092 0.15 0.51 0.474

Belle II
4.573 1.092 0.460 0.303 0.175 �0.118 10.65 42.08 26.4
0.012 0.008 0.044 0.049 0.020 0.090 0.15 0.48 0.425

Belle
4.572 1.092 0.434 0.302 0.157 �0.100 10.64 41.96 28.1
0.012 0.008 0.043 0.048 0.020 0.089 0.15 0.48 0.476

Belle & 4.572 1.092 0.449 0.301 0.167 �0.109 10.65 42.02 41.3
Belle II 0.012 0.008 0.042 0.048 0.018 0.089 0.15 0.48 0.559

Table 3. Global fit results with and without the q2 moments from Belle/Belle II for µs = mkin
b /2

and µc = 2 GeV. All parameters are in GeV at the appropriate power and all, except mc , in
the kinetic scheme at µk = 1 GeV. The first row shows the central values and the second row the
uncertainties. The first case corresponds to the default fit of [12].
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Figure 4. Results for the central moments including the theory uncertainty bands (green) and the
parametric uncertainty from the results of the fit performed in this paper (blue). The combined
errors are not shown.

moments with q2
cut = {3.0, 4.5, 6.0, 7.5} GeV2. We have checked that the fits are very stable

with respect to the choice of the subset of cuts to be included. We use the correlations
between Belle and Belle II data that were employed in [20].2 We see in Table 3 that there is
excellent agreement among the various fits, with a small downward shift of µ2

⇡ and ⇢3
D (and

consequently of Vcb) with respect to the results of [12]. The uncertainty on ⇢3
D is reduced

significantly, but this reflects in only a small reduction of the final uncertainty on |Vcb| from
5.1⇥10�4 to 4.8⇥10�4. This is mostly due to the relevance of the theoretical uncertainties.
The analogue of Fig. 3 with the parameters resulting from the fit including Belle and Belle
II data is presented in Fig. 4. We observe a clear reduction of the parametric uncertainty,
mostly due to the improved determination of ⇢3

D.
We have performed a number of other fits, changing the scales and selecting different

2We are grateful to the authors of [20] for sharing their covariance matrices.
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[MB, Capdevila, Gambino, ’21, Finauri, Gambino, ’23]
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Two calculation approaches
1. Splitting Functions(

dΓ

dy

)(1)

=
α

2π
L̄b/e

∫ 1−ρ

y

dx

x
P (0)
ee

( y
x

) (dΓ

dx

)(0)

• Correction vanishes for the inclusive branching fraction
• Suitable for evaluating O(α2) and O(α/mn

b ) corrections

2. Full O(α) corrections

• Access all corrections, not only the one that factorise

• Real corrections are computationally expensive

⇒ Cuba library employed to carry out the 4-body integration

⇒ Phase space splitting used to reduce the size of the integrands

log(m2
b/m

2
e) plus distribution
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Lepton Energy spectrum

• We compute bins in the lepton energy using the full O(α) calculation

• We compare them to the results given by the splitting functions

• The difference the two calculations for the lepton energy spectrum and obtain a
full analytic formula for the radiative corrections

⇒ Relatively small, easy-to-use formula to obtain branching fractions, lepton energy
moments w/o cuts

0.0 0.2 0.4 0.6 0.8

-40

-20

0

20

y

f(
1)
(y
)

4.2 Numerical results

In Figure 5 we display the complete O(↵) corrections (green curve and band) and the
corresponding LL approximation (red curve) computed in Section 2. The green curve
corresponds to an interpolation obtained by considering 40 different bins that cover the full
physical region of y 2 [2

p
r, 1�⇢+r], while the green band reflects the associated numerical

integration uncertainties. Relative to the total O(↵) corrections these uncertainties typically
amount to around 1%, except close to the zero of the depicted green curve. For the purpose
of this comparison, we have factored the Wilson coefficient out and set the renormalisation
scale µ equal to mb = mkin

b (1 GeV). We observe a relatively good agreement between the LL
terms and the complete O(↵) corrections to the electron energy spectrum of the partonic
b ! ce⌫ transition, especially in the hard part of the spectrum, where the LL approximation
is expected to work best, and where the differences amount to around 10% to 20%. Writing

f (1)(y) =
L̄b/e

2
f

(1)
LL (y) + �f (1)(y) , (4.16)

with f
(1)
LL (y) given in (2.8), we can use our numerical results for f (1)(y) to obtain a sim-

ple approximate expression for �f (1)(y). Employing ⇢ = 0.057 and r = 1.25 · 10�8 and
identifying again the renormalisation scale µ with mb = mkin

b (1 GeV), we find

�f (1)(y) =

"
� 2.04264 + 119.012y � 476.678y2 + 2034.14y3

� 4402.22y4 + 4505.93y5 � 1807.38y6

� 66.8251 (y � ymax) ln (ymax � y)

