

Soft photons and

Next-to-Leading-Power corrections

Domenico Bonocore

TUM

Based on **2112.08329** and **2312.11386** in collaboration with **Anna Kulesza**, **Roger Balsach**

TUM/MPP Collider Phenomenology Seminar 24 April 2024

INTRODUCTION

REVIEW OF LBK THEOREM

LBK THEOREM WITH SHIFTED KINEMATICS

LBK THEOREM WITH MODIFIED SHIFTED KINEMATICS

Results for $e^+e^- \rightarrow \mu^+\mu^-\gamma$ and $pp \rightarrow \mu^+\mu^-\gamma$

LOOP CORRECTIONS TO LBK THEOREM

Introduction

POWER CORRECTIONS

Perturbative calculations are the cornerstone of theoretical predictions in hep E.g. expansion in α : LO, NLO, NNLO, ...

Large separation of scales

 \rightarrow expansion in other small parameters : LP, NLP, NNLP, ...

E.g. $k \ll p$ (soft expansion)

SOFT FACTORIZATION

$$S = \overrightarrow{S_{LP}^{(0)} + S_{LP}^{(1)}} + S_{LP}^{(2)} + \dots$$

$$\downarrow + S_{NLP}^{(0)} + S_{NLP}^{(1)} + S_{NLP}^{(2)} + \dots$$

$$+ S_{NNLP}^{(0)} + S_{NNLP}^{(1)} + S_{NNLP}^{(2)} + \dots$$

$$+ \dots$$

More interesting structure for *n* emissions: $S = \exp(W)$

HISTORY EXTENDS TO PRESENT DAYS (BOTH AT LP AND NLP)

Soft Factorization has a long history

- LP (QED) [Bethe-Heitler 1934, Bloch-Nordsieck 1937, Yenni-Fratuushi-Suura 1961]
- LP (gravity) [Weinberg 1965]
- ► NLP (QED-tree) [Low 1958, Burnett-Kroll 1967].

up to more recent times

- ► LP (QCD) tree [Berends-Giele 1988]
 - 1-loop[Catani-Grazzini 2000]
 - 2-loop[Duhr-Gehrmann 2013]
 - 3-loop[Herzog-Ma-Mistlberger-Suresh 2023, Chen-Luo-ManYan-Zhou 2023]
- LP (massless QED) 3-loop [Ma-Sterman-Venkata 2023]
- NLP (QCD, massless QED) [DelDuca 1990, Casali 2014, Bern-Davies-Nohle2014, Larkoski-Neill-Stewart 2014, DB-Laenen-Magnea-Melville-Vernazza2015, Beneke-Broggio-Jaskiewicz-Vernazza 2019, Liu-Mecaj-Neubert-Wang 2021, Ravindran-Sankar-Tiwari 2022, Sterman-Vogelsang 2023, Czakon-Eschment-Schellenberger 2023 + many others!]
- ► NLP (QED) 1-loop [Engel,Signer,Ulrich 2021] all-orders [Engel 2023]
- NLP, NNLP gravity [White 2011, Cachazo-Strominger 2014, Beneke-Hager-Szafron 2022 + many others!]

Methods

► Effective field theories

$$\mathcal{L}_{\text{SCET}} = \mathcal{L}_{\text{LP}} + \mathcal{L}_{\text{NLP}}$$

$$\sigma_{\text{DY-LP}} = H \times S , \qquad \sigma_{\text{DY-NLP}} = H \otimes J \otimes \overline{J} \otimes \overline{S}$$

Diagrammatic factorization

$$\mathcal{A}^{\mu} = \mathcal{J}^{\mu} \times \mathcal{S} \times \mathcal{H} + \mathcal{J} \times \mathcal{S}^{\mu} \times \mathcal{H} + \mathcal{J} \times \mathcal{S} \times \mathcal{H}^{\mu}$$
$$= \underbrace{\mathcal{J}^{\mu} \times \mathcal{S} \times \mathcal{H}^{\mu}}_{\mathcal{H}} + \underbrace{\mathcal{J}^{\mu} \times \mathcal{S} \times \mathcal{H}^{\mu}}_{\mathcal{H}} + \underbrace{\mathcal{J}^{\mu} \times \mathcal{S} \times \mathcal{H}^{\mu}}_{\mathcal{H}}$$

Worldline formalism

$$\langle \frac{\hat{p} + \hat{A}(\hat{x})}{(\hat{p} - \hat{A}(\hat{x}))^2 - m^2} \rangle \sim \int dT \int d\theta \int \mathcal{D}\psi \int \mathcal{D}x \mathcal{D}p \, e^{-i\int dt \left(p \cdot \hat{x} + \frac{i}{2}\psi \cdot \psi - \text{Den} - \frac{\theta}{T}\text{Num}\right) }$$

On-shell methods, celestial methods, ...

WHY DO WE CARE TO GO BEYOND LP?

Understanding infrared structure of QFTs

Soft gluon resummation beyond LP

In this talk I focus on the **soft-photon bremsstrahlung**. Why? [Image credits: Antonelli, Kavanagh, Khalil, Steinhoff, Vines PRL 125, 011103, Strominger arXiv:1703.05448, Engel, Signer, Ulrich JHEP 04(2022)097]

WHY SOFT PHOTONS? 1. DEFINITION

Numerically, when is a photon soft?

