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Introduction



POWER CORRECTIONS

Perturbative calculations are the cornerstone of theoretical predictions in hep
E.g. expansion in α: LO, NLO, NNLO, ...

Large separation of scales
→ expansion in other small parameters : LP, NLP, NNLP, ...

E.g. k� p (soft expansion )

k

p



SOFT FACTORIZATION

A =

k
p

H

p−k

H =

p

H

A(p1, . . . , pn, k)︸ ︷︷ ︸
radiative

= S(k)︸︷︷︸
soft factor

× H(p1, . . . , pn)︸ ︷︷ ︸
non-radiative

S =
−−−−−−−−→
S(0)

LP + S(1)
LP + S(2)

LP + ...y + S(0)
NLP + S(1)

NLP + S(2)
NLP + ...

+ S(0)
NNLP + S(1)

NNLP + S(2)
NNLP + ...

+ ...

More interesting structure for n emissions: S = exp(W)



HISTORY EXTENDS TO PRESENT DAYS (BOTH AT LP AND NLP)
Soft Factorization has a long history
I LP (QED) [Bethe-Heitler 1934, Bloch-Nordsieck 1937, Yenni-Fratuushi-Suura 1961]

I LP (gravity) [Weinberg 1965]

I NLP (QED-tree) [Low 1958, Burnett-Kroll 1967].

up to more recent times
I LP (QCD) tree [Berends-Giele 1988]

1-loop[Catani-Grazzini 2000]

2-loop[Duhr-Gehrmann 2013]

3-loop[Herzog-Ma-Mistlberger-Suresh 2023, Chen-Luo-ManYan-Zhou 2023]

I LP (massless QED) 3-loop [Ma-Sterman-Venkata 2023]

I NLP (QCD, massless QED) [DelDuca 1990, Casali 2014, Bern-Davies-Nohle2014,

Larkoski-Neill-Stewart 2014, DB-Laenen-Magnea-Melville-Vernazza2015,

Beneke-Broggio-Jaskiewicz-Vernazza 2019, Liu-Mecaj-Neubert-Wang 2021,

Ravindran-Sankar-Tiwari 2022, Sterman-Vogelsang 2023, Czakon-Eschment-Schellenberger

2023 + many others!]

I NLP (QED) 1-loop [Engel,Signer,Ulrich 2021] all-orders [Engel 2023]

I NLP, NNLP gravity [White 2011, Cachazo-Strominger 2014, Beneke-Hager-Szafron

2022 + many others! ]



METHODS

I Effective field theories

LSCET = LLP + LNLP

σDY-LP = H × S , σDY-NLP = H ⊗ J ⊗ J̄ ⊗ S̃

I Diagrammatic factorization

Aµ = J µ × S ×H + J × Sµ ×H + J × S ×Hµ

= HH + HH + HH

I Worldline formalism

〈 /̂p + /A(x̂)

(/̂p− /A(x̂))2 −m2
〉 ∼

∫
dT
∫

dθ
∫
Dψ

∫
DxDp e−i

∫
dt (p·ẋ+ i

2ψ·ψ̇−Den− θT Num) .

I On-shell methods, celestial methods, ...



WHY DO WE CARE TO GO BEYOND LP?

Understanding infrared structure of QFTs

Soft gluon resummation beyond LP

dσ
dξ

=
∞∑

n=0

2n−1∑
m=0

αn
s

[
anm

(
logm(ξ)

ξ

)
+︸ ︷︷ ︸

LP(LL,NLL,NNLL,...)

+ bnm logm(ξ)︸ ︷︷ ︸
NLP(LL,NLL,NNLL,...)

+O(ξ)

]

Efficient computation of Gravitational waves
differential distributions PM expansion

In this talk I focus on the soft-photon bremsstrahlung. Why?
[Image credits: Antonelli, Kavanagh, Khalil, Steinhoff, Vines PRL 125, 011103, Strominger

arXiv:1703.05448, Engel, Signer, Ulrich JHEP 04(2022)097]



WHY SOFT PHOTONS? 1. DEFINITION

Numerically, when is a photon soft?
I What is the resolution in energy-momentum one has to achieve for

NLP effects to be measurable? When is the LP approx valid? Is that
compatible with the experimental uncertainties?