#
✓(ymax � y) ,

(4.17)

where ymax = 1 � ⇢ + r. This formula encodes the exact non-LL terms for the input pa-
rameters listed above with a relative accuracy of better than 1%. It is worth noting that
in Section 2 we have used mb as the hard scale in the logarithm L̄b/e as defined in (2.4).
This is a somewhat arbitrary choice because the hard scale is in fact of the order of the
energy released, i.e. of O(mb �mc), and using a scale lower than mb in the LL QED effects
might thus be more appropriate. To investigate this aspect, we also display in Figure 5
the electron energy spectrum obtained using L̄c/e instead of L̄b/e in the LL QED predic-
tion (dotted red curve). We observe a better agreement near the endpoint but not elsewhere,
suggesting that the terms beyond the LLs cannot be accounted for by a rescaling. Hereafter
we hence evaluate all LL QED corrections with our standard choice L̄b/e.

By direct integration over the full phase space, we also obtain a value of the O(↵)

effects in the total decay width of the partonic b ! ce⌫ process,

� = �(0)g(⇢)
��C(µ)

��2
h
1 + ��(1)(µ)

i
, (4.18)

where �(0) and g(⇢) are defined in (2.5) and (2.10), respectively. The correction ��(1)(µ)

represents the O(↵) contribution to the matrix element of the operator introduced in (4.1)

– 14 –

[Bigi, MB, Gambino, Haisch, Piccione, ’23]
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Comparison with data

• Babar provides data with and without applying PHOTOS to subtract QED
effects

⇒ Perfect ground to test our calculations

⇒ Not the same for Belle at the moment, could be possible for future analysis
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• The moments, since they are
normalised, are not affected by the
large threshold corrections

• The agreement with BaBar is very
good

〈En` 〉 =

∫
E`>E`,cut

dE`E
n
`
dΓ
dE`

ΓE`>E`,cut

[Bigi, MB, Gambino, Haisch, Piccione, ’23]
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The z-expansion and unitarity

• in the complex plane form factors are real
analytic functions

• q2 is mapped onto the conformal complex
variable z

z(q2, t0) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

• q2 is mapped onto a disk in the complex z
plane, where |z(q2, t0)| < 1

Fi =
1

Pi(z)φi(z)

ni∑
k=0

aikz
k

ni∑
k=0

|aik|2 < 1

Im(z)

Re(z)

semileptonic

region

subthreshold
resonances

q2
min

q2
max

q2 = t+

[Boyd, Grinstein, Lebed, ’95, Caprini, Lellouch, Neubert, ’98]
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BGL
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How to apply unitarity

• Penalty function in the χ2 or likelihood [P. Gambino, M. Jung, S. Schacht, ’19]

χ2 → χ2(aik, a
i
k|data) + wiθ

(
ni∑
k=0

|aik|2 − 1

)
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• Dispersive Matrix Method [M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, ’21]

[G. Martinelli, S. Simula, L. Vittorio, ’21,’23]

6

At this point, we introduce the matrix

M ⌘

0
BBBBBBBBB@

h�f |�fi h�f |gti h�f |gt1i · · · h�f |gtN i
hgt|�fi hgt|gti hgt|gt1i · · · hgt|gtN i
hgt1 |�fi hgt1 |gti hgt1 |gt1i · · · hgt1 |gtN i

...
...

...
...

...

hgtN |�fi hgtN |gti hgtN |gt1i · · · hgtN |gtN i

1
CCCCCCCCCA

. (6)

Since the variable z can assume only real values in the allowed kinematical region, M

can be expressed in a simpler way through the Eqs. (3) and (5) as

M =

0
BBBBBBBBBBBBBBBBB@

� �f �1f1 �2f2 ... �NfN

�f 1
1�z2

1
1�zz1

1
1�zz2

... 1
1�zzN

�1f1
1

1�z1z
1

1�z2
1

1
1�z1z2

... 1
1�z1zN

�2f2
1

1�z2z
1

1�z2z1

1
1�z2

2
... 1

1�z2zN

... ... ... ... ... ...

�NfN
1

1�zNz
1

1�zNz1

1
1�zNz2

... 1
1�z2

N

1
CCCCCCCCCCCCCCCCCA

. (7)

In this expression, �ifi ⌘ �(zi)f(zi) (with i = 1, 2, ...N) represent the known values of

the quantity �(z)f(z) corresponding to the values zi of the kinematical variable z. In

order to use a compact notation let us indicate z and the corresponding unknown values

of �f as z0 and �0f0 ⌘ �(z0)f(z0), respectively, so that the index i now runs from 0 to

N .

