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No Perturbative Truncation Uncertainty!?!

. Quark masses in MS scheme with small uncertainties:
- total < 1% for bottom, charm, strange;

- and 1-2% for up and down. [arXiv:1802.04248].

- Negligible uncertainty for truncating perturbation theory:
- order ¢ “matching”, but still @;

- could whatever wizardry was used be generalized”


https://inspirehep.net/literature/1654552

Perturbative Stability
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Relation Between Meson Mass and Quark Mass

( Mmeson mass\? “brown muck”)

Mg = my +A+0(1/my)

(#e\avy guark “pole” mass )

(”’_”lb = mb,Ms(”'_’lb)&

mp =y, | 1+ Y rlocsl“(n‘fz))

[=0

r = {0.42,1.03,3.69,17.4)



Relation Between Meson Mass and Quark Mass

( Mmeson mass\? “brown muck”)

Mg = my +A+0(1/my)

(#e\avy guark “pole” mass )

(’”’_‘lb = mb,Ms(”'_’lb)k

my, =my | 1+ Z FZ(XSZ+1(H7L))

[=0

= {0.42,1.03,3.60, 17.4}¢

4



Relation Between Meson Mass and Quark Mass

( Mmeson mass\? “brown muck”)

Mg = my +A+0(1/my)

(#e\avy guark “pole” mass )

(’”’_‘lb = mb,Ms(”'_’lb)k

my, =my | 1+ Z FZOCSZ+1 (ﬁfl)) — MMp MRS

[=0

= {0.42,1.03,3.60, 17.4}¢

4



Factorial Growth

- Even in quantum mechanics, high orders of perturiation
theory grow factorially [e.g., Bender & Wu 1971, 19/3].

- Also in QFT [e.q., Gross & Neveu 1974, Lautrup 1977].

- Quark-mass r; grow factorially (known for a long time):
T+ 14Db)
['(1+b)

ry ~ R()(Zﬁ()) — Rl

ne=3
for[» 1. Here b=, /2B2 =" 32/81~ 0.4

+ Doesr={042,1.03,3.69,17.4} start growing by [ = 37


https://inspirehep.net/literature/69360
https://inspirehep.net/literature/304771
https://inspirehep.net/literature/1026
https://inspirehep.net/literature/5425
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Normalization Factor Ro

* Ro less well understood:

+ expressions with complicated derivations in the
literature [1. Lee 1998, 1999, Pineda 2001; Hoanq,
Jain, Scimemi, Stewart 2008; Komijani 201 7/].

. Komiiani [arXiv:1701.00347]:

& I'(1+ b)

Ko :k;)(” D21 ) (2/30)"7(

[fk obtained from rj, B;, j < k; see below]
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Minimal BRenormalon Subtraction

SBrambilla, Komijani, & ASK, Vairo [arXiv:1/12.04983]
oroposed adding and subtracting the R, series:

0.0)

my =m+m Y [r—Rijo (m)+m) Rot (m)
[=0 [=0

+ First sum is truncated at some order: oo — L — 1.
- Second sum can be carried out via Borel procedure.

-+ Dubbed “minimal renormalon subtraction” (MRS).

- Are medium orders approximated well”


https://inspirehep.net/literature/1643281

Questions

- When does factorial growth set in”
- Simpler derivation of normalization possible?
- (Generalizations:

. AP instead of single power A;

+ subtract subleading factorial growth, I.e., series with
more than one power correction;

+scale dependence o5 (Q) — og(sQ).



Main Outcomes

- Generalizations to arbitrary power corrections A?” /QP and
different scale choices og(sQ) straightforward.

-+ Simple argument —
- reproduces Komijani’'s normalization (in practice);
- demonstrates factorial behavior already at low order;
+ shows how to treat more than one power correction—

- relyies only on renormalization group.



Outline
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- Borel Summation
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+Two or More Power Corrections

- Conclusions & Outlook
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Power Corrections and Factorial Growth
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Notation & Setup

- Consider (dimensionless)

Z(Q)=r-1+R(Q)+Cp— R(Q) =) n(u /Q/Z\)ocs(u)’“
[=0

(I\/I_S perturbative series]

- RGE: coefficients’ u dependence must cancel that of a;

- . RGE constrains O dependence of R(Q).
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Notation & Setup

- Consider (dimensionless) power p « factorial growth
QO/hysmal quanhty] L\c/)vver Correcnon)
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Power-Term Removal

. AP
- Start with Z(Q) =r_1 +R(Q) +C, @.
- To eliminate A?/QP multiply by Qr and differentiate:
L dO"7 _ »)
r1+F(Q) = o1 ag —2"7
- AsaseriesF(Q) =Y fial™(Q) = f(o Zf o1
—0
) k—1
fi=r—=) (J+1)B1-jr
P =

- Differential equation r(a) + 2B (a)r' () = f(a).
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Differential Equation

Differential equation r(er) + 2 (a)r' (&) = f(cv).