I In QCD resummation one is blind to energy-momentum of the
undetected gluon. In the bremsstrahlung case the photon is detected.
Soft photon spectra give direct access to NLP effects.

I Soft theorems formulated with k→ 0, but photon spectra necessarily
have k 6= 0.

I Question relevant also for more formal investigations and for condensed
media [Landau-Pomeranchuk 1953, Feal-Vazquez 2018]

[Image credit: DELPHI collaboration, Eur. Phys. J. C (2008) 57: 499–514]



WHY SOFT PHOTONS? 2. EXPERIMENTAL DISCREPANCIES

[Table taken from Cheuk-Yin Wong, arXiv:1404.0040. See also Martha Spyropoulus-Stassinaki, CF

2002, V. Perepelitsa, for the DELPHI Collaboration, Nonlin. Phenom. Complex Syst. 12, 343 (2009) ]



WHY SOFT PHOTONS? 2. EXPERIMENTAL DISCREPANCIES

DELPHI data for hadronic Z decays

Photon range: 200 MeV < ωk < 1 GeV, pt (w.r.t. jet) < 80 MeV

[Abdallah et al. Eur. Phys. J. C (2010) 67: 343–366]

Only LP term used for comparison. Natural to wonder what is the impact of
NLP corrections.



WHY SOFT PHOTONS? 3. CONSISTENCY OF LBK THEOREM

π(pa)π(pb)→ π(p′1)π(p′2)γ(k)

Two seemingly different versions of the theorem[Lebiedowicz, Nachmann, Szczurek

2021]

AµLow = eH(s′L, t2)

[
pµa

pa · k
−

p′µ1
p′1 · k

]
+ e

∂H(s′L, t2)

∂s′L

[
pµb −

pb · k
pa · k

pµa + p′µ2 −
p′2 · k
p′1 · k

p′µ1

]
AµV2 = eH(sL, t)

[
pµa

pa · k
−

p′µ1
p′1 · k

]
+ 2e

∂H(sL, t)
∂sL

[
pµb −

pb · k
pa · k

pµa

]
− 2e

∂H(sL, t)
∂t

[(pa − p1) · k− pa · l1]

[
pµa

pa · k
−

pµ1
p1 · k

]
where

pa + pb = p1 + p2 = p′1 + p′2 + k ,

s = pa · pb + p1 · p2, t = (pb − p2)
2

sL = pa · pb + p′1 · p′2, t2 = (pb − p′2)
2 ,

l1 = p1 − p′1 , l2 = p2 − p′2 .

I Disagreement at NLP
I However, LBK theorem passed several non-trivial tests, e.g. NNLO DY

[DB-Laenen-Magnea-Melville-Vernazza-White 2015] O(Λ) in t̄t
[Makarov-Melnikov-Nason-Ozcelik 2023], ...



Review of LBK theorem



DIAGRAMMATICS (LP)

Goal: A(p1, . . . , pn, k)︸ ︷︷ ︸
radiative

= S(k)︸︷︷︸
soft factor

× H(p1, . . . , pn)︸ ︷︷ ︸
non-radiative

A =

k
p

H

p−k

H =

p

H

A = H(p− k)
(/p−/k)

(p−k)2 (Q ε∗(k) · γ) u(p) H = H u(p)

At LP, take the leading term for k→ 0 (eikonal approximation):

A = SLPH , SLP =
n∑

i=1

Qiηi
ε∗(k) · pµi

pi · k

I insensitive to spin of hard emitter
I hard particles do not recoil (k→ 0)
I insensitive to the short distance physics i.e. non radiative amplitudeH



DIAGRAMMATICS (NLP)
k

p

H

p−k

k
p

H

I External emission: expand up to O(k)

Aµext(p) = H(p− k)
(/p− /k)

(p− k)2 (Q γµ)u(p)

= Q H(p)