- What is the resolution in energy-momentum one has to achieve for NLP effects to be measurable? When is the LP approx valid? Is that compatible with the experimental uncertainties?
- In QCD resummation one is blind to energy-momentum of the undetected gluon. In the bremsstrahlung case the photon is detected. Soft photon spectra give direct access to NLP effects.
- Soft theorems formulated with $k \rightarrow 0$, but photon spectra necessarily have $k \neq 0$.
- Question relevant also for more formal investigations and for condensed media [Landau-Pomeranchuk 1953, Feal-Vazquez 2018]

[Image credit: DELPHI collaboration, Eur. Phys. J. C (2008) 57: 499-514]

Experiment	Collision	Photon k_T	Photon/Brem
	Energy		Ratio
<i>K</i> ⁺ <i>p</i> , CERN,WA27, BEBC (1984)	70 GeV/c	$k_T < 60 \text{ MeV/c}$	4.0 ± 0.8
<i>K</i> ⁺ <i>p</i> , CERN,NA22, EHS (1993)	250 GeV/c	$k_T < 40 \text{ MeV/c}$	6.4 ± 1.6
$\pi^+ p$, CERN,NA22, EHS (1997)	250 GeV/c	$k_T < 40 \text{ MeV/c}$	6.9 ±1.3
$\pi^{-}p$, CERN, WA83, OMEGA (1997)	280 GeV/c	$k_T < 10 \text{ MeV/c}$	7.9 ±1.4
$\pi^+ p$, CERN, WA91, OMEGA (2002)	280 GeV/c	$k_T < 20 \text{ MeV/c}$	5.3 ±0.9
<i>pp</i> , CERN, WA102, OMEGA (2002)	450 GeV/c	$k_T < 20 \text{ MeV/c}$	4.1 ±0.8
$e^+e^ \rightarrow$ hadrons, CERN, DELPHI	~91 GeV(CM)	$k_T < 60 \text{ MeV/c}$	4.0
with hadron production (2010)			
$e^+e^- \rightarrow \mu^+\mu^-$, CERN, DELPHI	~91 GeV(CM)	$k_T < 60 \text{ MeV/c}$	1.0
with no hadron production (2008)			

[Table taken from Cheuk-Yin Wong, arXiv:1404.0040. See also Martha Spyropoulus-Stassinaki, CF 2002, V. Perepelitsa, for the DELPHI Collaboration, Nonlin. Phenom. Complex Syst. 12, 343 (2009)]

WHY SOFT PHOTONS? 2. EXPERIMENTAL DISCREPANCIES

DELPHI data for hadronic Z decays

Photon range: 200 MeV < ω_k < 1 GeV, p_t (w.r.t. jet) < 80 MeV

[Abdallah et al. Eur. Phys. J. C (2010) 67: 343-366]

Only LP term used for comparison. Natural to wonder what is the impact of NLP corrections.

WHY SOFT PHOTONS? 3. CONSISTENCY OF LBK THEOREM

$$\pi(p_a)\pi(p_b) \to \pi(p_1')\pi(p_2')\gamma(k)$$

Two seemingly different versions of the theorem[Lebiedowicz, Nachmann, Szczurek 2021]

$$\begin{aligned} \mathcal{A}_{\text{Low}}^{\mu} &= e\mathcal{H}(s_{L}^{\prime}, t_{2}) \left[\frac{p_{a}^{\mu}}{p_{a} \cdot k} - \frac{p_{1}^{\prime \mu}}{p_{1}^{\prime} \cdot k} \right] + e \frac{\partial \mathcal{H}(s_{L}^{\prime}, t_{2})}{\partial s_{L}^{\prime}} \left[p_{b}^{\mu} - \frac{p_{b} \cdot k}{p_{a} \cdot k} p_{a}^{\mu} + p_{2}^{\prime \mu} - \frac{p_{2}^{\prime} \cdot k}{p_{1}^{\prime} \cdot k} p_{1}^{\prime \mu} \right] \\ \mathcal{A}_{\text{V2}}^{\mu} &= e\mathcal{H}(s_{L}, t) \left[\frac{p_{a}^{\mu}}{p_{a} \cdot k} - \frac{p_{1}^{\prime \mu}}{p_{1}^{\prime} \cdot k} \right] + 2e \frac{\partial \mathcal{H}(s_{L}, t)}{\partial s_{L}} \left[p_{b}^{\mu} - \frac{p_{b} \cdot k}{p_{a} \cdot k} p_{a}^{\mu} \right] \\ &- 2e \frac{\partial \mathcal{H}(s_{L}, t)}{\partial t} \left[(p_{a} - p_{1}) \cdot k - p_{a} \cdot l_{1} \right] \left[\frac{p_{a}^{\mu}}{p_{a} \cdot k} - \frac{p_{1}^{\mu}}{p_{1} \cdot k} \right] \end{aligned}$$

where

$$p_{a} + p_{b} = p_{1} + p_{2} = p'_{1} + p'_{2} + k ,$$

$$s = p_{a} \cdot p_{b} + p_{1} \cdot p_{2}, \qquad t = (p_{b} - p_{2})^{2} ,$$

$$s_{L} = p_{a} \cdot p_{b} + p'_{1} \cdot p'_{2}, \qquad t_{2} = (p_{b} - p'_{2})^{2} ,$$

$$l_{1} = p_{1} - p'_{1} , \qquad l_{2} = p_{2} - p'_{2} .$$

- Disagreement at NLP
- However, LBK theorem passed several non-trivial tests, e.g. NNLO DY [DB-Laenen-Magnea-Melville-Vernazza-White 2015] O(Λ) in tt̄
 [Makarov-Melnikov-Nason-Ozcelik 2023], ...

