

New insights into N-jettiness computations

TUM/Max-Planck seminar series

Ivan Pedron in collaboration with Prem Agarwal, Kirill Melnikov and Philip Pfohl

www.kit.edu

Introduction

Higher-order QCD corrections (at NNLO)

Subtraction methods

Analytically cancel $1/\epsilon^n$ poles by constructing integrable counterterms

Slicing methods

Imposes cuts in some variable to split the phase space. Below the cut a soft-collinear approximation is used

Higher-order QCD corrections (at NNLO)

Subtraction methods

Analytically cancel $1/\epsilon^n$ poles by constructing integrable counterterms

- Antenna subtraction

 Gehrmann-De Ridder, Gehrmann, Glover hep-ph/0505111

 CoLoRFul subtraction
 - Somogyi, Trócsányi, Del Duca hep-ph/0502226
- Local analytic sector subtraction

Magnea et al. - hep-ph/1806.09570

- Nested soft-collinear subtraction Caola, Melnikov, Röntsch – hep-ph/1702.0135220
- Projection-to-Born

Cacciari et al. - hep-ph/1506.02660

• Sector subtraction Czakon - hep-ph/1005.0274, Boughezal et al. - hep-ph/1111.7041

Slicing methods

Imposes cuts in some variable to split the phase space. Below the cut a soft-collinear approximation is used

• q_T-slicing

Catani, Grazzini - hep-ph/0703012

• N-jettiness slicing

Boughezal et al. - hep-ph/1504.02131, Gaunt et al. - hep-ph/1505.04794

And many more not included here...

Karlsruhe Institute of Technology

N-jettiness slicing

The N-jettiness variable is defined by

$$\mathcal{T}(\mathcal{R},\mathcal{U}) = \sum_{x \in \mathcal{U}} \min\left\{\frac{2p_x p_{h_1}}{Q_1}, \frac{2p_x p_{h_2}}{Q_2}, \frac{2p_x p_{h_3}}{Q_3}, \dots\right\}$$

Can be used to perform slicing of the phase space (like in q_T subtraction)

$$\sigma = \int^{\mathcal{T}_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} + \int_{\mathcal{T}_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}}$$

and, with the factorization theorem from SCET, we can reorganize the calculation as

$$\int^{\mathcal{T}_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} = \int B \otimes B \otimes S \otimes H \otimes \prod_i^N J_i + \mathcal{O}(\mathcal{T}_0)$$

N-jettiness slicing

$$\int^{\mathcal{T}_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} = \int B \otimes B \otimes S \otimes H \otimes \prod_i^N J_i + \mathcal{O}(\mathcal{T}_0)$$

- The Beam and Jet functions (B, J_i) describe initial- and final-state collinear radiation, the Soft function S the soft radiation, and the (process dependent) Hard function H encodes the virtual corrections
- Small cutoff T₀ required so that power corrections in T₀/Q are under control
- At NNLO, all ingredients are known. S was available for 0-, 1- and 2-jettiness, but only recently for generic N-jettiness
 (hep-ph/2312.11626, hep-ph/2403.03078)
- At N3LO, S is only available for zero-jettiness. Other ingredients are already known

(hep-ph/2409.11042, hep-ph/2412.14001)

N-jettiness soft function at NNLO

Our soft function calculation

 Previous NNLO calculations based on decomposing the observable into θ functions and computing it numerically (Boughezal et al. - hep-ph/1504.02540, Campbell et al. - hep-ph/1711.09984, Bell et al. - hep-ph/2312.11626)

Quickly gets out of hand with number of jets/unresolved particles!!!

Our soft function calculation

 Previous NNLO calculations based on decomposing the observable into θ functions and computing it numerically

(Boughezal et al. - hep-ph/1504.02540, Campbell et al. - hep-ph/1711.09984, Bell et al. - hep-ph/2312.11626)

- We use subtraction methods to calculate this ingredient of a *slicing method*, showing the explicit analytical cancellation of divergences and arriving to a finite formula for it. Also, N is treated genuinely as a parameter!!!
- We borrow ideas from subtraction schemes to compute ingredients of slicing schemes. We wish to see the general structure, since in principle the soft divergences are not related to the observable

Soft function renormalization

The **divergent structure** of the soft function is actually **very simple**. It is convenient to work in Laplace space

$$S(u) = \int_0^\infty d\mathcal{T} \ S_{\mathcal{T}}(\mathcal{T}) e^{-u\mathcal{T}}$$

Since the renormalization is multiplicative (with matrices in color space)

$$S = Z \tilde{S} Z^{\dagger}$$

If we write the expansion in powers of α_s

$$(Z_2 = rac{1}{2}Z_1Z_1 + Z_{2,r})$$

$$\begin{split} Z &= 1 + Z_1 + Z_2, \\ S &= 1 + S_1 + S_2, \\ \tilde{S} &= 1 + \tilde{S}_1 + \tilde{S}_2, \end{split} \qquad \tilde{S}_1 = S_1 - Z_1 - Z_1^{\dagger} \\ \tilde{S}_2 &= S_2 - Z_2 - Z_2^{\dagger} + Z_1 Z_1 + Z_1^{\dagger} Z_1^{\dagger} - Z_1 S_1 - S_1 Z_1^{\dagger} + Z_1 Z_1^{\dagger} \\ &= \frac{1}{2} \tilde{S}_1 \tilde{S}_1 + \frac{1}{2} [Z_1, Z_1^{\dagger}] + \frac{1}{2} \left[S_1, Z_1 - Z_1^{\dagger} \right] + S_{2,r} - Z_{2,r} - Z_{2,r}^{\dagger} \end{split}$$

Soft function renormalization

The **divergent structure** of the soft function is actually **very simple**. How simple are this Z functions?

$$Z_1 = a_s \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \left(\frac{1}{2\epsilon^2} + \frac{2L_{ij} + i\pi\lambda_{ij}}{2\epsilon} \right)$$

$$Z_{2,r} = a_s^2 \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \left(-\frac{3\beta_0}{8\epsilon^3} + \frac{\Gamma_1 - 4\beta_0(2L_{ij} + i\pi\lambda_{ij})}{16\epsilon^2} + \frac{\Gamma_1(2L_{ij} + i\pi\lambda_{ij}) + \gamma_1^S}{8\epsilon} \right)$$

There must be a way to derive a finite representation of the renormalized N-jettiness soft function...