(
pµ

p · k +
kµ

2p · k −
k2pµ

2(p · k)2 −
ikνσµν

p · k

)
u(p)

+ Q
pµ

p · k kν
∂H(p− k)

∂kν

∣∣∣
k=0︸ ︷︷ ︸

− ∂H(p)
∂pν

u(p) + O(k)

I Expansion performed assuming r.h.s. a f (k), not restricted to the
physical constraint

∑
i pi = k. But of course after expanding it we are

only interested in the value of f (k) on momentum conservation surface!
I Alternative: do not leave mom-cons. surface and parametrize pi(k) (note

derivatives on spinors). Parametrization pi(k) not unique.



DIAGRAMMATICS (NLP)

I Internal emission: use Ward identity kµ(Aµext +Aµint) = 0

Aµint =
∑

i

Qi
∂H(pi)

∂pi
µ

u(pi) + ∆µ︸︷︷︸
O(k)

I Adding Aµext and Aµint:

Aµ =
∑

i

Qi
pµi

pi · k
H(p1...pn)

+
∑

i

Qi

(
kµ

2p · k −
k2pµ

2(p · k)2 −
ikνσµν

p · k

)
H(p1...pn)

+
∑

i

Qi

(
−

pµi kν

pi · k
∂

∂pνi
+

∂

∂pµi

)
︸ ︷︷ ︸
− kν

pi·k

(
pµi

∂

∂pνi
− pνi

∂

∂pµi

)
︸ ︷︷ ︸

≡Lµν

H(p1...pn)

Lµν is the angular momentum generator of the Lorentz group



LBK THEOREM (NLP)

This is the sub-leading soft theorem, known as Low-Burnett-Kroll theorem:
[Low 1958 (scalar emitters), Burnett-Kroll 1968 (spin 1

2 emitters, conjecture for generic
spin), Bell-VanRoyen 1969 (generic spin), Cachazo-Strominger 2014]

A(p1, . . . , pn, k) = (SLP + SNLP)H(p1, . . . , pn) ,

SLP =
n∑

i=1

ηiQi
ε∗(k) · pi

pi · k
, SNLP =

n∑
i=1

ηiQi
ε∗µ(k)kν(σµν + Lµν)

pi · k

I corrections to the strict limit k→ 0: small recoil of the emitter taken into
account

I sensitive to the spin of the emitter (e.g. σµν = 0 for scalars,
σµν = i

2 [γµ, γν ]for spin 1/2, etc.)
I orbital angular momentum Lµν is sensitive to the short distance

interactions inH (hard lines do not start from a pointlike vertex)
I NLP corrections here are valid only at the tree-level



FROM AMPLITUDES TO CROSS-SECTIONS

At amplitude level two NLP contributions:
I Spin σµν

I Orbital Lµν i.e. derivatives

Squaring and summing over polarizations, spin contribution becomes also a
derivative. Crucial identity e.g. for leg p1 (neglecting ∼ kµ):

/kγµ

p1 · k
(/p1

+ m) + (/p1
+ m)

γµ/k
p1 · k

= −γµ +
pµ1

p1 · k
/k = Gµν1

∂

∂pν1
(/p1

+ m)

Then, traditional LBK with derivatives reads

|A(p1, . . . , pn, k)|
2

=
∑

ij

(−ηiηjQiQj)
pi · pj

pi · k pj · k
|H(p1, . . . , pn)|

2
→ LP

+
∑

ij

(−ηiηjQiQj)
pi
µ

pi · k
Gµνj

∂

∂pνj
|H(p1, . . . , pn)|

2
→ NLP



AMBIGUITIES AT NLP

Problem: momentum conservation
l.h.s.