The positivity of the determinant of this matrix allows to compute the lower and

the upper bounds for the FF of interest. We rephrase the condition detM � 0 into an

inequality that interests the quantities in the r.h.s. of the Eq. (7). For the details of the

computation, see the Appendix A of [40]. One finds that

� �p
�  f0  � +

p
� , (8)

detM > 0⇒ β −√γ ≤ f0 ≤ β +
√
γ
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computation, see the Appendix A of [40]. One finds that

� �p
�  f0  � +

p
� , (8)

• Bayesian inference [J. Flynn, A. Jüttner, T. Tsang, ’23]

14

TABLE IX. Input masses for the BGL z fits. Values are in
GeV [50]. The superscript † indicates, where the isospin-
averaged mass has been taken.

MB MBs M⇡ MK M+
B⇤(0+)

5.27950† 5.36682 0.138039† 0.495644† 5.32471

originally proposed by BGL [84] needs to be modified.
This is similar to the situation discussed in Refs. [91–94],
but note some di↵erences in notation in those papers, in
particular our use of t⇤ and t+ for the locations of the
B⇡ and BsK production thresholds, respectively. The
step function ✓z achieves this by restricting the integra-
tion over the unit circle to the relevant arc. Let us now
define the inner product

hzi|zji↵ =
1

2⇡

↵Z

�↵

d�(zi)⇤zj |z=ei� ,

=

8
><
>:

sin(↵(i� j))

⇡(i� j)
i 6= j

↵

⇡
i = j

(37)

on the arc [�↵, +↵] of the unit circle. When the
inner product is defined over the entire unit circle,
[�⇡, +⇡], the monomials zi are orthonormal, hzi|zji⇡ =
�ij . In that case the unitarity constraint Eq. (36) be-
comes

P
i |aX,i|2  1. With the restriction to the arc

[�↵BsK , +↵BsK ], the modified BGL unitarity constraint
developed in [95] is

X

i,j�0

a⇤
X,ihzi|zji↵BsK

aX,j ⌘ |aX |2↵BsK
 1 , (38)

where we have defined |aX |2↵BsK
to mean the quadratic

form on the left-hand side.

B. Extrapolation to q2 = 0

To extrapolate our results to the full physical range
of q2 we start from the results for f+ and f0 listed in
Tab. VII, with statistical and systematic errors and cor-
relations given in Tab. VIII, added in quadrature. In-
put parameters for the z fits are summarized in Tab. IX.
We use the short-hand vector notation f = (f+, f0)

T for
the vector and scalar form factors at the kinematical ref-
erence points, and denote the corresponding covariance
matrix by Cf . We fit the data to a z-parameterization
of Eq. (34), subject to the unitarity constraint Eq. (38)
and the kinematical constraint f+(0) = f0(0).

In the Bayesian-inference strategy for fitting form fac-
tors developed in Ref. [95] the unitarity constraint is im-
plemented as a flat prior, which acts as a regulator for
the fitting problem. In contrast to frequentist fits, this
allows us to determine the parameters of a BGL parame-
terization to arbitrarily high order, removing errors from
truncating the power series in z in Eq. (34).

The Bayesian-inference problem of determining the
BGL parameters a = (a+,a0)

T and functions g(a) of
them amounts to computing expectation values

hg(a)i = N
Z

da g(a)⇡(a|f , Cf )⇡a , (39)

where N is a normalization constant. As prior knowledge
on the form factor we use only the unitarity constraint
expressed in terms of the distribution

⇡a / ✓
⇣
1� |a+|2↵BsK

⌘
✓
⇣
1� |a0|2↵BsK

⌘
, (40)

which essentially limits the integration range in Eq. (39).
The conditional probability density for the parameter a
given the fit model and data is

⇡(a|f , Cf ) / exp

✓
�1

2
�2(a, f)

◆
, (41)

where

�2(a, f) = (f � Za)T C�1
f (f � Za) . (42)

Following Ref. [95], the matrix Z consists of diagonal
blocks

(ZXX)ij =
zj

BX(q2
i )�X(q2

i , t0)
, (43)

where XX is either ++ or 00, for the vector and scalar
form factors, respectively. The o↵-diagonal blocks, which
implement the kinematical constraint f+(0) = f0(0) are

(Z+0)ij =0 ,

(44)
(Z0+)ij =

1

z(0; t⇤, M2
B⇤)�+(0)

�0(0)

�0(q2
i )

zj(0) .

The integral in Eq. (39) can be performed by
Monte Carlo, which corresponds to drawing multi-variate
normal-distributed pseudo-random numbers. An e�cient
algorithm and an implementation in Python are pre-
sented in Refs. [95, 96]. The results presented here are
based on 2000 samples.