Soft function at NLO

If we take $Q_i = 2 E_i$ with an unresolved gluon *m*, the N-jettiness is given by

$$\mathcal{T}(m) = E_m \psi_m = E_m \min\{\rho_{1m}, \rho_{2m}, \rho_{3m}, ..., \rho_{Nm}\} \qquad \rho_{ij} = 1 - \vec{n}_i \cdot \vec{n}_j$$

We integrate over E_m with delta, only collinear diverengences remain. we use that $\lim_{m \parallel i} \psi_m = \rho_{im}$, so we can rewrite

$$\psi_m^{2\epsilon} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} = \left(\frac{\psi_m\rho_{ij}}{\rho_{im}\rho_{jm}}\right)^{2\epsilon} \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}} = \left(1+2\epsilon g_{ij,m}^{(2)}\right) \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}}$$

Soft function at NLO

Knowing that $(\eta_{ij} = \rho_{ij}/2)$

$$\left\langle \frac{\rho_{ij}^{1-2\epsilon}}{\rho_{im}^{1-2\epsilon}\rho_{jm}^{1-2\epsilon}} \right\rangle_{m} = \frac{2\eta_{ij}^{\epsilon}}{\epsilon} K_{ij}^{(2)} = \frac{2\eta_{ij}^{\epsilon}}{\epsilon} \frac{\Gamma(1+\epsilon)^{2}}{\Gamma(1+2\epsilon)} {}_{2}F_{1}\left(\epsilon,\epsilon,1-\epsilon,1-\eta_{ij}\right),$$

T where $<..>_m$ indicates integration over directions of n_m , in Laplace space we get the following bare soft function

$$S_1 = a_s \; (\mu \bar{u})^{2\epsilon} \; \frac{\Gamma(1 - 2\epsilon)}{\Gamma(1 - \epsilon)e^{\epsilon \gamma_E}} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \; \left[\frac{\eta_{ij}^{\epsilon}}{\epsilon^2} K_{ij}^{(2)} + \left\langle \begin{array}{c} g_{ij,m}^{(2)} \; \frac{\rho_{ij}^{1 - 2\epsilon}}{\rho_{im}^{1 - 2\epsilon} \rho_{jm}^{1 - 2\epsilon}} \right\rangle_m \right]$$

By combining S₁ with the renormalization matrices Z¹ and Z₁⁺, we finally obtain ($L_{ij} = ln (\mu u e_E^2 \sqrt{\eta_{ij}})$)

$$\tilde{S}_1 = a_s \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \left[2L_{ij}^2 + \text{Li}_2(1 - \eta_{ij}) + \frac{\pi^2}{12} + \left\langle \ln\left(\frac{\psi_m \rho_{ij}}{\rho_{im} \rho_{jm}}\right) \frac{\rho_{ij}}{\rho_{im} \rho_{jm}} \right\rangle_m + \mathcal{O}(\epsilon) \right]$$

Soft function at NNLO

The NNLO contribution to the bare soft function is

$$S_2 = S_{2,RR} + S_{2,RV} - a_s \frac{\beta_0}{\epsilon} S_1$$

We further split the double-real contribution into correlated and uncorrelated pieces

$$S_{2,RR,\mathcal{T}} = S_{2,RR,T^4} + S_{2,RR,T^2} = \frac{1}{2} \sum_{(ij),(k,l)} \{ \mathbf{T}_i \cdot \mathbf{T}_j, \mathbf{T}_k \cdot \mathbf{T}_l \} I_{T^4,ij,kl} - \frac{C_A}{2} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j I_{T^2,ij} \}$$

The real-virtual contribution reads

$$S_{2,RV,\mathcal{T}} = S_{RV,T^2} + S_{RV,\text{tc}} = \frac{[\alpha_s] \ 2^{-\epsilon}}{\epsilon^2} C_A A_K(\epsilon) \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ I_{RV,ij} + [\alpha_s] \frac{4\pi N_\epsilon}{\epsilon} \sum_{(kij)} \kappa_{ij} F^{kij} I_{kij}$$

where $\kappa_{ij} = \lambda_{ij} - \lambda_{im} - \lambda_{jm}$, with $\lambda_{ij} = 1$ if both *i* and *j* refer to incoming/outgoing partons, and zero otherwise. We have defined $F_{kij} = f_{abc}T^a{}_kT^b{}_iT^c{}_j$, while $A_k(\epsilon)$ and N_{ϵ} are normalization factors

Soft function at NNLO

TThe calculation of the **renormalized soft function** is organized as follows

$$\tilde{S}_2 = \tilde{S}_2^{\text{uncorr}} + \tilde{S}_2^{\text{corr}} + \tilde{S}_2^{\text{tc}}$$

Where each finite piece is the combination of the following contributions

Uncorrelated emission $\tilde{S}_2^{\text{uncorr}} = \frac{1}{2}\tilde{S}_1\tilde{S}_1$

$$\tilde{S}_{2}^{\text{tc}} = \frac{1}{2} \left[Z_{1}, Z_{1}^{\dagger} \right] + \frac{1}{2} \left[S_{1}, Z_{1} - Z_{1}^{\dagger} \right] + S_{RV,\text{tc}}$$

Correlated emission $\tilde{S}_2^{\text{corr}} = S_{2,RR,T^2} + S_{RV,T^2} - Z_{2,r} - Z_{2,r}^{\dagger} - \frac{a_s \beta_0}{\epsilon} S_1$

General strategy at NNLO

Uncorrelated emission
$$\tilde{S}_2^{\text{uncorr}} = \frac{1}{2}\tilde{S}_1\tilde{S}_1$$
Trivially related to iterations of NLOTriple color terms
 $\tilde{S}_2^{\text{tc}} = \frac{1}{2} \left[Z_1, Z_1^{\dagger} \right] + \frac{1}{2} \left[S_1, Z_1 - Z_1^{\dagger} \right] + S_{RV, \text{tc}}$ Similar to NLO, reuse results from
calculation without jettiness-constraintCorrelated emission
 $\tilde{S}_2^{\text{corr}} = S_{2,RR,T^2} + S_{RV,T^2} - Z_{2,r} - Z_{2,r}^{\dagger} - \frac{a_s \beta_0}{c} S_1$ Use nested soft-collinear subtraction,
reuse results from calculation without
jettiness-constraint

We already know how to integrate eikonal, we focus on the handling of the jettiness constraint!!!