Review of LBK theorem

DIAGRAMMATICS (LP)

 $\mathcal{A} = H(p-k) \frac{(p-k)}{(p-k)^2} \left(Q \, \epsilon^*(k) \cdot \gamma \right) u(p) \qquad \qquad \mathcal{H} = H \, u(p)$

At **LP**, take the leading term for $k \rightarrow 0$ (**eikonal** approximation):

$$\mathcal{A} = \mathcal{S}_{LP} \mathcal{H} , \qquad \mathcal{S}_{LP} = \sum_{i=1}^{n} Q_i \eta_i \frac{\epsilon^*(k) \cdot p_i^{\mu}}{p_i \cdot k}$$

- insensitive to spin of hard emitter
- ▶ hard particles do not recoil ($k \rightarrow 0$)
- ▶ insensitive to the short distance physics i.e. non radiative amplitude *H*

DIAGRAMMATICS (NLP)

• External emission: expand up to O(k)

$$\begin{aligned} \mathcal{A}_{\text{ext}}^{\mu}(p) &= H(p-k) \frac{(p-k)}{(p-k)^2} (Q \gamma^{\mu}) u(p) \\ &= Q H(p) \left(\frac{p^{\mu}}{p \cdot k} + \frac{k^{\mu}}{2p \cdot k} - \frac{k^2 p^{\mu}}{2(p \cdot k)^2} - \frac{ik_{\nu} \sigma^{\mu\nu}}{p \cdot k} \right) u(p) \\ &+ Q \frac{p^{\mu}}{p \cdot k} k^{\nu} \underbrace{\frac{\partial H(p-k)}{\partial k_{\nu}}}_{-\frac{\partial H(p)}{\partial p_{\nu}}} \Big|_{k=0} u(p) + \mathcal{O}(k) \end{aligned}$$

- Expansion performed assuming r.h.s. a f(k), not restricted to the physical constraint $\sum_i p_i = k$. But of course after expanding it we are only interested in the value of f(k) on momentum conservation surface!
- Alternative: do not leave mom-cons. surface and parametrize p_i(k) (note derivatives on spinors). Parametrization p_i(k) not unique.

DIAGRAMMATICS (NLP)

• Internal emission: use Ward identity $k_{\mu}(\mathcal{A}_{ext}^{\mu} + \mathcal{A}_{int}^{\mu}) = 0$

$$\mathcal{A}_{\rm int}^{\mu} = \sum_{i} Q_{i} \frac{\partial H(p^{i})}{\partial p_{\mu}^{i}} u(p^{i}) + \underbrace{\Delta^{\mu}}_{\mathcal{O}(k)}$$

• Adding \mathcal{A}_{ext}^{μ} and \mathcal{A}_{int}^{μ} :

$$\mathcal{A}^{\mu} = \sum_{i} Q_{i} \frac{p_{i}^{\mu}}{p_{i} \cdot k} \mathcal{H}(p_{1}...p_{n})$$

$$+ \sum_{i} Q_{i} \left(\frac{k^{\mu}}{2p \cdot k} - \frac{k^{2}p^{\mu}}{2(p \cdot k)^{2}} - \frac{ik_{\nu}\sigma^{\mu\nu}}{p \cdot k} \right) \mathcal{H}(p_{1}...p_{n})$$

$$+ \sum_{i} Q_{i} \underbrace{\left(-\frac{p_{i}^{\mu}k^{\nu}}{p_{i} \cdot k} \frac{\partial}{\partial p_{i}^{\nu}} + \frac{\partial}{\partial p_{i}^{\mu}} \right)}_{-\frac{k_{\nu}}{p_{i} \cdot k} \underbrace{\left(p_{i}^{\mu} \frac{\partial}{\partial p_{i}^{\nu}} - p_{i}^{\nu} \frac{\partial}{\partial p_{i}^{\mu}} \right)}_{\equiv L^{\mu\nu}} \mathcal{H}(p_{1}...p_{n})$$

 $L^{\mu\nu}$ is the angular momentum generator of the Lorentz group

LBK THEOREM (NLP)

This is the **sub-leading** soft theorem, known as **Low-Burnett-Kroll theorem**: [Low 1958 (scalar emitters), Burnett-Kroll 1968 (spin $\frac{1}{2}$ emitters, conjecture for generic spin), Bell-VanRoyen 1969 (generic spin), Cachazo-Strominger 2014]

$$\mathcal{A}(p_1,\ldots,p_n,k) = (\mathcal{S}_{LP} + \mathcal{S}_{NLP}) \mathcal{H}(p_1,\ldots,p_n) ,$$

$$\mathcal{S}_{LP} = \sum_{i=1}^n \eta_i Q_i \frac{\epsilon^*(k) \cdot p_i}{p_i \cdot k} , \quad \mathcal{S}_{NLP} = \sum_{i=1}^n \eta_i Q_i \frac{\epsilon^*_{\mu}(k)k_{\nu}(\sigma^{\mu\nu} + L^{\mu\nu})}{p_i \cdot k}$$

• corrections to the strict limit $k \rightarrow 0$: **small recoil** of the emitter taken into account

- ► sensitive to the **spin** of the emitter (e.g. $\sigma^{\mu\nu} = 0$ for scalars, $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$ for spin 1/2, etc.)
- orbital angular momentum L^{μν} is sensitive to the short distance interactions in H (hard lines do not start from a pointlike vertex)
- NLP corrections here are valid only at the tree-level