∑
i pi = k VS

∑
i pi = 0 on the r.h.s. → difference for finite k 6= 0

Let us replace inH(p1, . . . , pn)

pi → p̃i(k) = pi + cik +O(k2)

ci are arbitrary coefficients =⇒ Is LBK invariant at NLP?

|A(p1, . . . , pn, k)|
2

=

n∑
ij=1

(−ηiηjQiQj)
pi · pj

pi · k pj · k
|H(p̃1, . . . , p̃n)|

2

+

n∑
ij=1

(−ηiηjQiQj)
pi
µ

pi · k
ξj

(
ηµν −

pµj kν

pj · k

)
d

dpνj
|H(p̃1, . . . , p̃n)|

2

LBK theorem is invariant if ci dependence cancels up to NNLP corrections.



AMBIGUITIES AT NLP

First Taylor expand in k

|H(p̃1, . . . , p̃n)|
2

= |H(p1, . . . , pn)|
2

+ kµ
∑

i

ci
∂

∂pi
µ

|H(p1, . . . , pn)|
2

+O(k2)

Then impose momentum conservation k =
∑

i pi

d
dpνj
|H(p̃1, . . . , p̃n)|

2
=

∂

∂pνj
|H(p1, . . . , pn)|

2
+ gµνξj

∑
i

ci
∂

∂pi
µ

|H(p1, . . . , pn)|
2

+O(k)

Plug this into LBK with p̃i

→we get original LBK (with pi) + remainder term that depends on ci

R(ci) =

n∑
ij=1

(−ηiηjQiQj)
pi · pj

pi · k pj · k
kµ
∑

m

cm
∂

∂pm
µ

|H(p1, . . . , pn)|
2

+

n∑
ij=1

(−ηiηjQiQj)
pi
µ

pi · k
ξj

(
ηµν −

pµj kν

pj · k

)
ξj

∑
m

cm
∂

∂pνm
|H(p1, . . . , pn)|

2
+O(1)

= 0 +O(1) = NNLP

=⇒ LBK is invariant at NLP under momentum transformation



AMBIGUITIES AT NLP

Two cases in particular are relevant:
I ci = 0 (i.e. unphysical momenta, as in original LBK)
I
∑

i ci = −1 =⇒
∑

i pi = k,
∑

i p̃i = 0 (i.e. momentum conservation
restored)

By virtue of the invariance, the two cases are equivalent at NLP. Hence,
traditional LBK with unphysical momenta is consistent.

More generally, there are an infinite number of (formally equivalent at NLP)
versions of the theorem, that differ by NNLP terms.

Here invariance shown under momenta transformation. The more general
invariance of LBK under

H → H+ ∆ with ∆(pi)δ(pi) = 0 (1)

can be proven [Balsach, DB, Kulesza 2023] which holds also e.g. for constant
amplitudes.

Key aspect: choice of functional dependence forH yields the version of the
theorem. Cancellation of NLP ambiguities between 2 terms of the theorem.



AMBIGUITIES AT NLP
A simple example: π(pa)π(pb)→ π(p′1)π(p′2)γ(k)

Functional dependence:
I H(sL, t) as in AµV2[Lebiedowicz, Nachmann, Szczurek 2021]

I H(s′L, t2) = H(sL, t) + δs′L ∂H∂sL
+ δt2

∂H
∂t as in AµLow [Low 1958]

with some algebra

δs′L = −(pa + pb) · k +O
(

k2
)
,

δt2 = −2 [(pa − p1) · k− pa · l1] +O
(

k2
)
.

one can see that AµLow = AµV2 +O
(
k2)

AµLow = eH(s′L, t2)

[
pµa

pa · k
−

p′µ1
p′1 · k

]
+ e

∂H(s′L, t2)

∂s′L

[
pµb −

pb · k
pa · k

pµa + p′µ2 −
p′2 · k
p′1 · k

p′µ1

]
AµV2 = eH(sL, t)

[
pµa

pa · k
−

p′µ1
p′1 · k

]
+ 2e

∂H(sL, t)
∂sL

[
pµb −

pb · k
pa · k

pµa

]
− 2e

∂H(sL, t)
∂t

[(pa − p1) · k− pa · l1]

[
pµa

pa · k
−

pµ1
p1 · k

]
The 2 versions are equivalent up to NNLP corrections. Similar analysis done
by [Fadin-Khoze 2024]



AMBIGUITIES AT NLP

I Traditional LBK is consistent at NLP

I Many forms of traditional LBK (all equivalent up to NNLP)

I consistent 6= efficient. Some form of the theorem might be more efficient
for a numerical implementation (NNLP effects can be visible in photon
spectra since k 6= 0 )

I in particular, is there a form where the non-radiative process can be
computed with unambiguous physical momenta?