 ϵ

Uncorrelated emission

The S₂ contains an iterated contribution of the NLO soft function S₁

$$I_{T^4,ij,kl} = \frac{[\alpha_s]^2}{2} \left\langle \int_0^\infty \frac{dE_m}{E_m^{1+2\epsilon}} \frac{dE_n}{E_n^{1+2\epsilon}} \,\delta(\tau - E_m\psi_m - E_n\psi_n) \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \frac{\rho_{kl}}{\rho_{kn}\rho_{ln}} \right\rangle_{mn}$$

If we integrate over both energies we can disentangle the jettiness function

$$\int_0^\infty \frac{dE_m}{E_m^{1+2\epsilon}} \frac{dE_n}{E_n^{1+2\epsilon}} \,\delta(\tau - E_m\psi_m - E_n\psi_n) = \frac{\tau^{-1-4\epsilon}\psi_m^{2\epsilon}\Gamma(1-2\epsilon)\psi_n^2\Gamma(1-2\epsilon)}{\Gamma(-4\epsilon)} \frac{\psi_n^2\Gamma(1-2\epsilon)}{2\epsilon} \frac{\psi_$$

The Laplace transform allows us to identify this iteration

$$S_{2,RR,T^4} = \frac{[\alpha_s]^2}{4} \sum_{(ij),(kl)} \{\mathbf{T}_i \cdot \mathbf{T}_j, \mathbf{T}_k \cdot \mathbf{T}_l\} \left(\frac{u^{2\epsilon}\Gamma(1-2\epsilon)}{2\epsilon}\right)^2 \left\langle \psi_m^{2\epsilon} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right\rangle_m \left\langle \psi_n^{2\epsilon} \frac{\rho_{kl}}{\rho_{kn}\rho_{ln}} \right\rangle_n = \frac{1}{2} S_1 S_1$$

Triple color terms

This contribution depends on triple products of color charges

$$\tilde{S}_{2}^{\text{tc}} = \frac{1}{2} \left[Z_{1}, Z_{1}^{\dagger} \right] + \frac{1}{2} \left[S_{1}, Z_{1} - Z_{1}^{\dagger} \right] + S_{RV,\text{tc}}$$

The needed commutators can be computed as shown in (Devoto et al. – hep-ph/2310.17598)

$$\frac{1}{2}[Z_1, Z_1^{\dagger}] = -\frac{2\pi a_s^2}{\epsilon^2} \sum_{(kij)} \lambda_{kj} L_{ij} F^{kij} = -\frac{\pi a_s^2}{\epsilon^2} \sum_{(kij)} \lambda_{kj} \ln \eta_{ij} F^{kij}$$
$$\frac{1}{2}[S_1, Z_1 - Z_1^{\dagger}] = -\frac{a_s^2 \pi (\mu u)^{2\epsilon}}{\epsilon^2} \frac{e^{\gamma_E \epsilon} \Gamma(1 - 2\epsilon)}{\Gamma(1 - \epsilon)} \sum_{(kij)} \kappa_{kj} \left\langle \psi_m^{2\epsilon} \frac{\rho_{ki}}{\rho_{km} \rho_{im}} \right\rangle_m F^{kij}$$

And the real-virtual triple-color correlated contribution is

$$S_{RV,tc} = \frac{a_s^2 \pi (\mu \ \bar{u})^{4\epsilon} N_\epsilon 2^{-\epsilon}}{2\epsilon^2} \frac{\Gamma(1-4\epsilon)}{\Gamma^2(1-\epsilon) e^{2\gamma_E \epsilon}} \sum_{(kij)} \kappa_{kj} \left\langle \psi_m^{4\epsilon} \frac{\rho_{ki}}{\rho_{km} \rho_{im}} \left(\frac{\rho_{kj}}{\rho_{km} \rho_{jm}} \right)^{\epsilon} \right\rangle_m \ F^{kij}$$

Triple color terms

We can just follow the NLO case

$$\left\langle \psi_m^{2\epsilon} \frac{\rho_{ki}}{\rho_{km}\rho_{im}} \right\rangle_m = \left\langle (1 + 2\epsilon g_{ki,m}^{(2)}) \frac{\rho_{ki}^{1-2\epsilon}}{\rho_{km}^{1-2\epsilon}\rho_{im}^{1-2\epsilon}} \right\rangle_m$$
$$\left\langle \psi_m^{4\epsilon} \frac{\rho_{ki}}{\rho_{km}\rho_{im}} \left(\frac{\rho_{kj}}{\rho_{km}\rho_{jm}} \right)^\epsilon \right\rangle_m = \left\langle \left(1 + 4\epsilon g_{ki,m}^{(4)} \right) \frac{\rho_{ki}^{1-4\epsilon}}{\rho_{km}^{1-4\epsilon}} \left(\frac{\rho_{kj}}{\rho_{km}\rho_{jm}} \right)^\epsilon \right\rangle_m$$

What about the rest of the finite part? The idea is to use the integral of

$$\left\langle \frac{\rho_{ki}}{\rho_{km}\rho_{im}} \left(\frac{\rho_{kj}}{\rho_{km}\rho_{jm}}\right)^{\epsilon} \right\rangle_{m}$$

which was calculated in Devoto et al. - hep-ph/2310.17598, and use it to extract the result

The calculation of the correlated terms are the main bulk of the calculation

$$\tilde{S}_{2}^{\text{corr}} = S_{2,RR,T^{2}} + S_{RV,T^{2}} - Z_{2,r} - Z_{2,r}^{\dagger} - \frac{a_{s}\beta_{0}}{\epsilon}S_{1}$$

