Factorial growth and power corrections

Andreas S. Kronfeld

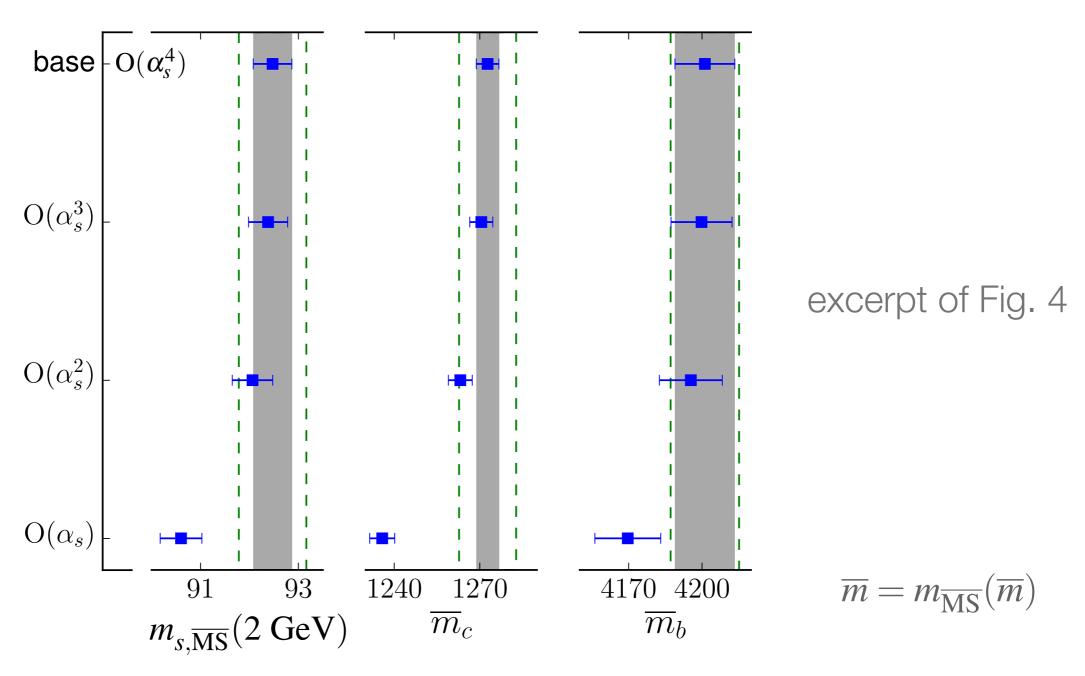
IAS TU München

TUM/MPP Collider Phenomenology Seminar 28 October 2025

No Perturbative Truncation Uncertainty!?!

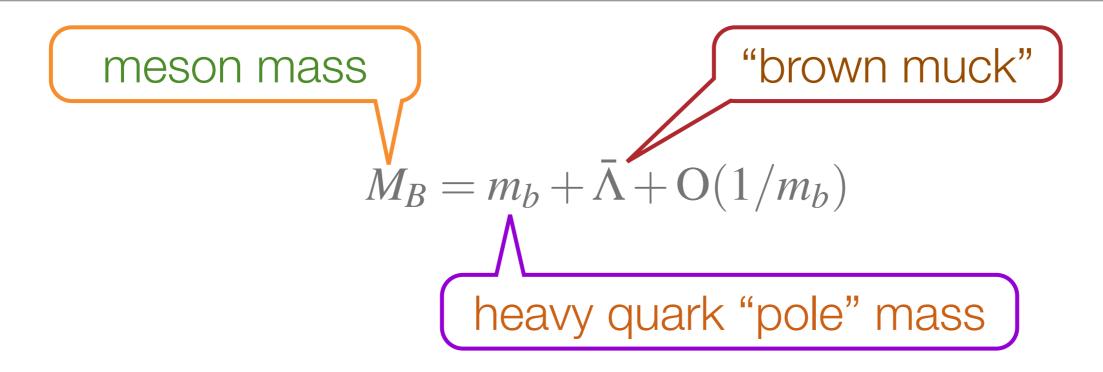
- Quark masses in MS scheme with small uncertainties:
 - total < 1% for bottom, charm, strange;
 - and 1–2% for up and down. [arXiv:1802.04248].
- Negligible uncertainty for truncating perturbation theory:
 - order α_s^4 "matching", but still $\stackrel{\text{\tiny \ensuremath{\textcircled{o}}}}{=}$;
 - could whatever wizardry was used be generalized?