LBK theorem with shifted kinematics



FROM DERIVATIVES TO SHIFTS

|A(p1, . . . , pn, k)|
2

=
∑

ij

(−ηiηjQiQj)
pi · pj

pi · k pj · k
|H(p1, . . . , pn)|

2
→ LP

+
∑

ij

(−ηiηjQiQj)
pi
µ

pi · k
Gµνj

∂

∂pνj
|H(p1, . . . , pn)|

2
→ NLP

Exploit the fact that derivatives are generators of translations:

f (x + ε) = f (x) + ε
d

dx
f (x)

→ convert derivatives into shifted momenta
[DelDuca, Laenen, Magnea, Vernazza, White 2017, van Beekveld-Beenakker-Laenen-White 2020,

Bonocore, Kulesza 2021, van Beekveld-Danish-Laenen-Pal-Tripathi-White 2023]

|A(p1, . . . , pn, k)|
2

=

n∑
i,j=1

−ηiηj
pi · pj

pi · k pj · k

1−
∑

j

δpνj
∂

∂pνj

 |H(p1, . . . , pn)|
2



FROM DERIVATIVES TO SHIFTS

LBK with shifted kinematics:

|A(p1, . . . , pn, k)|
2

=

n∑
i,j=1

−ηiηjQiQj
pi · pj

pi · k pj · k︸ ︷︷ ︸
LP factor!

|H(p1 + δp1, . . . , pn + δpn)|
2

δpνj = ηjξjQj

∑
k,l

ηkηlQkQl
pk · pl

(pk · k)(pl · k)

−1∑
i

(
ηiQipiµ

k · pi

)(
ηµν −

pµj kν

pj · k

)

Note that

δpi = O(k)
∑

i

δpi = −k pi · δpi = 0



FROM DERIVATIVES TO SHIFTS

Simple case: 2 charged particles

|A(p1, p2, k)|2 =

 2∑
i,j=1

−ηiηjQiQj
pi · pj

pi · k pj · k

 |H(p1 + δp1, p2 + δp2)|2 (2)

where

δpµ1 =
1
2

(
− p2 · k

p1 · p2
pµ1 +

p1 · k
p1 · p2

pµ2 − kµ
)

δpµ2 =
1
2

(
p2 · k
p1 · p2

pµ1 −
p1 · k
p1 · p2

pµ2 − kµ
)

Immediate to see

δpi = O(k) → LBK is NLP

δp1 + δp2 = −k → momentum is conserved

pi · δpi = 0 → on shell?



FROM DERIVATIVES TO SHIFTS

pi · δpi = 0 =⇒ (pi + δpi)
2 = m2 +O(k2) = m2+NNLP

Momenta are on-shell at NLP, hence theorem consistent at NLP

However, masses do get shifted by a NNLP amount!

(δpj)
2 = Q2

j

∑
k,l

ηkηlQkQl
pk · pl

(pk · k)(pl · k)

−1

6= 0 ,

i.e. with shifts we recovered momentum conservation, but momenta are
off-shell at NNLP→ problem for numerical implementations, where k 6= 0

Is there a LBK formulation fulfilling both momentum conservation AND
on-shell condition exactly (i.e. not just at NLP)?



LBK theorem with modified shifted kinematics



MODIFIED SHIFTS

LBK theorem works at NLP
=⇒ freedom to introduce spurious NNLP terms in the shifts.

We would like shifts δpi to

(i) conserve momentum exactly, i.e.∑
i

ξiδpi + k = 0 ,

(ii) not shift the masses exactly, i.e.

(pi + δpi)
2 = m2

i ,

(iii) reduce to old shifts up to NNLP corrections, i.e.