- Take f(a) as given and solve for r(a):

Komijani’s solution reproduces R;’s growth, vields Ro.

Here, use only the elementary feature —

» general solution is any particular solution plus a
solution of the homogeneous equation (0 on RHS);

»solution to homogeneous equation IS « Af

14



My Solution

- The relation between the coefficients is a matrix equation

() 2% .
Ji :rk__Z(]+1>ﬁk—1—jrj
P =0
FP) — _1_%1)- r=QW . p
) P

and D is on the lower triangle.

Matrix is infinite, but the lower triangular form makes a
row-pby-row solution straightforward.

15



- Scheme for o Is chosen to simplify algebra (“geometric’):
plag) =

Notation to make the expressions compact: T =2y /p.

1 0
—T 1
—12pb —27
—t(tpb)>  —27%pb
() _ 3 )
g = | —t(tpb)° —27(Tpb)
—t(tpb)* —2t(tpb)’
—t(tpb)®> —21(1tpb)*

2
pocx,

1 —(B1/Bo) g

0 0 0 0

0 0 0 0

1 0 0 0
—37 1 0 0
—37%pb —47 1 0
—37(tpb)*>  —41%pb -5t 1
6

—37(tpb)® —4t(tpb)*> —571°pb —67

ns=3
- As before b= B, /282 = 32/81 ~0.4.

S o N e M e e e e
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INnve
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» Inverse reveals that factorial growth begins at low orders:
1 0 0 0 0 O 0 -

T 1 0 0 0 0O O

Ty 27 1 0 0 0 0

Qép)_l - Tz Eggg zfﬁ 2:(;1)19) | O bl

U rtps) 2V T0+pb) % T(atpb) 47 1 0 O

UG e ol ol s 1 o

D oD W oS o o

y — Qg’)_ f(p)

4 z N/ S )
p I'(1+pb) |&=, C(k+2+pb) \2By) '* /
_ well-known growth ]| Komijani’s Ry (truncated) extra ),

J\




Growth < Power

Larger p = growth takes over at larger [.

20|

20}

(») ()
R/ Ry
o

ek
SR
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New Approximation for Perturbative Series



Perturbative Series

- We must be back where we started, right?  r=e's=0"'-e-

In practice, we know r; and, hence, f; for [ < L.
The formula returns these r; (as it must).

For [ = L, the formula tells us (formally) the largest part:
- truncate on f;, not r;; evaluate Y72, r;al ™! by —
- taking exact r; from the literature for [ < L;

+ approximating r; = R; for [ = L.
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Perturbative Series

é / \lf—l I X )
- (2_[30) [(I+1+ pb) Y (k+1) [(1+ pb) (L) £l o)
p ['(1+pb) = [(k+2+pb) \ 2By /) '* /
_ well-known growth ]| Komijani Ro (truncated) ) drop
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Perturbative Series

(2[30 lF(l+1+pb;7_1 ['(1+ pb) 7 \*
(7) T kzo(k“)nmzwb)( >

_ well-known growth Komijani Ro (truncated)

=
U
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Perturbative Series

(2[30 lF(l+1+pb;L_l ['(1+ pb) 7 \*
(7) T kzo(k“)nmzwb)( >

_ well-known growth Komijani Ro (truncated)

=
U
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Recap & Compendium

. [+1 [+1 p) l+1
That means Zrlas — Zrlas _I_ZRZ( )as
[=0 [=0 [=L

with
RpP) — plp) <2[30)lr(l -1+ pb)
| =Ko
p ['(1+ pb)
L—1 k
(p) _ I'(1+ pb) < p ) (p)
Ry’ = k ——
! kz;)( " )F(k+2+pb) 2o Ji

-+ Systematic approximation because the retained terms
are formally larger than the ones omitted.



Sorel Summation
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Rearrange and React

- We have

Z“XHI%Z’”O‘ZH_I_ZR alt!
—Z(’”I ) l+1+ZR alt!

=0
%/_/ %/—/

R (0) RY)(0)

-+ The “renormalon subtracted” part and the “Borel” part.

- The R; from above yield divergent sum for Rg, but we're
not done yet: use Borel summation to assign meaning.



Sorel Summation

- Using the integral representation of 1'(/+1):

0o [

(p) (p) ['(l+1+ pb) /Oo (2ﬁ0f> —t/ 0ty (Q)

RV (0) =R “ ) e %@y
B (@) =R, Zg) (14 pb)T(I+1) Jo p

W [ e /%O
— R p / dt Mathematica knows the sum
°Jo (1=2pot/p)ttrh

where 2nd line comes from (illegally) swapping X and /.