Renormalization terms do not require integration, and the real-virtual one is

$$S_{RV,T^2} \propto -\frac{[\alpha_s]^2}{\epsilon^3} C_A \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \left\langle \psi_m^{4\epsilon} \left(\frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right)^{1+\epsilon} \right\rangle_m$$
(Born-like)

The first term, that involves the correlated emission eikonal, is the one that requires attention

$$S_{2,RR,T^2,\tau} = -\frac{C_A}{2} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ I_{ij,\tau} = -\frac{C_A}{2} \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ \frac{g_s^4}{2} \int [dp_m] [dp_n] \ \delta \left(\tau - E_m \psi_m - E_n \psi_n\right) \tilde{S}_{ij}^{gg}(m,n)$$

(There is also an analogous and simpler quark contribution, but we focus on the gluon case)

We perform a nested-subtraction of all divergent limits

$$I_{ij} = \underbrace{(1 - S_{\omega})I_{ij}}_{(1 - S_{\omega})I_{ij}} + S_{\omega}I_{ij}$$
Subtract strongly-ordered 2-soft limit (E_n = ω E_m)

$$(1 - S_{\omega})I_{ij}^{dc} + \underbrace{(1 - S_{\omega})I_{ij}^{tc}}_{(1 - S_{\omega})I_{ij}^{tc}}$$
Introduce partitions to separate double and triple collinear divergences
Introduce sectors to disentangle collinear divergences and subtract
$$\left\{\theta^{bd}C_{mn} + \left(1 - \theta^{bd}C_{mn}\right)\left[C_{imn} + (1 - C_{imn})\right]\right\}\left(1 - S_{\omega}\right)I_{ij}^{tc}$$

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

We perform a nested-subtraction of all diver Energy ordering

g:
$$\psi_{mn} = \psi_m + \omega \psi_n$$

$$I_{ij} = (1 - S_{\omega})I_{ij} + S_{\omega}I_{ij}$$
Subtract strongly-ordered 2-soft limit (E_n = ω E_m)
$$(1 - S_{\omega})I_{ij}^{dc} + (1 - S_{\omega})$$
Due to the symmetry of the problem, we can extend the ω integration to infinity and do it:
$$\psi_{mn}^{4\epsilon} - \psi_{m}^{2\epsilon}\psi_{n}^{2\epsilon}$$

$$\psi_{mn}^{m} - \psi_{m}^{2\epsilon}\psi_{n}^{2\epsilon}$$

$$\{\theta^{bd}C_{mn} + (1 - \theta^{bd}C_{mn}) |C_{imn} + (1 - C_{imn})|\}(1 - S_{\omega})I_{ij}^{tc}$$

Introd

We perform a nested-subtraction of all diver Energy ordering

g:
$$\psi_{mn} = \psi_m + \omega \psi_n$$

 $I_{ij} = \underbrace{(1 - S_{\omega})I_{ij}}_{ij} + S_{\omega}I_{ij}$ Subtract strongly-ordered 2-soft limit (E_n = ω E_m) $\underbrace{(1 - S_{\omega})I_{ij}^{dc}}_{ij} + \underbrace{(1 - S_{\omega})I_{ij}^{dc}}_{ij} + \underbrace{(1 - S_{\omega})I_{ij}^{dc}}_{mn} + \underbrace{(1 - S_{\omega})I_{ij}^{dc}}_{mn} + \underbrace{(1 - \delta_{\omega})I_{ij}^{dc}}_{mn} + \underbrace{(1 - \delta_{\omega})I_{ij}^{d$

 $\psi_{mn} = \psi_m + \omega \psi_n$

We perform a nested-subtraction of all diver Energy ordering:

$$I_{ij} = (1 - S_{\omega})I_{ij} + S_{\omega}I_{ij}$$
Subtract strongly-ordered 2-soft limit (E_n = ω E_m)
$$Double \ collinear: is partitions to separate double is collinear divergences
$$\psi_{mn}^{4} \rightarrow \psi_{m}^{4}$$
Introduce sectors of disentangle collinear divergences and subtract
$$\left\{\theta^{bd}C_{mn} + (1 - \theta^{bd}C_{mn}) \left[C_{imn} + (1 - C_{imn})\right]\right\} (1 - S_{\omega})I_{ij}^{tc}$$
Finite! Just integrate numerically!$$

The final result

• The NLO result was

$$\tilde{S}_{1} = a_{s} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[2L_{ij}^{2} + \text{Li}_{2}(1 - \eta_{ij}) + \frac{\pi^{2}}{12} + \left\langle L_{ij,m}^{\psi} \frac{\rho_{ij}}{\rho_{im}\rho_{jm}} \right\rangle_{m} \right]$$
where $L_{ij} = ln \left(\mu u e_{E}^{2} \sqrt{\eta_{ij}} \right)$ and $L_{ij,m}^{\psi} = ln \left(\frac{\psi_{m}\rho_{ij}}{\rho_{im}\rho_{jm}} \right)$

• The NNLO one is

$$\tilde{S}_2 = \frac{1}{2} \tilde{S}_1^2 + a_s^2 C_A \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ G_{ij} + a_s^2 \ n_f \ T_R \sum_{(ij)} \mathbf{T}_i \cdot \mathbf{T}_j \ Q_{ij} + a_s^2 \pi \sum_{(kij)} F^{kij} \ \kappa_{kj} G^{\text{triple}}_{kij}$$

where G_{ij}, Q_{ij} and G_{kij}^{triple} are **finite** functions with analytical terms along with a **low number numerical four-dimensional integrations** over one- and two-particle phase space