FROM AMPLITUDES TO CROSS-SECTIONS

At amplitude level two NLP contributions:

- Spin $\sigma^{\mu\nu}$
- Orbital $L^{\mu\nu}$ i.e. derivatives

Squaring and **summing over polarizations**, spin contribution becomes also a derivative. Crucial identity e.g. for leg p_1 (neglecting $\sim k^{\mu}$):

Then, traditional LBK with derivatives reads

$$\overline{|\mathcal{A}(p_1,\ldots,p_n,k)|}^2 = \sum_{ij} (-\eta_i \eta_j Q_i Q_j) \frac{p_i \cdot p_j}{p_i \cdot k p_j \cdot k} \overline{|\mathcal{H}(p_1,\ldots,p_n)|}^2 \to \mathbf{LP}$$
$$+ \sum_{ij} (-\eta_i \eta_j Q_i Q_j) \frac{p_{\mu}^i}{p_i \cdot k} G_j^{\mu\nu} \frac{\partial}{\partial p_j^{\nu}} \overline{|\mathcal{H}(p_1,\ldots,p_n)|}^2 \to \mathbf{NLP}$$

Problem: momentum conservation

l.h.s. $\sum_i p_i = k$ VS $\sum_i p_i = 0$ on the r.h.s. \rightarrow difference for finite $k \neq 0$

Let us replace in $\mathcal{H}(p_1, \ldots, p_n)$

$$p_i
ightarrow \mathbf{\tilde{p}_i}(\mathbf{k}) = p_i + \mathbf{c_i}k + \mathcal{O}(k^2)$$

 c_i are **arbitrary** coefficients \implies Is LBK invariant at NLP?

$$\overline{\left|\mathcal{A}(p_{1},\ldots,p_{n},k)\right|^{2}} = \sum_{ij=1}^{n} \left(-\eta_{i}\eta_{j}Q_{i}Q_{j}\right) \frac{p_{i} \cdot p_{j}}{p_{i} \cdot k p_{j} \cdot k} \overline{\left|\mathcal{H}(\tilde{\mathbf{p}}_{1},\ldots,\tilde{\mathbf{p}}_{n})\right|^{2}} + \sum_{ij=1}^{n} \left(-\eta_{i}\eta_{j}Q_{i}Q_{j}\right) \frac{p_{\mu}^{i}}{p_{i} \cdot k} \xi_{j} \left(\eta^{\mu\nu} - \frac{p_{j}^{\mu}k^{\nu}}{p_{j} \cdot k}\right) \frac{d}{dp_{j}^{\nu}} \overline{\left|\mathcal{H}(\tilde{\mathbf{p}}_{1},\ldots,\tilde{\mathbf{p}}_{n})\right|^{2}}$$

LBK theorem is invariant if **c**_i dependence **cancels up to NNLP** corrections.

First Taylor expand in k

$$\overline{\left|\mathcal{H}(\mathbf{\tilde{p}}_{1},\ldots,\mathbf{\tilde{p}}_{n})\right|^{2}}=\overline{\left|\mathcal{H}(p_{1},\ldots,p_{n})\right|^{2}}+k^{\mu}\sum_{i}\mathbf{c_{i}}\frac{\partial}{\partial p_{\mu}^{i}}\overline{\left|\mathcal{H}(p_{1},\ldots,p_{n})\right|^{2}}+\mathcal{O}(k^{2})$$

Then impose momentum conservation $k = \sum_i p_i$

$$\frac{d}{dp_j^{\nu}} \overline{\left|\mathcal{H}(\mathbf{\tilde{p}}_1,\ldots,\mathbf{\tilde{p}}_n)\right|^2} = \frac{\partial}{\partial p_j^{\nu}} \overline{\left|\mathcal{H}(p_1,\ldots,p_n)\right|^2} + g^{\mu\nu} \xi_j \sum_i \mathbf{c}_i \frac{\partial}{\partial p_{\mu}^i} \overline{\left|\mathcal{H}(p_1,\ldots,p_n)\right|^2} + \mathcal{O}(k)$$

Plug this into LBK with \tilde{p}_i \rightarrow we get original LBK (with p_i) + remainder term that depends on c_i

$$R(\mathbf{c}_{\mathbf{i}}) = \sum_{ij=1}^{n} (-\eta_{i}\eta_{j}Q_{i}Q_{j}) \frac{p_{i} \cdot p_{j}}{p_{i} \cdot k p_{j} \cdot k} k^{\mu} \sum_{m} \mathbf{c}_{\mathbf{m}} \frac{\partial}{\partial p_{\mu}^{m}} \overline{|\mathcal{H}(p_{1}, \dots, p_{n})|}^{2} + \sum_{ij=1}^{n} (-\eta_{i}\eta_{j}Q_{i}Q_{j}) \frac{p_{\mu}^{i}}{p_{i} \cdot k} \xi_{j} \left(\eta^{\mu\nu} - \frac{p_{j}^{\mu}k^{\nu}}{p_{j} \cdot k} \right) \xi_{j} \sum_{m} \mathbf{c}_{\mathbf{m}} \frac{\partial}{\partial p_{m}^{\nu}} \overline{|\mathcal{H}(p_{1}, \dots, p_{n})|}^{2} + \mathcal{O}(1) = \mathbf{0} + \mathcal{O}(1) = \mathbf{NNLP}$$

 \implies LBK is invariant at NLP under momentum transformation

Two cases in particular are relevant:

- ► **c**_i = **0** (i.e. unphysical momenta, as in original LBK)
- $\sum_{i} \mathbf{c}_{i} = -1 \implies \sum_{i} p_{i} = k, \sum_{i} \tilde{p}_{i} = 0$ (i.e. momentum conservation restored)

By virtue of the invariance, the two cases are equivalent at NLP. Hence, traditional LBK with unphysical momenta is consistent.