- Branch point in integrand at ¢ = p/20, dubbed
“‘renormalon singularity” ['t Hooft 19/79].

24
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Sorel Summation

- Split integration in two [BKKV, arXiv:1/712.04983]:

Mathematica knows
the integrals

(p) (P p/2Bo e_t/ag(Q)
RB (Q) _RO /O (1_2ﬁ0t/p)1+pbdt

R(p) oo e_t/ag(Q) d
+RY | :
’ p/2By (1 —2Pot/p)'*rb

25
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Sorel Summation

- Split integration in two [BKKV, arXiv:1/712.04983]:

Mathematica knows
the integrals

R (0) =R 55 7 (ph.1/2B00(Q)

- 1P
== R(P)eiipbn p1+pb F(—pb) e 1/[2Bp e (Q)]
0 21+pbﬁo [ﬁo(xg(Q)]b



https://inspirehep.net/literature/1643281

Sorel Summation

- Split integration in two [BKKV, arXiv:1/712.04983]:

Mathematica knows
the integrals

R (0) =R 55 7 (ph.1/2B00(Q)

1+pb I 17
_ p(p) +ippr P B
Ry e 21—|—pbﬁ()r( pb) 0
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Sorel Summation

- Split integration in two [BKKV, arXiv:1/712.04983]:

Mathematica knows
the integrals

2

R (Q) = R 557 (b 12600 ()

\_ J
a ) )
AP

absorbinto; power correction —~ - QP



https://inspirehep.net/literature/1643281

Definition and Properties of 7

-+ Thus, we now define
R (0) =Ry 55 7 (ph,1/260a ()
S (e.y) =e " T(=c)y'(=c,—)

where 7*(a,x) is an analytic function of both a and x:

limiting function of the incomplete gamma function

- convergent expansion in x = —1/2a;

- asymptotic expansion in o regenerates the starting
point; the dropped term is O(eP/?Po%)

26



Alternative Borel Summation

- Using the integral representation of 1'(I+1+pb):

(p) o | [ 2P0 (Q)1 b b
Ry (Q) = H_pr/O( >tpedt

P

. OCg(Q)R(()p) /OO ptpbe—t ds you know the sum
C(1+pb) o p—2Boc(Q):

where 2nd line comes from (illegally) swapping X and /.

+ Principal part yields ¢ function; ambiguity ot encircling
the pole above/below yields discardable power term.

27



Worked

—Xxamples

0.5 7

0.0 -
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E() [GGV]
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—2.0 1

—2.5 1

$
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+ arXiv:2206.03156
¢
44 [ 7.28 M iii B 6.30 M i
B 7.00 M i 44 5630 Mii
<4< 3 7.00 M iii £ 6.30 M iii
44 3672Mi 44 £56.00M i
$ 44 p672Mii 44 56.00Mii
44 pg672Mii 44 8580 Mi
0.0 0.2 0.4 0.6 0.8

r [fm]

28
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Static Energy

- Quantity extracted from oblong Wilson loops:

- perturbative potential has IR divergences starting at 3
loops [Appelquist, Dine, Muzinich 1978];

- compensated by multipole term [Brambilla, Pineda,
Soto, Vairo 1999, 2000].

- Perturbative series:

C
Eo(r) = === 3 vi(ur)os(u) " + Ag
[=0

- In notation used above, Q — 1/r, Z(1/r) = —rEy(r)/CF.

29
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Related Quantities

- Perturbation theory carried out in momentum space:
R(q) =Y ai(u/q)os(u)™
=0

- Leading power/factorial comes from Fourier transform,
so R(g)has p> 1.

- The “static force”

5 =-2"  F)=FV1/r)=—F()/Cr

has no power corrections (until instantons at p = 9).
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Coefficients at w=1/r or p=gq

MS geometric 0%
L a() fi(1) a(1) fi(1) a1) fi(1)
0 1 1 1 1 1 1
1 0.557042  —0.0483552 0.557042  —0.048552 0.557042  —0.048552
2 1.702 18 0.687291 1.83497 0.820079 1.83497 0.820079
3 2.43687 0.323257 2.83268 0.558242 3.01389 0.739452
MS geometric %)
Ll ow) w@=vi) | w) v =vi) | w() v =vi()
0 1 0.206061 1 0.182531 1 0.177584
1 1.38384 —0.202668 1.38384 —0.249689 1.38384 —0.259574
2 5.46228 0.019479 5.59507 —0.009046 5.59507 —0.042959
3 | 26.6880 0.219262 27.3034 0.050179 27.4846 0.066468




Good Series (at most p > 1 growth)

W= sq

10%-ish effects at A/g=0.15

o
-J| /.