Perturbative Stability



Fermilab Lattice, MILC, & TUMQCD [arXiv:1802.04248]

Relation Between Meson Mass and Quark Mass

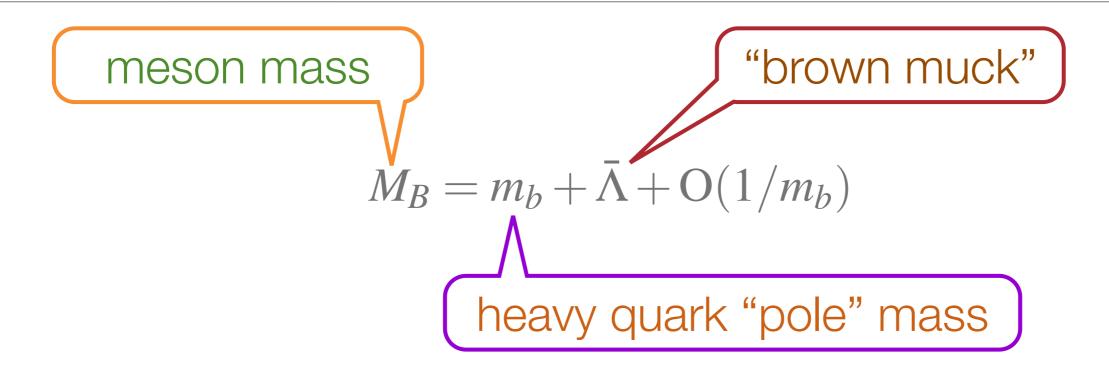


$$ar{m}_b = m_{b,\overline{\mathrm{MS}}}(ar{m}_b)$$

$$m_b = ar{m}_b \left(1 + \sum_{l=0} r_l lpha_\mathrm{s}^{l+1}(ar{m}) \right)$$

$$r_l = \{0.42, 1.03, 3.69, 17.4\}$$

Relation Between Meson Mass and Quark Mass

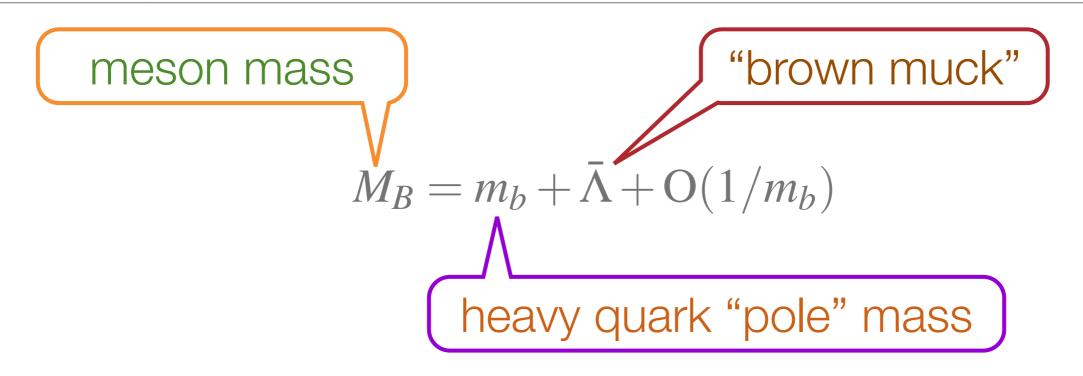


$$ar{m}_b = m_{b,\overline{\mathrm{MS}}}(ar{m}_b)$$
 $m_b = ar{m}_b \left(1 + \sum_{l=0} r_l lpha_\mathrm{s}^{l+1}(ar{m}) \right)$

$$r_l = \{0.42, 1.03, 3.69, 17.4\}$$

Yikes!

Relation Between Meson Mass and Quark Mass



$$\bar{m}_b = m_{b,\overline{\text{MS}}}(\bar{m}_b)$$

$$m_b = \bar{m}_b \left(1 + \sum_{l=0} r_l \alpha_s^{l+1}(\bar{m}) \right) \longrightarrow m_{b,\text{MRS}}$$

$$r_l = \{0.42, 1.03, 3.69, 17.4\}$$

Yikes!