More generally, there are an infinite number of (formally equivalent at NLP) versions of the theorem, that differ by NNLP terms.

Here invariance shown under momenta transformation. The more general invariance of LBK under

$$\mathcal{H} \to \mathcal{H} + \Delta \quad \text{with} \quad \Delta(p_i)\delta(p_i) = 0$$
 (1)

can be proven [Balsach, DB, Kulesza 2023] which holds also e.g. for constant amplitudes.

Key aspect: choice of functional dependence for \mathcal{H} yields the version of the theorem. Cancellation of NLP ambiguities between 2 terms of the theorem.

A simple example: $\pi(p_a)\pi(p_b) \to \pi(p'_1)\pi(p'_2)\gamma(k)$

Functional dependence:

• $\mathcal{H}(s_L, t)$ as in \mathcal{A}^{μ}_{V2} [Lebiedowicz, Nachmann, Szczurek 2021]

 $\blacktriangleright \mathcal{H}(s'_L, t_2) = \mathcal{H}(s_L, t) + \delta s'_L \frac{\partial \mathcal{H}}{\partial s_L} + \delta t_2 \frac{\partial \mathcal{H}}{\partial t} \quad \text{as in } \mathcal{A}^{\mu}_{\text{Low}} \text{ [Low 1958]}$ with some algebra

$$\begin{split} \delta s'_L &= -(p_a + p_b) \cdot k + \mathcal{O}\left(k^2\right), \\ \delta t_2 &= -2\left[(p_a - p_1) \cdot k - p_a \cdot l_1\right] + \mathcal{O}\left(k^2\right). \end{split}$$

one can see that $\mathcal{A}_{\text{Low}}^{\mu} = \mathcal{A}_{\text{V2}}^{\mu} + \mathcal{O}(k^2)$

$$\begin{aligned} \mathcal{A}_{\text{Low}}^{\mu} &= e\mathcal{H}(s_{L}^{\prime}, t_{2}) \left[\frac{p_{a}^{\mu}}{p_{a} \cdot k} - \frac{p_{1}^{\prime \mu}}{p_{1}^{\prime} \cdot k} \right] + e \frac{\partial \mathcal{H}(s_{L}^{\prime}, t_{2})}{\partial s_{L}^{\prime}} \left[p_{b}^{\mu} - \frac{p_{b} \cdot k}{p_{a} \cdot k} p_{a}^{\mu} + p_{2}^{\prime \mu} - \frac{p_{2}^{\prime} \cdot k}{p_{1}^{\prime} \cdot k} p_{1}^{\prime \mu} \right] \\ \mathcal{A}_{\text{V2}}^{\mu} &= e\mathcal{H}(s_{L}, t) \left[\frac{p_{a}^{\mu}}{p_{a} \cdot k} - \frac{p_{1}^{\prime \mu}}{p_{1}^{\prime} \cdot k} \right] + 2e \frac{\partial \mathcal{H}(s_{L}, t)}{\partial s_{L}} \left[p_{b}^{\mu} - \frac{p_{b} \cdot k}{p_{a} \cdot k} p_{a}^{\mu} \right] \\ &- 2e \frac{\partial \mathcal{H}(s_{L}, t)}{\partial t} \left[(p_{a} - p_{1}) \cdot k - p_{a} \cdot l_{1} \right] \left[\frac{p_{a}^{\mu}}{p_{a} \cdot k} - \frac{p_{1}^{\mu}}{p_{1} \cdot k} \right] \end{aligned}$$

The 2 versions are equivalent up to NNLP corrections. Similar analysis done by [Fadin-Khoze 2024]

Traditional LBK is consistent at NLP

- ► Many forms of traditional LBK (all equivalent up to NNLP)
- ► consistent \neq efficient. Some form of the theorem might be more efficient for a numerical implementation (NNLP effects can be visible in photon spectra since $k \neq 0$)
- in particular, is there a form where the non-radiative process can be computed with unambiguous physical momenta?

LBK theorem with shifted kinematics

$$\overline{\left|\mathcal{A}(p_{1},\ldots,p_{n},k)\right|^{2}} = \sum_{ij} \left(-\eta_{i}\eta_{j}Q_{i}Q_{j}\right) \frac{p_{i} \cdot p_{j}}{p_{i} \cdot k p_{j} \cdot k} \overline{\left|\mathcal{H}(p_{1},\ldots,p_{n})\right|^{2}} \rightarrow \mathbf{LP}$$
$$+ \sum_{ij} \left(-\eta_{i}\eta_{j}Q_{i}Q_{j}\right) \frac{p_{\mu}^{i}}{p_{i} \cdot k} G_{j}^{\mu\nu} \frac{\partial}{\partial p_{j}^{\nu}} \overline{\left|\mathcal{H}(p_{1},\ldots,p_{n})\right|^{2}} \rightarrow \mathbf{NLP}$$