The final result

They look like this

$$\begin{aligned} G_{kij}^{\text{triple}} &= \left[\frac{8}{3} L_{ki}^3 + 4L_{ki} \left(\text{Li}_2(1 - \eta_{ki}) + \frac{\pi^2}{12} + \left\langle \frac{\rho_{ki}}{\rho_{i\mathfrak{m}}\rho_{k\mathfrak{m}}} \ln \left(\frac{\psi_{\mathfrak{m}}\rho_{ki}}{\rho_{k\mathfrak{m}}\rho_{i\mathfrak{m}}} \right) \right\rangle_{\mathfrak{m}} \right) \\ &+ 2\text{Li}_3(1 - \eta_{ki}) - 6\text{Li}_3(\eta_{ki}) + \text{Li}_2(1 - \eta_{ki})(2\ln 2 - 8\ln(\eta_{ki})) - \ln^3(\eta_{ki}) \\ &- 3\ln(1 - \eta_{ki})\ln^2(\eta_{ki}) - \ln 2\ln^2(\eta_{ki}) + \frac{\pi^2}{6}\ln(\eta_{ki}) - \bar{G}_{r,\text{fin}}^{ikj} - 2W_{kij} \\ &+ 2\left\langle \frac{\rho_{ki}}{\rho_{i\mathfrak{m}}\rho_{k\mathfrak{m}}} \ln \left(\frac{\psi_{\mathfrak{m}}\rho_{ki}}{\rho_{k\mathfrak{m}}\rho_{i\mathfrak{m}}} \right) \ln \left(\frac{\psi_{\mathfrak{m}}\rho_{i\mathfrak{m}}\rho_{kj}}{\rho_{j\mathfrak{m}}\rho_{ki}^2} \right) \right\rangle_{\mathfrak{m}} + \mathcal{O}(\epsilon) \right]. \end{aligned}$$

We note that the function L_{ki} is given in Eq. (4.19), the function W_{kij} reads

$$W_{kij} = \left\langle \frac{\rho_{ki}}{\rho_{i\mathfrak{m}}\rho_{k\mathfrak{m}}} \ln \frac{\rho_{kj}}{\rho_{j\mathfrak{m}}} \ln \frac{\rho_{ki}}{\rho_{i\mathfrak{m}}\rho_{k\mathfrak{m}}} + \frac{1}{\rho_{i\mathfrak{m}}} \ln \rho_{i\mathfrak{m}} \ln \frac{\rho_{kj}}{\rho_{ij}} \right\rangle_{\mathfrak{m}},$$

and the function $\bar{G}_{r,\text{fin}}^{ikj}$ can be found in Eq. (H.16) of Ref. [38].

$$\begin{split} G_{ij} &= \frac{22}{9} L_{ij}^3 + \left(\frac{67}{9} - \frac{\pi^2}{3}\right) L_{ij}^2 + L_{ij} \left(\frac{11}{3} \left\langle L_{ij,\mathfrak{m}}^{\psi} \frac{\rho_{ij}}{\rho_{i\mathfrak{m}}\rho_{j\mathfrak{m}}} \right\rangle_{\mathfrak{m}} + \frac{11}{3} \mathrm{Li}_2(1 - \eta_{ij}) \\ &+ \frac{202}{27} - 7\zeta_3 \right) + \left\langle \frac{\rho_{ij}}{\rho_{i\mathfrak{m}}\rho_{j\mathfrak{m}}} \left(\left(L_{ij,\mathfrak{m}}^{\psi}\right)^2 \left(\frac{11}{6} - \ln\left(\frac{\eta_{ij}}{\eta_{i\mathfrak{m}}\eta_{j\mathfrak{m}}}\right)\right) \right) \\ &+ L_{ij,\mathfrak{m}}^{\psi} \left(2\ln^2\left(\frac{\eta_{ij}}{\eta_{i\mathfrak{m}}\eta_{j\mathfrak{m}}}\right) + \ln\left(\frac{\eta_{ij}}{\eta_{i\mathfrak{m}}\eta_{j\mathfrak{m}}}\right) \left(-\frac{11}{3} + \ln(\eta_{i\mathfrak{m}}\eta_{j\mathfrak{m}})\right) + \frac{137}{18} - \frac{\pi^2}{2} \\ &- \frac{1}{2}\ln^2\left(\frac{\eta_{i\mathfrak{m}}}{\eta_{j\mathfrak{m}}}\right) + \mathrm{Li}_2(1 - \eta_{ij}) + \frac{11}{3}\ln 2 - \frac{11}{6}\ln(\eta_{i\mathfrak{m}}\eta_{j\mathfrak{m}}) - \frac{(\rho_{i\mathfrak{m}} + \rho_{j\mathfrak{m}})}{3\rho_{ij}} \right) \right) \right\rangle_{\mathfrak{m}} \\ &+ 8\mathrm{Li}_4\left(\frac{1}{2}\right) - \frac{11}{9}\zeta_3 - \frac{11}{80}\pi^4 + \frac{937}{432}\pi^2 + \frac{403}{162} \end{split}$$

$$\begin{split} &+8\mathrm{Li}_{4}\left(\frac{1}{2}\right)-\frac{11}{9}\zeta_{3}-\frac{11}{80}\pi^{4}+\frac{937}{432}\pi^{2}+\frac{403}{162}\\ &-\left\langle\bar{C}_{\mathfrak{m}\mathfrak{n}}\ln\left(\frac{\psi_{m}}{\rho_{im}}\right)\ln\left(\frac{\psi_{n}}{\rho_{jn}}\right)\frac{\rho_{ij}}{\rho_{\mathfrak{m}}\rho_{i\mathfrak{m}}\rho_{j\mathfrak{n}}}\right\rangle_{\mathfrak{m}\mathfrak{m}}+\frac{1}{2}\left\langle L_{ij,\mathfrak{m}}^{\psi}\frac{\rho_{ij}}{\rho_{i\mathfrak{m}}\rho_{j\mathfrak{m}}}\right\rangle_{\mathfrak{m}}^{2}\\ &+\frac{1}{2}\sum_{x\in\{i,j\}}\int_{0}^{1}\frac{\mathrm{d}\omega}{\omega}\left\langle\left(1-\theta^{b+d}C_{\mathfrak{m}\mathfrak{n}}\right)\left[\mathrm{d}\Omega_{\mathfrak{m}\mathfrak{n}}\right]\bar{C}_{x\mathfrak{m}\mathfrak{n}}\;w^{x\mathfrak{m},x\mathfrak{n}}\;\ln\psi_{\mathfrak{m}\mathfrak{n}}\;\bar{S}_{\omega}\left[\omega^{2}\tilde{S}_{ij}(\mathfrak{m},\mathfrak{n})\right]\right\rangle_{\mathfrak{m}\mathfrak{n}}\\ &+\frac{1}{2}\int_{0}^{1}\frac{\mathrm{d}\omega}{\omega}\left\langle\left(w^{i\mathfrak{m},j\mathfrak{n}}+w^{j\mathfrak{m},i\mathfrak{n}}\right)\;\ln\psi_{\mathfrak{m}\mathfrak{n}}\;\bar{S}_{\omega}\mathbb{I}\left[\omega^{2}\tilde{S}_{ij}(\mathfrak{m},\mathfrak{n})\right]\right\rangle_{\mathfrak{m}\mathfrak{n}}.\end{split}$$