Factorial Growth

- Even in quantum mechanics, high orders of perturbation theory grow factorially [e.g., Bender & Wu 1971, 1973].
- Also in QFT [e.g., Gross & Neveu 1974, Lautrup 1977].
- Quark-mass r_l grow factorially (known for a long time):

$$r_l \sim R_0 (2\beta_0)^l \frac{\Gamma(l+1+b)}{\Gamma(1+b)} \equiv R_l$$

for
$$l \gg 1$$
. Here $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.

• Does $r_l = \{0.42, 1.03, 3.69, 17.4\}$ start growing by l = 3?

Factorial Growth

- Even in quantum mechanics, high orders of perturbation theory grow factorially [e.g., Bender & Wu 1971, 1973].
- Also in QFT [e.g., Gross & Neveu 1974, Lautrup 1977].
- Quark-mass r_l grow factorially (known for a long time):

$$r_l \sim R_0 (2\beta_0)^l \frac{\Gamma(l+1+b)}{\Gamma(1+b)} \equiv R_l$$

for
$$l \gg 1$$
. Here $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.

• Does $r_l = \{0.42, 1.03, 3.69, 17.4\}$ start growing by l = 3?

Normalization Factor R_0

- R₀ less well understood:
 - expressions with complicated derivations in the literature [T. Lee 1998, 1999, Pineda 2001; Hoang, Jain, Scimemi, Stewart 2008; Komijani 2017].
- Komijani [arXiv:1701.00347]:

$$R_0 = \sum_{k=0}^{\infty} (k+1) \frac{\Gamma(1+b)}{\Gamma(k+2+b)} (2\beta_0)^{-k} f_k$$

 f_k obtained from r_j , β_j , $j \le k$; see below

Minimal Renormalon Subtraction

• Brambilla, Komijani, & ASK, Vairo [arXiv:1712.04983] proposed adding and subtracting the R_l series:

$$m_b = \bar{m} + \bar{m} \sum_{l=0}^{\infty} [r_l - R_l] \alpha_s^{l+1}(\bar{m}) + \bar{m} \sum_{l=0}^{\infty} R_l \alpha_s^{l+1}(\bar{m})$$

- First sum is truncated at some order: $\infty \to L-1$.
- Second sum can be carried out via Borel procedure.
- · Dubbed "minimal renormalon subtraction" (MRS).
- Are medium orders approximated well?

Questions

- When does factorial growth set in?
- Simpler derivation of normalization possible?
- Generalizations:
 - Λ^p instead of single power $\overline{\Lambda}$;
 - subtract subleading factorial growth, i.e., series with more than one power correction;
 - scale dependence $\alpha_{\rm s}(Q) \to \alpha_{\rm s}(sQ)$.

Main Outcomes

- Generalizations to arbitrary power corrections Λ^p/Q^p and different scale choices $\alpha_{\rm s}(sQ)$ straightforward.
- Simple argument—
 - reproduces Komijani's normalization (in practice);
 - demonstrates factorial behavior already at low order;
 - shows how to treat more than one power correction—
 - relyies only on renormalization group.

Outline

- Introduction
- Power Corrections and Factorial Growth
- New Approximation for Perturbative Series
- Borel Summation
- · Worked Cases: Static Energy, Pole Mass, Bj Sum Rule
- Two or More Power Corrections
- Conclusions & Outlook

Power Corrections and Factorial Growth

Consider (dimensionless)

$$\mathscr{R}(Q) = r_{-1} + R(Q) + C_p \frac{\Lambda^p}{Q^p}$$
 $R(Q) = \sum_{l=0} r_l (\mu/Q) \alpha_{\rm s}(\mu)^{l+1}$

$$\overline{\rm MS} \ \text{perturbative series}$$

- RGE: coefficients' μ dependence must cancel that of α_s ;
 - \cdot : RGE constrains Q dependence of R(Q).

Consider (dimensionless)

physical quantity

$$\mathcal{R}(Q) = r_{-1} + R(Q) + C_p \frac{\Lambda^p}{Q^p}$$

$$R(Q) = \sum_{l=0}^{\infty} r_l(\mu/Q) \alpha_s(\mu)^{l+1}$$

MS perturbative series

- RGE: coefficients' μ dependence must cancel that of α_s ;
 - \therefore RGE constrains Q dependence of R(Q).