Exploit the fact that derivatives are generators of translations:

$$f(x + \epsilon) = f(x) + \epsilon \frac{d}{dx}f(x)$$

\rightarrow convert derivatives into shifted momenta

[DelDuca, Laenen, Magnea, Vernazza, White 2017, van Beekveld-Beenakker-Laenen-White 2020, Bonocore, Kulesza 2021, van Beekveld-Danish-Laenen-Pal-Tripathi-White 2023]

$$\overline{|\mathcal{A}(p_1,\ldots,p_n,k)|}^2 = \sum_{i,j=1}^n -\eta_i \eta_j \frac{p_i \cdot p_j}{p_i \cdot k \, p_j \cdot k} \left(1 - \sum_j \delta p_j^{\nu} \frac{\partial}{\partial p_j^{\nu}}\right) \overline{|\mathcal{H}(p_1,\ldots,p_n)|}^2$$

LBK with shifted kinematics:

$$\overline{\left|\mathcal{A}(p_{1},\ldots,p_{n},k)\right|^{2}} = \underbrace{\sum_{i,j=1}^{n} -\eta_{i}\eta_{j}Q_{i}Q_{j}\frac{p_{i}\cdot p_{j}}{p_{i}\cdot k\,p_{j}\cdot k}}_{\text{LP factor!}} \overline{\left|\mathcal{H}(p_{1}+\delta p_{1},\ldots,p_{n}+\delta p_{n})\right|^{2}}$$

$$\delta p_j^{\nu} = \eta_j \xi_j Q_j \left(\sum_{k,l} \eta_k \eta_l Q_k Q_l \frac{p_k \cdot p_l}{(p_k \cdot k)(p_l \cdot k)} \right)^{-1} \sum_i \left(\frac{\eta_i Q_i p_{i\mu}}{k \cdot p_i} \right) \left(\eta^{\mu\nu} - \frac{p_j^{\mu} k^{\nu}}{p_j \cdot k} \right)$$

Note that

$$\delta p_i = \mathcal{O}(k)$$
 $\sum_i \delta p_i = -k$ $p_i \cdot \delta p_i = 0$

Simple case: 2 charged particles

$$|\mathcal{A}(p_1, p_2, k)|^2 = \left(\sum_{i,j=1}^2 -\eta_i \eta_j Q_i Q_j \frac{p_i \cdot p_j}{p_i \cdot k \, p_j \cdot k}\right) |\mathcal{H}(p_1 + \delta p_1, p_2 + \delta p_2)|^2$$
(2)

where

$$\delta p_1^{\mu} = \frac{1}{2} \left(-\frac{p_2 \cdot k}{p_1 \cdot p_2} p_1^{\mu} + \frac{p_1 \cdot k}{p_1 \cdot p_2} p_2^{\mu} - k^{\mu} \right)$$

$$\delta p_2^{\mu} = \frac{1}{2} \left(\frac{p_2 \cdot k}{p_1 \cdot p_2} p_1^{\mu} - \frac{p_1 \cdot k}{p_1 \cdot p_2} p_2^{\mu} - k^{\mu} \right)$$

Immediate to see

$$\delta p_i = \mathcal{O}(k) \quad \rightarrow \quad \text{LBK is NLP}$$

$$\delta p_1 + \delta p_2 = -k \quad \rightarrow \quad \text{momentum is conserved}$$

$$p_i \cdot \delta p_i = 0 \quad \rightarrow \quad \text{on shell?}$$

$$p_i \cdot \delta p_i = 0 \implies (p_i + \delta p_i)^2 = m^2 + \mathcal{O}(k^2) = m^2 + \text{NNLP}$$

Momenta are on-shell at NLP, hence theorem consistent at NLP

However, masses do get shifted by a NNLP amount!

$$(\delta p_j)^2 = Q_j^2 \left(\sum_{k,l} \eta_k \eta_l Q_k Q_l \frac{p_k \cdot p_l}{(p_k \cdot k)(p_l \cdot k)} \right)^{-1} \neq 0,$$

i.e. with shifts we recovered momentum conservation, but momenta are off-shell at NNLP \rightarrow problem for numerical implementations, where $k \neq 0$

Is there a LBK formulation fulfilling both **momentum conservation** AND **on-shell** condition exactly (i.e. not just at NLP)?

LBK theorem with modified shifted kinematics

MODIFIED SHIFTS

LBK theorem works at NLP

 \implies freedom to introduce **spurious NNLP** terms in the shifts.

We would like shifts δp_i to

(i) conserve momentum exactly, i.e.

$$\sum_i \xi_i \delta p_i + k = 0 \; ,$$

(ii) not shift the masses exactly, i.e.

$$\left(p_i+\delta p_i\right)^2=m_i^2\;,$$

(iii) reduce to old shifts up to NNLP corrections, i.e.

$$\delta p_j^{\nu} = \eta_j \xi_j Q_j \left(\left| \mathcal{S}_{\text{LP}} \right|^2 \right)^{-1} \sum_i \left(\frac{\eta_i Q_i}{k \cdot p_i} \right) \left(p_i^{\nu} - \frac{p_i \cdot p_j}{p_j \cdot k} k^{\nu} \right) + \mathcal{O} \left(k^2 \right) \,.$$

Is this possible?

MODIFIED SHIFTS

Consider the ansatz

$$\delta p_i^\mu = \sum_j A_{ij}^{\mu
u} p_{j
u} + B_i^{\mu
u} k_
u \; ,$$

and determine coefficients $A_{ii}^{\mu\nu}$ and B_i by imposing conditions (i)-(iii).