δpνj = ηjξjQj

(
|SLP|2

)−1∑
i

(
ηiQi

k · pi

)(
pνi −

pi · pj

pj · k
kν
)

+O
(

k2
)
.

Is this possible?



MODIFIED SHIFTS

Consider the ansatz

δpµi =
∑

j

Aµνij pjν + Bµνi kν ,

and determine coefficients Aµνij and Bi by imposing conditions (i)-(iii).

→ conditions not too constraining, many solutions for δpi. But we seek a
single solution!

I restrict our ansatz

δpµi =
∑

j

AηiξiQi
ηjQj

k · pj
pjν + Bµνi kν

I impose pjν and kν to be linear independent
I verify that solution has correct behaviour for k→ 0



MODIFIED SHIFTS
Result: [Balsach, DB, Kulesza]

δpµi = AηiξiQi

∑
j

ηjQj

k · pj
pjνGνµi −

1
2

A2Q2
i |SLP|2

pi · k
kµ ,

with

A =
1
χ

(√
1 +

2χ
|SLP|2

− 1

)
χ =

∑
i

ξiQ2
i

pi · k
.

|SLP|2 =
∑

i,j

ηiηjQiQj
pi · pj

(pi · k)(pj · k)

I Momentum is conserved (exactly)
I Momenta are on-shell (exaclty)
I Shifts are O(k) =⇒ equivalent to traditional LBK at NLP

=⇒ This form of LBK allow computation of non-radiative processH with
most general-purpose event generators

Price to pay: spurious NNLP terms in the shifts



THREE VERSIONS OF (TREE-LEVEL) LBK

I All theoretically consistent at NLP

I NNLP ambiguities contained in all three versions (“scheme”
dependence)

I When spectra are computed numerically, NNLP effects are visible

I Which version is more efficient and versatile? Which has more
predictive power?

I Once we select the best NLP method, what is resolution in momentum
we need for NLP to be measurable?



Results for e+e− → µ+µ−γ and pp→ µ+µ−γ



THREE VERSIONS OF (TREE-LEVEL) LBK

Results for e+e− → µ+µ−γ [Balsach, DB, Kulesza]
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Note
I non-radiative amplitude can be computed analytically (used here for

derivatives and off-shell shifts)
I exact means tree-level with no soft expansion
I estimation of NNLP effects

On-shell shifts work better. Used later as NLP



LP VS NLP
e+e− → µ+µ−γ: (c.m.) ω distributions [Balsach, DB, Kulesza]
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LP VS NLP
e+e− → µ+µ−γ: pt distributions [Balsach, DB, Kulesza]
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LP VS NLP
pp→ µ+µ−γ: (c.m. and lab) ω distributions [Balsach, DB, Kulesza]
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LP VS NLP

pp→ µ+µ−γ: pt distributions [Balsach, DB, Kulesza]
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Loop corrections to LBK theorem



NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

I LP soft photon theorem does not receive corrections at one-loop.

ε∗µ(k)Aµ = SLP An , An = A(0)
n ,A(1)

n ,A(2)
n , ...

SLP =
n∑

i=1

Qi
ε∗(k) · pi

pi · k
,

I at NLP, soft theorems do receive one-loop corrections.[Bern,Davies,Nohle

2014, He,Huang,Wen 2014, Larkoski,Neill, Stewart 2014, DB,Laenen,Magnea,Vernazza,White

2014]

ε∗µ(k)Aµ(0) = (SLP + SNLP−tree)A(0)
n ,

ε∗µ(k)Aµ(1) = (SLP + SNLP−tree)A(1)
n + ? ,

SLP =

n∑
i=1

Qi
ε∗(k) · pi

pi · k
, SNLP−tree =

n∑
i=1

Qi
ε∗µ(k)kν(σµν + Lµν)

pi · k

Various sources of correction. E.g. soft region in the massive case
[Engel,Signer,Ulrich 2021]. In the high energy limit, it is interesting to look at
the massless limit (crucial for the massless parton model) and the
collinear region



NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

Virtual collinear effects are captured by radiative jet functions Jµ [DelDuca

1990, DB, Laenen, Magnea, Vernazza, White 2014, Gervais 2017, Beneke, Garny, Szafron, Wang

2018, Laenen, Damste, Vernazza, Waalewijn, Zoppi 2020, Liu, Neubert, Schnubel, Wang 2021].