Consider (dimensionless)

physical quantity $\mathcal{R}(Q) = r_{-1} + R(Q) + C_p \frac{\Lambda^p}{Q^p} \qquad R(Q) = \sum_{l=0} r_l (\mu/Q) \alpha_{\rm s}(\mu)^{l+1}$ not QCD $\overline{\rm MS} \ {\rm perturbative \ series}$

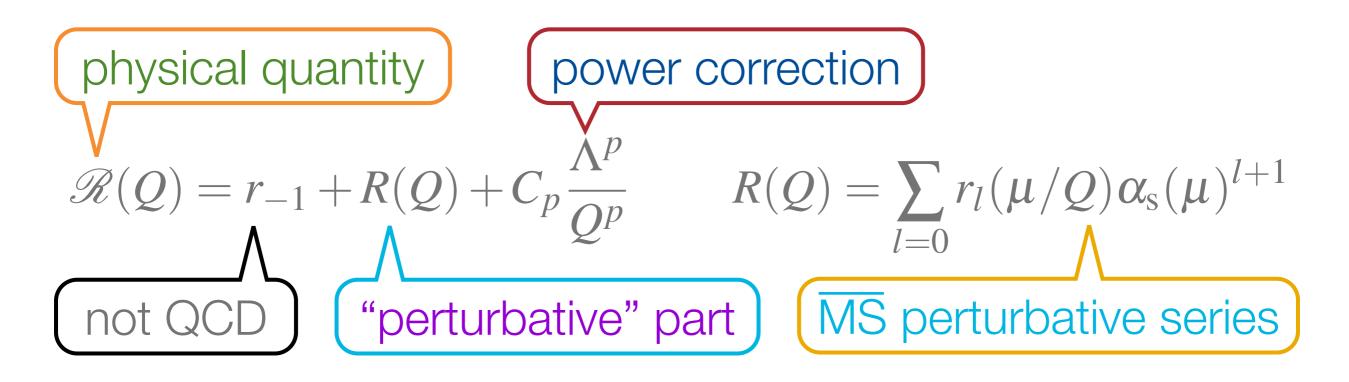
- RGE: coefficients' μ dependence must cancel that of α_s ;
 - \cdot : RGE constrains Q dependence of R(Q).

Consider (dimensionless)

physical quantity $\mathcal{R}(Q) = r_{-1} + R(Q) + C_p \frac{\Lambda^p}{Q^p} \qquad R(Q) = \sum_{l=0} r_l (\mu/Q) \alpha_{\rm s}(\mu)^{l+1}$ not QCD "perturbative" part MS perturbative series

- RGE: coefficients' μ dependence must cancel that of α_s ;
 - \therefore RGE constrains Q dependence of R(Q).

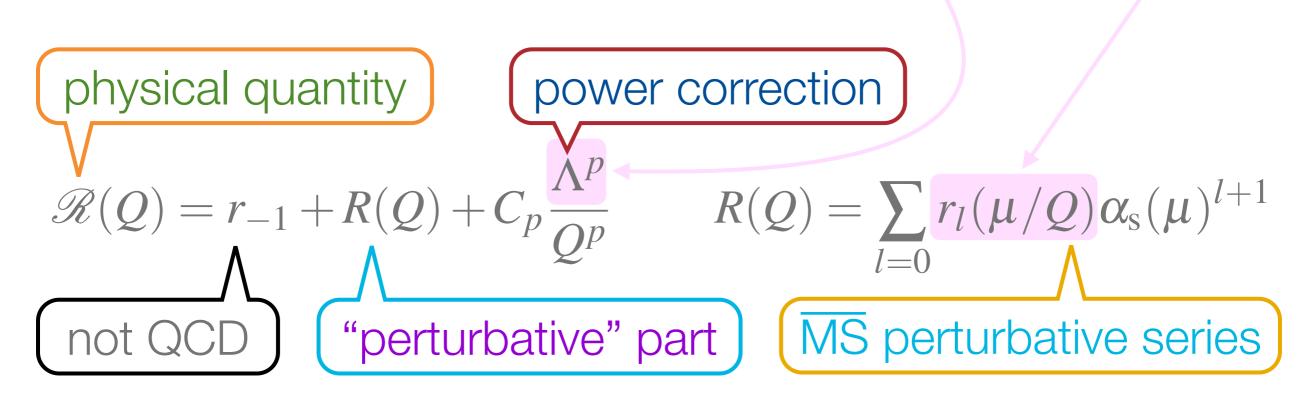
Consider (dimensionless)



- RGE: coefficients' μ dependence must cancel that of α_s ;
 - \cdot : RGE constrains Q dependence of R(Q).