 \rightarrow conditions not too constraining, many solutions for δp_i . But we seek a single solution!

restrict our ansatz

$$\delta p_i^{\mu} = \sum_j A \eta_i \xi_i Q_i \frac{\eta_j Q_j}{k \cdot p_j} p_{j\nu} + B_i^{\mu\nu} k_{\nu}$$

- impose $p_{j\nu}$ and k_{ν} to be linear independent
- verify that solution has correct behaviour for $k \rightarrow 0$

MODIFIED SHIFTS

Result: [Balsach, DB, Kulesza]

$$\delta p_i^{\mu} = A \eta_i \xi_i Q_i \sum_j \frac{\eta_j Q_j}{k \cdot p_j} p_{j\nu} G_i^{\nu\mu} - \frac{1}{2} \frac{A^2 Q_i^2 |\mathcal{S}_{\mathrm{LP}}|^2}{p_i \cdot k} k^{\mu} ,$$

with

$$A = \frac{1}{\chi} \left(\sqrt{1 + \frac{2\chi}{|\mathcal{S}_{LP}|^2}} - 1 \right) \qquad \chi = \sum_i \frac{\xi_i Q_i^2}{p_i \cdot k} .$$
$$|\mathcal{S}_{LP}|^2 = \sum_{i,j} \eta_i \eta_j Q_i Q_j \frac{p_i \cdot p_j}{(p_i \cdot k)(p_j \cdot k)}$$

- ► Momentum is **conserved** (exactly)
- ► Momenta are **on-shell** (exaclty)
- Shifts are $\mathcal{O}(k) \implies$ equivalent to traditional LBK at NLP

 \implies This form of LBK allow computation of non-radiative process ${\cal H}$ with most general-purpose event generators

Price to pay: spurious NNLP terms in the shifts

THREE VERSIONS OF (TREE-LEVEL) LBK

All theoretically consistent at NLP

- NNLP ambiguities contained in all three versions ("scheme" dependence)
- ► When spectra are computed numerically, NNLP effects are visible
- Which version is more efficient and versatile? Which has more predictive power?
- Once we select the best NLP method, what is resolution in momentum we need for NLP to be measurable?

Results for $e^+e^- \rightarrow \mu^+\mu^-\gamma$ and $pp \rightarrow \mu^+\mu^-\gamma$

THREE VERSIONS OF (TREE-LEVEL) LBK

Results for $e^+e^-
ightarrow \mu^+\mu^-\gamma$ [Balsach, DB, Kulesza]

Note

- non-radiative amplitude can be computed analytically (used here for derivatives and off-shell shifts)
- exact means tree-level with no soft expansion
- estimation of NNLP effects

On-shell shifts work better. Used later as NLP

LP VS NLP $e^+e^- \rightarrow \mu^+\mu^-\gamma$: (c.m.) ω distributions [Balsach, DB, Kulesza]

LP VS NLP $e^+e^- \rightarrow \mu^+\mu^-\gamma$: p_t distributions [Balsach, DB, Kulesza]

LP VS NLP

 $pp \rightarrow \mu^+ \mu^- \gamma$: (c.m. and lab) ω distributions [Balsach, DB, Kulesza]

LP VS NLP

$pp \rightarrow \mu^+ \mu^- \gamma$: p_t distributions [Balsach, DB, Kulesza]

Loop corrections to LBK theorem

LP soft photon theorem **does not** receive corrections at **one-loop**.

$$egin{aligned} \epsilon^*_\mu(k)\mathcal{A}^\mu &= \mathcal{S}_{LP} \ \mathcal{A}_n \ , \qquad \mathcal{A}_n &= \mathcal{A}_n^{(0)}, \mathcal{A}_n^{(1)}, \mathcal{A}_n^{(2)}, ... \ \mathcal{S}_{LP} &= \sum_{i=1}^n Q_i rac{\epsilon^*(k) \cdot p_i}{p_i \cdot k} \ , \end{aligned}$$

at NLP, soft theorems do receive one-loop corrections.[Bern,Davies,Nohle 2014, He,Huang,Wen 2014, Larkoski,Neill, Stewart 2014, DB,Laenen,Magnea,Vernazza,White 2014]

$$\begin{split} \epsilon^*_{\mu}(k)\mathcal{A}^{\mu(0)} &= \left(\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree}\right)\mathcal{A}_n^{(0)} ,\\ \epsilon^*_{\mu}(k)\mathcal{A}^{\mu(1)} &= \left(\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree}\right)\mathcal{A}_n^{(1)} + ? ,\\ \mathcal{S}_{LP} &= \sum_{i=1}^n \mathcal{Q}_i \frac{\epsilon^*(k) \cdot p_i}{p_i \cdot k} , \quad \mathcal{S}_{NLP-tree} = \sum_{i=1}^n \mathcal{Q}_i \frac{\epsilon^*_{\mu}(k)k_{\nu}(\sigma^{\mu\nu} + L^{\mu\nu})}{p_i \cdot k} \end{split}$$

Various sources of correction. E.g. soft region in the massive case [Engel,Signer,Ulrich 2021]. In the high energy limit, it is interesting to look at the **massless limit** (crucial for the massless parton model) and the **collinear region**

Virtual collinear effects are captured by radiative jet functions J^{μ} [DelDuca 1990, DB, Laenen, Magnea, Vernazza, White 2014, Gervais 2017, Beneke, Garny, Szafron, Wang 2018, Laenen, Damste, Vernazza, Waalewijn, Zoppi 2020, Liu, Neubert, Schnubel, Wang 2021].