HH

k

p

p

In particular, the one-loop quark radiative jet function in dimensional
regularization (with d = 4− 2ε and µ̄ the MS scale) reads
[DB,Laenen,Magnea,Melville,Vernazza,White,2015]

Jµ(1)=

(
µ̄2

2p · k

)ε [(2
ε

+ 4 + 8ε
)(

n · k
p · k

pµ

p · n −
nµ

p · n

)
− (1 + 2ε)

ikαSαµ

p · k

+

(
1
ε
− 1

2
− 3ε

)
kµ

p · k + (1 + 3ε)
(
γµ/n
p · n −

pµ

p · k
/k/n

p · n

)]
+O(ε2, k)



NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

Thus, the next-to-soft theorem (i.e. LBK theorem) receives a logarithmic
correction:

ε∗µ(k)Aµ(0) = (SLP + SNLP−tree)A(0)
n ,

ε∗µ(k)Aµ(1) = (SLP + SNLP−tree)A(1)
n +

(∑
i

ε∗µ(k) qi Jµ(1)
i

)
A(0)

n ,

SLP =
n∑

i=1

Qi
ε∗(k) · pi

pi · k
, SNLP−tree =

n∑
i=1

Qi
ε∗µ(k)kν(σµν + Lµν)

pi · k(∑
i

ε∗µ(k) qi Jµ(1)
i

)
A(0)

n =
2

p1 · p2

[∑
ij

(
1
ε

+ log

(
µ̄2

2pi · k

))
qj pi · k

pj · ε
pj · k

]
A(0)

n

I Note that amplitude is IR divergent ε→ 0
I log(ωk) corrections to soft theorems in QED also discussed (mainly

classically) by Laddha-Sahoo-Sen. Here however more standard
approach (i.e. dim.reg.) to regularization of soft and collinear
divergences, which allows implementation in the massless limit
required in QCD partonic calculations.



NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

IR divergences (1/ε) cancel by adding real emission diagram:

p

p
1

2

k

H

p

p
1

2

k

H

p

p
1

2

k

H

The soft photon emission from the loop with a collinear gluon is captured
by the radiative jet function Jµ (note here the mixed QED-QCD effect)
The corresponding contribution is what is needed for a process with a single
quark-antiquark pair in the massless limit such as
I e+e− → q q̄ γ
I p p→ µ+µ−γ

I ...

For processes with more than two colored particles situation more subtle (but
structure is similar)



NLP BREMSSTRAHLUNG WITH QCD CORRECTIONS

The soft photon bremsstrahlung at O(αs) becomes

dσNLP

d3k
=

dσLP+(NLP-tree)

d3k
+
αs

4π
dσNLP-J

d3k
,

where

dσNLP-J

d3k
=

α

(2π)2

1
ωk

∫
d3p3 . . . d3pn

 2∑
i=1

ηi

8 log
(
µ̄2

2pi·k

)
pi · k

 dσH(p1, ..., pn)

I Correction of order αs log
(
µ̄2

2pi·k

)
to LP spectrum dσ

dωk

hence particularly enhanced for small ωk and small kt

I expecially relevant for hadrons (since for leptons - α� αs, m→ 0)



CONCLUSIONS

I General interest in soft photons at NLP (numerical definition,
experimental anomalies, consistency of LBK theorem)

I Different formulations of (tree-level) LBK theorem (derivatives, off-shell
shifts, on-shell shifts) are all theoretically consistent and formally
equivalent at NLP

I Different formulations correspond to reshuffling of NNLP effects, which
might be numerically relevant (scheme choice) =⇒ not all formulations
equally efficient

I New LBK formulation with on-shell shifted kinematics allows standard
event generation for non-radiative process

I Numerical results show resolution in energy/momentum for NLP
effects to be visible
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