Consider (dimensionless)

power $p \leftrightarrow$ factorial growth



- RGE: coefficients' μ dependence must cancel that of α_s ;
 - \therefore RGE constrains Q dependence of R(Q).

Power-Term Removal

- Start with $\mathcal{R}(Q) = r_{-1} + R(Q) + C_p \frac{\Lambda^p}{Q^p}$.
- To eliminate Λ^p/Q^p , multiply by Q^p and differentiate:

$$r_{-1} + F(Q) \equiv \frac{1}{pQ^{p-1}} \frac{\mathrm{d}Q^p \mathscr{R}}{\mathrm{d}Q} \equiv \hat{Q}^{(p)} \mathscr{R}$$

• As a series $F(Q) = \sum_{k=0}^{\infty} f_k \alpha_{\mathrm{s}}^{k+1}(Q) \Rightarrow f(\alpha) = \sum_{k=0}^{\infty} f_k \alpha^{k+1}.$

$$f_k = r_k - \frac{2}{p} \sum_{j=0}^{k-1} (j+1)\beta_{k-1-j} r_j$$

• Differential equation $r(\alpha) + \frac{2}{p}\beta(\alpha)r'(\alpha) = f(\alpha)$.

Differential Equation

- Differential equation $r(\alpha) + \frac{2}{p}\beta(\alpha)r'(\alpha) = f(\alpha)$.
- Take $f(\alpha)$ as given and solve for $r(\alpha)$:
 - Komijani's solution reproduces R_l 's growth, yields R_0 .
- Here, use only the elementary feature—
 - general solution is any particular solution plus a solution of the homogeneous equation (0 on RHS);
 - solution to homogeneous equation is $\propto \Lambda^p$.

My Solution

The relation between the coefficients is a matrix equation

$$f_k^{(p)} = r_k - \frac{2}{p} \sum_{j=0}^{k-1} (j+1)\beta_{k-1-j} r_j$$

$$f^{(p)} = \left[1 - \frac{2}{p}\mathbf{D}\right] \cdot r \equiv \mathbf{Q}^{(p)} \cdot r$$

and **D** is on the lower triangle.

 Matrix is infinite, but the lower triangular form makes a row-by-row solution straightforward. • Scheme for α_s is chosen to simplify algebra ("geometric"):

$$\beta(\alpha_{\rm g}) = -\frac{\beta_0 \alpha_{\rm g}^2}{1 - (\beta_1/\beta_0)\alpha_{\rm g}}$$

• Notation to make the expressions compact: $\tau \equiv 2\beta_0/p$.

$$\mathbf{Q}_{\mathrm{g}}^{(p)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ -\tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ -\tau^{2}pb & -2\tau & 1 & 0 & 0 & 0 & 0 & \cdots \\ -\tau(\tau pb)^{2} & -2\tau^{2}pb & -3\tau & 1 & 0 & 0 & 0 & \cdots \\ -\tau(\tau pb)^{3} & -2\tau(\tau pb)^{2} & -3\tau^{2}pb & -4\tau & 1 & 0 & 0 & \cdots \\ -\tau(\tau pb)^{4} & -2\tau(\tau pb)^{3} & -3\tau(\tau pb)^{2} & -4\tau^{2}pb & -5\tau & 1 & 0 & \cdots \\ -\tau(\tau pb)^{5} & -2\tau(\tau pb)^{4} & -3\tau(\tau pb)^{3} & -4\tau(\tau pb)^{2} & -5\tau^{2}pb & -6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

• As before $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.