Great Series (instanton power p = 9)

W= s/r 0.5:

5%-ish effects at rA =0.15




Horrible Series (p = 1)

w=s/r 1.0

s iIndependent only for rA « 1

llllllllllllllllll




MRS Series

M=S/I” 0.5: ................... :

—s=% (.00 0.05 0.10 0.15 0.20

— s=1
— =2 rA



Renormalon Subtracted Series

M:S/]f' 03 ................... :

0.9F big cancellation only for s ~ 1~ _.oe===2=" ]

0.1}
0.0f
0.1}
0.2} .
_03 ................... ]

Rprs(1/7)

—s=%0.00  0.05 010  0.15  0.20

— s=1
— s=2 r/A



Borel Sum (the series convergent in 1/as)

Mzs/]/' 05 ..................

0.4}
0.3
0.2f 3
0.1 \
0'03 s dependence compensates Rrs(1/7) -

_0.1: ................... :
— =% (.00 0.0 0.10 0.15 0.20

— s=1
— 5s=2 rA\

Rp(1/r)




Fitting lambda

—0.34 1

—0.36 1

—_

= —0.381

—0.40 -

—0.42 -

0.010

o
o
)
a1

Residuals

0.000

—0.005 -

0.03

B=17.28a=0.032 fm, m/ms=1/5
0.06 0.09 0.12

—— N¢=4
—— N¢g=3 with massive charm

‘o
-
s 2
-
<
-
V1 V2 V3 Va5 9 V16 V25
. . — . : .
o
0 ®®
(0] ®®8
®
®
! L o0
@ © - Yego

0.1

015 m o Start fits from r/a = /3

e From TUMQCD2019
PT works up to ~ 0.13fm
e Charm effects noticeable
already at r > 0.1fm
e Charm effects:
imit to 2-loop accuracy

e Drop on-axis points due to

arge discretization effects

e Model average (AIC) over
valid fit ranges

e Correlated fits,
blocked jackknife

< Example: Finest ensemble,

2-loops no us-resum., MRS

Villami Leino (TUMQCD) @ Lattice 2024
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https://conference.ippp.dur.ac.uk/event/1265/contributions/7672/

Pole Mass’s Horrible Series (p = 1)




Pole Mass’s MRS Series

W= sm

. 0.25: ................... :

0.00" '
—s=% 000 005 010  0.15  0.20

— s=1
— 5=2 AT



Fitting with Power Corrections

- The A on the horizontal axis is Ayg—

- fits to data will have this as free parameter, I.e.,
optimization will stretch/shrink the curves to fit.

- Let’s go back to the plots and get a feel for adding small
amounts of order (A/g)2or3or4 (Ar)9, or Ar. *

- Disentangling power-law and logarithmic dependence
seems hard for R(g) and R(1/r), but not for F(1/r) and

Rwmrs(1/r).
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Bjorken Sum Rule’s Horrible Series (p = 2)

p=sQ 05— )




Bjorken Sum Rule’s MRS Series

w=sQ 10— |

0.00 0.05 0.10 0.15 0.20
8=l A Q



Bjorken Sum

Rule’s M

RS Series

!“LzSQ 1.0_ '

0.8}

Ryvrs(Q)
—
(@)

p=1{2,4} -

— =% Tiyoo

0.0

0.10
A G

0.15

0.20



Bjorken Sum Rule Experimental Data

!“L=Q 20 --------------- —

—s=» 00 01 02 03 04



Bjorken Sum

Rule Two-

Parameter Fits




Bjorken Sum

Rule Two-

Parameter Fits
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Bjorken Sum Rule Two-Parameter Fits

1.5|
@ |
= 1.0
S | .
0 5'_ | MeV
O | -3 MeV)?
el |
., 0.0
— =2 0.0 0.5
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Two or More

Power Corrections
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Next Approximation

- |f there Is another power correction with p> > p1 = p, then fi
will grow In a similar but slower fashion.

- Apply previous procedure with pi; then repeat with p»:
f{p17p2} — Q(pZ) . Q(pl) .7
N Q(Pl)_l ,Q(Pz)_l .f{m,l?z}

[P ey P o] ple)
P2 —Pi pP1— P2

- Extension to any sequence of higher powers by induction.
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Summary
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Summary

MRS formulas for growth and normalization both follow
from RGE and hold exactly at low orders.

- Generalized to any sequence of power corrections «»
dominant, subdominant, sub-subdominant, ... growth.

+ Scale dependence of total is mild: even though details of

cancellation depend on s = 11,2

MRS shape not like leading power, when latter matters.

- Standard to sum logarithms; let’s sum factorials too!
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Thank you for your attention

Questions?
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