G_{ij}, Q_{ij} and G_{kij}^{triple} are **finite** functions with analytical terms along with a **low number numerical fourdimensional integrations** over one- and two-particle phase space

Numerical checks

Karlsruhe Institute of Technology

Numerical checks

We compared our results with

Bell, Dehnadi, Mohrmann, Rahn, arXiv hep-ph/2312.11626

We focus in the "new" 3-jettiness case, with two back-to-back beams. The five directions are

$$n_1 = (0, 0, 1), \quad n_2 = (0, 0, -1), \quad n_3 = (\sin \theta_{13}, 0, \cos \theta_{13}),$$

 $n_4 = (\sin \theta_{14} \cos \phi_4, \sin \theta_{14} \sin \phi_4, \cos \theta_{14}), \quad n_5 = (\sin \theta_{15} \cos \phi_5, \sin \theta_{15} \sin \phi_5, \cos \theta_{15})$

in the following phase-space point

$$\theta_{13} = \frac{3\pi}{10}, \quad \theta_{14} = \frac{6\pi}{10}, \quad \theta_{15} = \frac{9\pi}{10}, \quad \phi_4 = \frac{3\pi}{5}, \quad \phi_5 = \frac{6\pi}{5}$$

Numerical checks

Dipole configurations

Dipoles	Gluons		Quarks	
	G_{ij}^{nl}	Bell et al.	$ \qquad Q_{ij}^{nl}$	Bell et al.
12	116.20 ± 0.01	116.20 ± 0.16	-36.249 ± 0.001	-36.244 ± 0.009
13	$\textbf{38.13} \pm \textbf{0.03}$	37.63 ± 0.03	-21.717 ± 0.007	-21.732 ± 0.005
14	$\textbf{63.63}\pm\textbf{0.01}$	63.66 ± 0.06	-25.189 ± 0.003	-25.192 \pm 0.006
15	107.17 ± 0.01	106.99 ± 0.12	-35.268 ± 0.001	-35.256 ± 0.009
23	97.11 ± 0.01	96.97 ± 0.10	-32.875 ± 0.002	-32.872 ± 0.008
24	67.36 ± 0.02	67.51 ± 0.08	-26.821 ± 0.003	-26.815 ± 0.007
25	30.87 ± 0.03	30.73 ± 0.04	-21.561 ± 0.009	-21.561 ± 0.005
34	$\textbf{69.43} \pm \textbf{0.01}$	69.24 ± 0.07	-25.854 ± 0.002	-25.861 ± 0.006
35	106.13 ± 0.02	105.97 ± 0.13	-34.799 ± 0.002	-34.796 ± 0.008
45	74.45 ± 0.02	74.36 ± 0.09	-28.247 ± 0.004	-28.251 ± 0.007

Tripole sums

	$\widetilde{c}_{ ext{tripoles}}$	Bell et al.
$\widetilde{C}_{\text{tripoles}}^{(2,124)}$	$\textbf{-683.25} \pm \textbf{0.01}$	$\textbf{-683.23}\pm0.04$
$\tilde{c}_{\text{tripoles}}^{(2,125)}$	$\textbf{-2203.3}\pm0.2$	$\textbf{-2203.5}\pm0.1$
$\widetilde{c}_{\text{tripoles}}^{(2,145)}$	$\textbf{-6.324} \pm \textbf{0.004}$	$\textbf{-6.325} \pm \textbf{0.04}$
$\tilde{c}_{\text{tripoles}}^{(2,245)}$	$\textbf{-0.837} \pm \textbf{0.008}$	$\textbf{-0.830} \pm \textbf{0.039}$

The tripole sums correspond to the four independent color structures as specified in hep-ph/2312.11626

N-jettiness subleading power corrections

Power corrections in N-jettiness slicing

$$\int^{\mathcal{T}_0} d\mathcal{T} \frac{d\sigma}{d\mathcal{T}} = \int B \otimes B \otimes S \otimes H \otimes \prod_i^N J_i + \mathcal{O}(\mathcal{T}_0)$$

- Slicing methods suffer from **instabilities** due to large cancellations between contributions if the slicing parameter (cutoff) is not sufficiently small
- Can improve this by including more terms in the computation of the singular contribution
- Power-suppressed terms, particularly subleading ones, were studied in recent years, mostly at NLO

(hep-ph/1802.00456, hep-ph/1807.10764, hep-ph/1907.12213, hep-ph/1905.08741)

But we aim for a general approach valid for an arbitrary of process!!!

Power corrections to color-singlet production

In the process with $f_a(p_a) + f_b(p_b) \longrightarrow X(P_X)$, at NLO we consider emission of a gluon k

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}} = \mathcal{N} \int [\mathrm{d}\tilde{P}_X]_m [\mathrm{d}k] \delta(p_a + p_b - k - \tilde{P}_X) \delta(\mathcal{T} - \mathcal{T}_0(p_a, p_b, k)) \mathcal{O}(\tilde{P}_X) \sum_{\mathrm{col,pol}} |\mathcal{M}|^2(p_a, p_b, k, \tilde{P}_X)$$

Power corrections primarily require the expansion in T of two building blocks:

Power corrections to color-singlet production

- The expansion controlled by gluon transverse momentum k⊥. The jettiness (*T*) constraint forces the gluon energy or the k⊥ to be O(*T*):
 - If k_⊥ is O(1), the gluon energy is O(T) and the expansion is the soft expansion
 - If k_⊥ is O(T/Q), then the angle is small and we expand in k_⊥ (collinear expansion)