Inverse reveals that factorial growth begins at low orders:

$$\mathbf{Q}_{g}^{(p)^{-1}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{2} \frac{\Gamma(3+pb)}{\Gamma(2+pb)} & 2\tau & 1 & 0 & 0 & 0 & \cdots \\ \tau^{3} \frac{\Gamma(4+pb)}{\Gamma(2+pb)} & 2\tau^{2} \frac{\Gamma(4+pb)}{\Gamma(3+pb)} & 3\tau & 1 & 0 & 0 & \cdots \\ \tau^{4} \frac{\Gamma(5+pb)}{\Gamma(2+pb)} & 2\tau^{3} \frac{\Gamma(5+pb)}{\Gamma(3+pb)} & 3\tau^{2} \frac{\Gamma(5+pb)}{\Gamma(4+pb)} & 4\tau & 1 & 0 & 0 & \cdots \\ \tau^{5} \frac{\Gamma(6+pb)}{\Gamma(2+pb)} & 2\tau^{4} \frac{\Gamma(6+pb)}{\Gamma(3+pb)} & 3\tau^{3} \frac{\Gamma(6+pb)}{\Gamma(4+pb)} & 4\tau^{2} \frac{\Gamma(6+pb)}{\Gamma(5+pb)} & 5\tau & 1 & 0 & \cdots \\ \tau^{6} \frac{\Gamma(7+pb)}{\Gamma(2+pb)} & 2\tau^{5} \frac{\Gamma(7+pb)}{\Gamma(3+pb)} & 3\tau^{4} \frac{\Gamma(7+pb)}{\Gamma(4+pb)} & 4\tau^{3} \frac{\Gamma(7+pb)}{\Gamma(5+pb)} & 5\tau^{2} \frac{\Gamma(7+pb)}{\Gamma(6+pb)} & 6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

$$r = \mathbf{Q}_{\mathrm{g}}^{(p)-1} \cdot \boldsymbol{f}^{(p)}$$

Inverse reveals that factorial growth begins at low orders:

$$\mathbf{Q}_{g}^{(p)^{-1}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{2} \frac{\Gamma(3+pb)}{\Gamma(2+pb)} & 2\tau & 1 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{3} \frac{\Gamma(4+pb)}{\Gamma(2+pb)} & 2\tau^{2} \frac{\Gamma(4+pb)}{\Gamma(3+pb)} & 3\tau & 1 & 0 & 0 & 0 & \cdots \\ \tau^{4} \frac{\Gamma(5+pb)}{\Gamma(2+pb)} & 2\tau^{3} \frac{\Gamma(5+pb)}{\Gamma(3+pb)} & 3\tau^{2} \frac{\Gamma(5+pb)}{\Gamma(4+pb)} & 4\tau & 1 & 0 & 0 & \cdots \\ \tau^{5} \frac{\Gamma(6+pb)}{\Gamma(2+pb)} & 2\tau^{4} \frac{\Gamma(6+pb)}{\Gamma(3+pb)} & 3\tau^{3} \frac{\Gamma(6+pb)}{\Gamma(4+pb)} & 4\tau^{2} \frac{\Gamma(6+pb)}{\Gamma(5+pb)} & 5\tau & 1 & 0 & \cdots \\ \tau^{6} \frac{\Gamma(7+pb)}{\Gamma(2+pb)} & 2\tau^{5} \frac{\Gamma(7+pb)}{\Gamma(3+pb)} & 3\tau^{4} \frac{\Gamma(7+pb)}{\Gamma(4+pb)} & 4\tau^{3} \frac{\Gamma(7+pb)}{\Gamma(5+pb)} & 5\tau^{2} \frac{\Gamma(7+pb)}{\Gamma(6+pb)} & 6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