Figure 8 shows the results of z-fits to our Bs ! K`⌫
data, with numerical values for the fit parameters in ta-
ble X.

For the discussion of the results it is also worthwhile,
in parallel, to have a look at the first data column of
Tab. XI, which shows the result for the form factor ex-
trapolated to q2 = 0. For both the coe�cients a and
f+(0) we find significant variation in both error and cen-
tral value when increasing the order of the z expansion
from K+,0 = 2. We find stable central values and errors
for K � 3. Higher-order coe�cients can be added to the
fit (the tables show results up to K+,0 = 10), whereby the
errors on the significantly-determined lower-order coe�-
cients and also the result for f+,0(0) remain stable, and
the higher-order coe�cients are compatible with zero.

detM > 0⇒ β −√γ ≤ f0 ≤ β +
√
γ

contains the lattice χ2

θ(1− |a|2)
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Posterior distribution

FNAL/MILC 21 HPQCD 23 JLQCD 23
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• Small shifts between lattice only and lattice + data

• Higher order coefficients well constrained by unitarity

• aF2,2 has a strange behaviour, maybe kinematic constraints?

lat

lat+exp

[MB, A. Jüttner, ’24]
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QED effects for inclusive Vcb
1. Collinear logs: captured by splitting functions

∼ αe
π

log2

(
m2
b

m2
e

)

2. Threshold effects or Coulomb terms

∼ 2παe
3

3. Wilson Coefficient

∼ αe
π

[
log

(
M2
Z

µ2

)
− 11

6

]
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Branching ratio

• The total branching ratio is not affected by large logs due to KLN theorem

• The large corrections are from the Wilson Coefficient and the threshold effects

0.0 0.2 0.4 0.6 0.8

-40

-20

0

20

y

f(1
) (y

)

Figure 5. Comparison of the complete O(↵) corrections (4.16) to the electron energy spec-
trum (green curve) in b ! ce⌫ and the corresponding LL approximation (red curve). In the former
case also the uncertainty of our numerical phase-space integration is indicated (green band). The LL
approximation using L̄c/e instead of L̄b/e is displayed as well (dotted red curve). See the main text
for additional details.

evaluated at the scale µ. For the input parameters used before, we find

��(1)(µ) =
↵

⇡


ln

✓
µ2

m2
b

◆
+ 5.516(14)

�
, (4.19)

where the coefficient of the logarithm is exact while the quoted numerical coefficient has
as indicated an uncertainty of around 0.3% which is associated to our MC phase-space
integration. Combining (4.2), (4.18) and (4.19), one finds to O(↵) that

�

�(0)g(⇢)
= 1 +

↵

⇡


ln

✓
M2

Z

m2
b

◆
� 11

6
+ 5.516(14)

�

= 1 + 1.43% � 0.44% + 1.32% = 1 + 2.31% ,

(4.20)

where in the second line we have dropped the quoted uncertainty but given the numerical
results of the individual O(↵) terms as well as their sum. The first observation to make is
that the renormalisation scale dependence has cancelled between the O(↵) corrections to the
Wilson coefficient and the virtual contributions to the matrix element

�
cf. (4.2) and (4.7)

�

leaving behind the EW logarithm first computed in [3]. In fact, it is interesting to note that
this logarithm represents about 60% of the total O(↵) correction in (4.20). Comparing the
result (3.6) with (4.20) one furthermore observes that the ⇡2-enhanced terms calculated
in Section 3 provide about 80% of ��(1)(mb), i.e. the complete O(↵) contribution to the
matrix element of (4.1). Hence, the complete O(↵) correction to the total decay width
of b ! ce⌫ is well approximated by the sum of the EW logarithm and the ⇡2-enhanced
threshold effects, which are both scale- and scheme-independent.

The relevant quantities used in the experimental analyses are the branching ratio of
B ! Xce⌫, the electron energy spectrum and its moments with a lower cut Ecut on the

– 15 –

• Large shift of the branching ratio of the same order of the current error on Vcb

• How do we incorporate in the current datasets?
⇒ Possible only on BaBar data
⇒ A systematic approach is needed and foreseen for future experimental analysis
⇒ How to evaluate structure-dependent terms is an open task

[Bigi, MB, Gambino, Haisch, Piccione, ’23]

Wilson Coefficient Threshold effects
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[L. Allwicher, MB, G. Isidori, G. Piazza, A. Stanzione, ’24]

• EWPO and direct searches
• RD(∗)

• B → K(∗)µ+µ−

• B → K(∗)νν̄
• K+ → π+νν̄
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