Zero-jettiness

$$\mathcal{T}(p_a, p_b, k) = \min\left(\frac{2p_a k}{Q}, \frac{2p_b k}{Q}\right)$$

The two distinct integration regions - soft and collinear - are associated with two "branches" of the cross section with respect to T:

$$\frac{d\Sigma}{d\mathcal{T}} \sim \mathcal{T}^{-1-2\epsilon} f_s(\mathcal{T}) + \mathcal{T}^{-1-\epsilon} f_c(\mathcal{T})$$

The soft contribution

• For the **phase space**: use mapping that absorbs the gluon *k* into the colorless final state (hep-ph/1910.01024)

$$P_{ab}^{\mu} = \lambda^{-1} \Lambda_{\nu}^{\mu} (P_{ab}^{\nu} - k^{\nu}), \qquad \lambda = \sqrt{1 - \frac{2P_{ab} \cdot k}{P_{ab}^2}} \approx 1 - \frac{P_{ab} \cdot k}{P_{ab}^2} + \mathcal{O}(k^2)$$

• For the matrix element: we can use the LBK theorem to get the subleading terms

We arrive to the general expression

$$\frac{\mathrm{d}\sigma^{(s)}}{\mathrm{d}\mathcal{T}} = \mathcal{N}\int [\mathrm{d}\Phi_m(p_a, p_b, P_X)] \left\{ \mathcal{O}(P_X) \left[I_1 - \kappa_m I_2 - I_2 \sum_{i \in L_f} p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \right] |\mathcal{M}|^2(p_a, p_b, P_X) - I_2 |\mathcal{M}|^2(p_a, p_b, P_X) \sum_{i=1}^m p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \mathcal{O}(P_X) \right\}$$

The soft contribution

We arrive to the general expression in terms of the LO cross section:

$$\frac{\mathrm{d}\sigma^{(s)}}{\mathrm{d}\mathcal{T}} = \mathcal{N}\int [\mathrm{d}\Phi_m(p_a, p_b, P_X)] \left\{ \mathcal{O}(P_X) \left[I_1 - \kappa_m I_2 \right] \\ -I_2 \sum_{i \in L_f} p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \right] |\mathcal{M}|^2(p_a, p_b, P_X) - I_2 |\mathcal{M}|^2(p_a, p_b, P_X) \sum_{i=1}^m p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}} \mathcal{O}(P_X) \right\}$$

Where the integrals are

$$I_1 = [\alpha_s] \left(\frac{Q}{\sqrt{s}}\right)^{-2\epsilon} \frac{4}{\epsilon \,\mathcal{T}^{1+2\epsilon}}, \quad I_2 = [\alpha_s] \left(\frac{Q\mathcal{T}}{\sqrt{s}}\right)^{-2\epsilon} \frac{4Q}{s} \left(\frac{1}{2\epsilon} - \frac{1}{2} - \frac{\epsilon}{2} + \mathcal{O}(\epsilon^2)\right), \quad \kappa_m = m(d-2) - d$$

• For phase space: we use a mapping that absorbs the transverse momentum of *k* into the colorless final state through a Lorentz Transformation

$$k^{\mu} = (1-x)p_a^{\mu} + \tilde{k}^{\mu} \quad \Rightarrow \quad P_X^{\mu} = \Lambda_{\nu}^{\mu} \left(\tilde{P}_X^{\nu} + \tilde{k}^{\nu} \right)$$

Since $\tilde{k} \sim \sqrt{(T)}$, we need second order expansion of boost and matrix element!

• For matrix element: we have no analogous theorem (yet) available to get the subleading terms! First, we can use the fact that it is Lorentz invariant

$$\sum_{\text{pol}} |M(p_a, p_b, k, \Lambda^{-1}(P_x))|^2 = \sum_{\text{pol}} |M(\Lambda p_a, \Lambda p_b, \Lambda k, P_x)|^2$$

LP collinear expansion given by AP splitting kernels, but no much information beyond that. We need a way of getting subleading terms in a way we can isolate soft poles

$$\mathcal{M} = -g_s T^a \epsilon^{\nu} \bar{v}_b \left[N_a \frac{(\hat{p}_a - \hat{k})\gamma^{\nu}}{(-2p_a \cdot k)} + \gamma^{\nu} \frac{(\hat{p}_b - \hat{k})}{2p_b \cdot k} \ N_b + R_{\text{fin}}^{\nu}(p_b, p_a, k; Q_X) \right] u_a$$

Shut up and calculate

The problem is that some terms require expansion, e.g.

$$\frac{2P_{qq}(x)}{2p_a \cdot k} \operatorname{Tr} \left[N_a \ \hat{p}_a \ N_a^+ \hat{p}_b \right]$$

This means we have to derivate N_a , N_b , R_{fin} . Some of them can be rewritten in terms of derivatives of the Born (like in LBK)

$$\left(\frac{1}{x}\partial_{a\mu} - \partial_{b\mu}\right) |\mathcal{M}(xp_a, p_b, P_X)|^2$$

But in general we need to calulate traces of these Green's functions and their derivatives. But we can calculate in a systematic way using **Berends-Giele like recursion relations**

E.g.