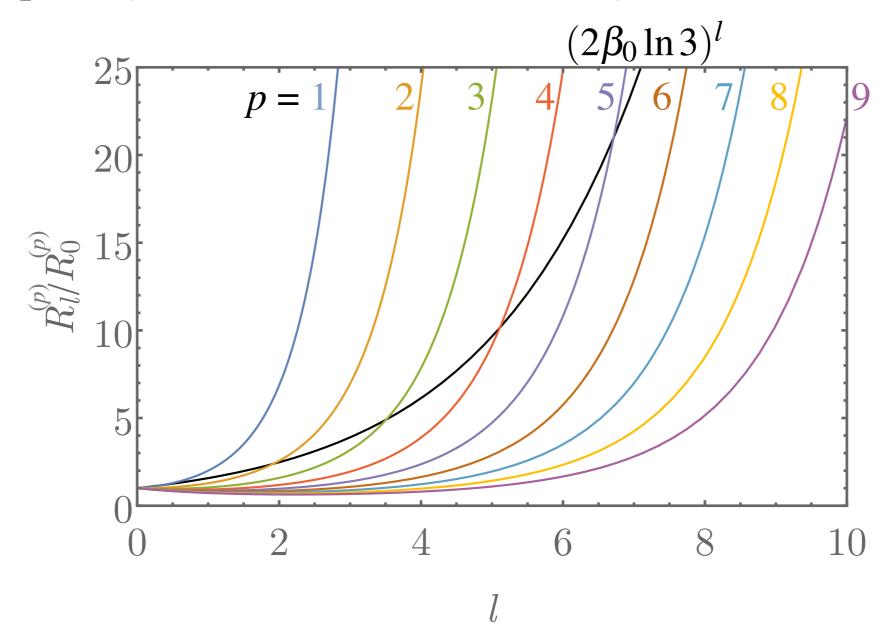
$$r = \mathbf{Q}_{\mathrm{g}}^{(p)-1} \cdot \boldsymbol{f}^{(p)}$$

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
well-known growth Komijani's R_{0} (truncated) extra

17

Growth ↔ Power

• Larger $p \Rightarrow$ growth takes over at larger l.



- We must be back where we started, right? $r = Q^{-1} \cdot f = Q^{-1} \cdot Q \cdot r$
 - In practice, we know r_l and, hence, f_l for l < L. The formula returns these r_l (as it must).
- For $l \ge L$, the formula tells us (formally) the largest part:
 - truncate on f_l , not r_l ; evaluate $\sum_{l=0}^{\infty} r_l \alpha_s^{l+1}$ by—
 - taking exact r_l from the literature for l < L;
 - approximating $r_l \approx R_l$ for $l \geq L$.

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
 well-known growth Komijani R_{0} (truncated) drop

- For $l \ge L$, the formula tells us (formally) the largest part:
 - truncate on f_l , not r_l ; evaluate $\sum_{l=0}^{\infty} r_l \alpha_s^{l+1}$ by—
 - taking exact r_l from the literature for l < L;
 - approximating $r_l \approx R_l$ for $l \geq L$.

$$r_{l} \approx \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)}, \ l \geq L$$
 well-known growth Komijani R_{0} (truncated)

- For $l \ge L$, the formula tells us (formally) the largest part:
 - truncate on f_l , not r_l ; evaluate $\sum_{l=0}^{\infty} r_l \alpha_s^{l+1}$ by—
 - taking exact r_l from the literature for l < L;
 - approximating $r_l \approx R_l$ for $l \geq L$.

$$r_{l} \approx \boxed{\left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)}} \underbrace{\sum_{k=0}^{L-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)}}_{k}, \ l \geq L$$
 well-known growth Komijani R_{0} (truncated)

- For $l \ge L$, the formula tells us (formally) the largest part:
 - truncate on f_l , not r_l ; evaluate $\sum_{l=0}^{\infty} r_l \alpha_s^{l+1}$ by—
 - taking exact r_l from the literature for l < L;
 - approximating $r_l \approx R_l$ for $l \geq L$.

Recap & Compendium

• That means $\sum_{l=0}^{\infty} r_l \alpha_{\mathrm{s}}^{l+1} o \sum_{l=0}^{L-1} r_l \alpha_{\mathrm{s}}^{l+1} + \sum_{l=L}^{\infty} R_l^{(p)} \alpha_{\mathrm{s}}^{l+1}$

with

$$R_l^{(p)} \equiv R_0^{(p)} \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)}$$

$$R_0^{(p)} \equiv \sum_{k=0}^{L-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_0}\right)^k f_k^{(p)}$$

 Systematic approximation because the retained terms are formally larger than the ones omitted.