In particular, the one-loop quark radiative jet function in dimensional regularization (with $d = 4 - 2\epsilon$ and $\bar{\mu}$ the MS scale) reads

[DB,Laenen,Magnea,Melville,Vernazza,White,2015]

$$J^{\mu(1)} = \left(\frac{\bar{\mu}^2}{2p \cdot k}\right)^{\epsilon} \left[\left(\frac{2}{\epsilon} + 4 + 8\epsilon\right) \left(\frac{n \cdot k}{p \cdot k} \frac{p^{\mu}}{p \cdot n} - \frac{n^{\mu}}{p \cdot n}\right) - (1 + 2\epsilon) \frac{ik_{\alpha} S^{\alpha \mu}}{p \cdot k} + \left(\frac{1}{\epsilon} - \frac{1}{2} - 3\epsilon\right) \frac{k^{\mu}}{p \cdot k} + (1 + 3\epsilon) \left(\frac{\gamma^{\mu} \mu}{p \cdot n} - \frac{p^{\mu}}{p \cdot k} \frac{k \mu}{p \cdot n}\right) \right] + \mathcal{O}(\epsilon^2, k)$$

Thus, the next-to-soft theorem (i.e. LBK theorem) receives a logarithmic correction:

$$\begin{split} \epsilon^{*}_{\mu}(k)\mathcal{A}^{\mu(0)} &= \left(\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree}\right)\mathcal{A}_{n}^{(0)} ,\\ \epsilon^{*}_{\mu}(k)\mathcal{A}^{\mu(1)} &= \left(\mathcal{S}_{LP} + \mathcal{S}_{NLP-tree}\right)\mathcal{A}_{n}^{(1)} + \left(\sum_{i}\epsilon^{*}_{\mu}(k)q_{i}J_{i}^{\mu(1)}\right)\mathcal{A}_{n}^{(0)} ,\\ \mathcal{S}_{LP} &= \sum_{i=1}^{n}Q_{i}\frac{\epsilon^{*}(k)\cdot p_{i}}{p_{i}\cdot k} , \quad \mathcal{S}_{NLP-tree} = \sum_{i=1}^{n}Q_{i}\frac{\epsilon^{*}_{\mu}(k)k_{\nu}(\sigma^{\mu\nu} + L^{\mu\nu})}{p_{i}\cdot k} \\ \left(\sum_{i}\epsilon^{*}_{\mu}(k)q_{i}J_{i}^{\mu(1)}\right)\mathcal{A}_{n}^{(0)} &= \frac{2}{p_{1}\cdot p_{2}}\left[\sum_{ij}\left(\frac{1}{\epsilon} + \log\left(\frac{\bar{\mu}^{2}}{2p_{i}\cdot k}\right)\right)q_{j}p_{i}\cdot k\frac{p_{j}\cdot\epsilon}{p_{j}\cdot k}\right]\mathcal{A}_{n}^{(0)} \end{split}$$

• Note that amplitude is IR divergent $\epsilon \to 0$

▶ log(\u03c6 log(\u03c6 \u03c6 k), corrections to soft theorems in QED also discussed (mainly classically) by Laddha-Sahoo-Sen. Here however more standard approach (i.e. dim.reg.) to regularization of soft and collinear divergences, which allows implementation in the massless limit required in QCD partonic calculations.

IR divergences $(1/\epsilon)$ cancel by adding real emission diagram:

►
$$e^+e^- \rightarrow q \bar{q} \gamma$$

►
$$p p \rightarrow \mu^+ \mu^- \gamma$$

▶ ..

For processes with more than two colored particles situation more subtle (but structure is similar)

The soft photon bremsstrahlung at $O(\alpha_s)$ becomes

$$rac{d\sigma_{
m NLP}}{d^3k} = rac{d\sigma_{
m LP+(NLP-tree)}}{d^3k} + rac{lpha_s}{4\pi} rac{d\sigma_{
m NLP-J}}{d^3k} \; ,$$

where

$$\frac{d\sigma_{\text{NLP-J}}}{d^3k} = \frac{\alpha}{(2\pi)^2} \frac{1}{\omega_k} \int d^3p_3 \dots d^3p_n \left(\sum_{i=1}^2 \eta_i \frac{8\log\left(\frac{\mu^2}{2p_i \cdot k}\right)}{p_i \cdot k}\right) d\sigma_H(p_1, \dots, p_n)$$

- Correction of order $\alpha_s \log\left(\frac{\bar{\mu}^2}{2p_i \cdot k}\right)$ to LP spectrum $\frac{d\sigma}{d\omega_k}$ hence particularly enhanced for small ω_k and small k_t
- expecially relevant for hadrons (since for leptons $\alpha \ll \alpha_s, m \to 0$)

CONCLUSIONS

- General interest in soft photons at NLP (numerical definition, experimental anomalies, consistency of LBK theorem)
- Different formulations of (tree-level) LBK theorem (derivatives, off-shell shifts, on-shell shifts) are all theoretically consistent and formally equivalent at NLP
- ► Different formulations correspond to reshuffling of NNLP effects, which might be numerically relevant (scheme choice) ⇒ not all formulations equally efficient
- New LBK formulation with on-shell shifted kinematics allows standard event generation for non-radiative process
- Numerical results show resolution in energy/momentum for NLP effects to be visible