Collinear contribution

$$\begin{split} C_{3a}^{k} &= \frac{g_{\perp}^{\mu\nu}}{2} \mathrm{Tr} \left[\left(-N_{a}^{(1),\mu} x \hat{p}_{a} + N_{a}^{(0)} \gamma^{\mu} \right) \left(R_{\mathrm{fin}}^{(0),\nu,+} - N_{b}^{(0),+} \frac{\hat{p}_{a} \gamma^{\nu}}{s} \right) \hat{p}_{b} \right] \\ &+ g_{\perp}^{\mu\nu} \mathrm{Tr} \left[N_{a}^{(0)} x \hat{p}_{a} \left(R_{\mathrm{fin}}^{(1),\nu\mu,+} - N_{b}^{(1),\mu,+} \frac{\hat{p}_{a} \gamma^{\nu}}{2xs} \right) \hat{p}_{b} \right] + \frac{g_{\perp}^{\mu\nu}}{2} \mathrm{Tr} \left[N_{a}^{(0)} x \hat{p}_{a} R_{\mathrm{fin}}^{(0),\nu,+} \gamma^{\mu} \right] \\ &- \frac{1}{s} \mathrm{Tr} \left[N_{a}^{(0)} \hat{p}_{a} N_{b}^{(0),+} (x \hat{p}_{a} + \hat{p}_{b}) \right] + \mathrm{c.c.} \end{split}$$

$$\begin{split} \mathbf{C}^{\mathrm{NLP},a} &= -2 \int \mathrm{d}\Phi_m \; |\mathcal{M}(p_b, p_a, P_X)|^2 \; \mathcal{O}(P_X) + \int \mathrm{d}x \; \mathrm{d}\Phi_m^{xa} \bigg\{ \frac{\bar{P}_{qq}(x)}{x} \left[W_a(x) \right. \\ &+ \frac{s}{4} (1-x) g_{\perp}^{\rho \alpha} \left(D_{\rho}^{xa,b} \; |\mathcal{M}|^2(p_b, xp_a, \ldots) - 2 \mathrm{Tr} \left[N_a \gamma_\rho N_a^+ \hat{p}_b \right] \right) b_{a\alpha}^{\mu \nu} L_{\mu \nu} \\ &+ |\mathcal{M}|^2(p_b, xp_a, \ldots) \; l_a^{\mu \nu}(x) L_{\mu \nu} - \frac{s \; (1-x)}{4} |\mathcal{M}|^2(p_b, xp_a, \ldots) t_a^{\mu \mu_1, \nu \nu_1} L_{\mu \mu_1} L_{\nu \nu_1} \bigg] \\ &- \frac{1}{(1-x)_+} \left(\kappa_m + 2p_a^{\mu} \frac{\partial}{\partial p_{a,\mu}} + \left(g^{\rho \sigma} + \omega_{ab}^{\rho \sigma} \right) L_{\rho \sigma} \right) |\mathcal{M}|^2(p_b, xp_a, \ldots) \\ &- \frac{2p_b^{\nu}}{(1-x)_+} \left(\mathrm{Tr} \left[N_a \hat{p}_a R_{\nu}^{\mathrm{fin}, +} \hat{p}_b \right] + \mathrm{c.c.} \right) + F_{\mathrm{fin},a} \\ &+ \frac{s}{4} (1-x) g_{\perp}^{\alpha \beta} \bigg[- 2 \mathrm{Tr} \left[N_a \gamma_\beta N_a^+ \hat{p}_b \right] \\ &+ \mathrm{Tr} \left[N_a \gamma_\beta \gamma_\rho \hat{p}_a \left(R_{\mathrm{fin}}^{\rho, +} + \frac{N_b^+ (\hat{p}_b - (1-x) \hat{p}_a) \gamma^{\rho}}{(1-x)s} \right) \hat{p}_b \bigg] + \mathrm{c.c.} \\ &+ \frac{2x}{1-x} \mathrm{Tr} \left[N_a \hat{p}_a \left(R_{\beta}^{\mathrm{fin}, +} - \frac{N_b^+ \hat{p}_a \gamma_\beta}{s} \right) \hat{p}_b \bigg] + \mathrm{c.c.} \right] b_a {}_{\alpha}^{\mu \nu} L_{\mu \nu} \bigg\} \; \mathcal{O}(P_X) \end{split}$$

Recursion in N-photon production

We can calculate a quark current in a recursive way

$\hat{G}(q,$ $R_{\text{fin}}^{\nu}(q,k,\psi_N) = \sum_{m=1}^{N} \left(i e_q \hat{\epsilon}_m \right) \hat{G}^{\nu} \left(q,k,\psi_{N/m} \right)$

Where the recursion relation for G also involves J:

$$\hat{G}^{\nu}(q,k;\psi_{N}) = \frac{i}{\hat{q} - \hat{k} - \sum \hat{p}_{n}} \left[i\gamma^{\nu} \hat{J}(q,\psi_{N}) + \sum_{m=1}^{N} \left(ie_{q}\hat{\epsilon}_{m} \right) \hat{G}^{\nu} \left(q,k;\psi_{N/m} \right) \right]$$

For R_{fin}

Recursion in N-photon production

$$2$$

$$k; \psi_N)$$

$$q_a$$

$$k = \frac{2}{\sqrt{q_a}}$$

$$k = \frac{2}{\sqrt{q_a}}$$

$$f(q, \psi_N)$$

$$q_a$$

$$\hat{G}^{\nu}(q,k;\psi_{N}) = \frac{i}{\hat{q} - \hat{k} - \sum \hat{p}_{n}} \left[i\gamma^{\nu} \hat{J}(q,\psi_{N}) + \sum_{m=1}^{N} \left(ie_{q} \hat{\epsilon}_{m} \right) \hat{G}^{\nu} \left(q,k;\psi_{N/m} \right) \right]$$

Examples: Drell-Yan

- In these simple cases we can compare with naive expansion of NLO matrix element.
- We can also do some numerical checks:

· · · · · ·		
$\operatorname{coefficient}$	fit	analytic
LP, LL	-4.740740718	-4.740740741
LP, NLL	13.741118266	13.741118217
NLP, LL	0.000179950	0.000000000
NLP, NLL	-1.071083950	-1.072546919

$$\mathcal{O}(p_1, p_2) = \theta \left((p_1 + p_2)^2 - s_0 \right)$$
 $s_0 = 0.1, \quad Q = 0.1, \quad s = 1$

Did the same for 2γ , and now we apply it to 4γ + to show the potential of the approach

Conclusions

In conclusion...

- We calculated the N-jettiness soft function, demonstrating analytical cancellation of poles
- Derived a simple representation for finite jettiness-dependent remainder, allowing for *faster implementations*. In agreement with other calculations
- Showcased the benefits of using subtraction-inspired methods to derive building blocks of slicing methods
- We built a process-independent framework for subleading power corrections in a generic color-singlet production case
- Next-to-soft corrections easily obtained from LBK theorem, but next-tocollinear term is a complicated business

E

Thank you!!!