Borel Summation

Rearrange and React

We have

$$R(Q) = \sum_{l=0}^{\infty} r_{l} \alpha_{s}^{l+1} \to \sum_{l=0}^{L-1} r_{l} \alpha_{s}^{l+1} + \sum_{l=L}^{\infty} R_{l}^{(p)} \alpha_{s}^{l+1}$$

$$= \underbrace{\sum_{l=0}^{L-1} \left(r_{l} - R_{l}^{(p)} \right) \alpha_{s}^{l+1}}_{R_{p,s}^{(p)}(Q)} + \underbrace{\sum_{l=0}^{\infty} R_{l}^{(p)} \alpha_{s}^{l+1}}_{R_{p,s}^{(p)}(Q)}$$

- · The "renormalon subtracted" part and the "Borel" part.
- The R_l from above yield divergent sum for R_B , but we're not done yet: use Borel summation to assign meaning.

Borel Summation

• Using the integral representation of $\Gamma(l+1)$:

$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \sum_{l=0}^{\infty} \left[\frac{\Gamma(l+1+pb)}{\Gamma(1+pb)\Gamma(l+1)} \int_0^{\infty} \left(\frac{2\beta_0 t}{p} \right)^l e^{-t/\alpha_{\rm g}(Q)} dt \right]$$

$$\to R_0^{(p)} \int_0^\infty \frac{e^{-t/\alpha_g(Q)}}{(1 - 2\beta_0 t/p)^{1+pb}} dt$$

Mathematica knows the sum

where 2nd line comes from (illegally) swapping Σ and \int .

• Branch point in integrand at $t = p/2\beta_0$, dubbed "renormalon singularity" ['t Hooft 1979].

Split integration in two [BKKV, arXiv:1712.04983]:

Mathematica knows the integrals

$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \int_0^{p/2\beta_0} \frac{\mathrm{e}^{-t/\alpha_{\rm g}(Q)}}{(1 - 2\beta_0 t/p)^{1+pb}} \mathrm{d}t$$
$$+ R_0^{(p)} \int_{p/2\beta_0}^{\infty} \frac{\mathrm{e}^{-t/\alpha_{\rm g}(Q)}}{(1 - 2\beta_0 t/p)^{1+pb}} \mathrm{d}t$$

Split integration in two [BKKV, arXiv:1712.04983]:

Mathematica knows the integrals

$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \frac{p^{p/2\beta_0}}{2\beta_0} \mathscr{J}(pb, 1/2\beta_0 \alpha_{\rm g}(Q)) dt$$

$$= R_0^{(p)} e^{\pm ipb\pi} \frac{p^{1+pbt/\alpha_{\rm g}(Q)}}{21+pb\beta_0} \Gamma(-pb) \left[\frac{e^{-1/[2\beta_0 \alpha_{\rm g}(Q)]}}{[\beta_0 \alpha_{\rm g}(Q)]^b} \right]^p$$

Split integration in two [BKKV, arXiv:1712.04983]:

Mathematica knows the integrals

$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \frac{p^{p/2\beta_0}}{2\beta_0} \mathscr{J}(pb, 1/2\beta_0 \alpha_{\rm g}(Q)) dt$$

$$= R_0^{(p)} e^{\pm ipb\pi} \frac{p^{1+pb^{t/\alpha_{\rm g}}(Q)}}{21+pb\beta_0} \Gamma(-pb) \left[\frac{e^{-1/\Lambda_{\rm Bo}\alpha_{\rm g}(Q)}}{[\beta_0 \alpha Q Q)]^b} \right]^p$$

Split integration in two [BKKV, arXiv:1712.04983]:

Mathematica knows the integrals

$$R_{
m B}^{(p)}(Q) = R_0^{(p)} rac{p^{p/2eta_0}}{2eta_0} \mathscr{J}(pb, 1/2eta_0 lpha_{
m g}(Q))$$

 $R_0^{(p)}$ absorb into power correction $\frac{\Lambda_0^p}{Q^p}$

Definition and Properties of J

Thus, we now define

$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \frac{p}{2\beta_0} \mathscr{J}(pb, 1/2\beta_0 \alpha_{\rm g}(Q))$$
$$\mathscr{J}(c, y) = e^{-y} \Gamma(-c) \gamma^*(-c, -y)$$

where $\gamma^*(a,x)$ is an analytic function of both a and x:

limiting function of the incomplete gamma function

- convergent expansion in $x = -1/2\beta_0 \alpha_g$;
- asymptotic expansion in α_g regenerates the starting point; the dropped term is $O(e^{-p/2\beta_0\alpha_g})$.

Alternative Borel Summation

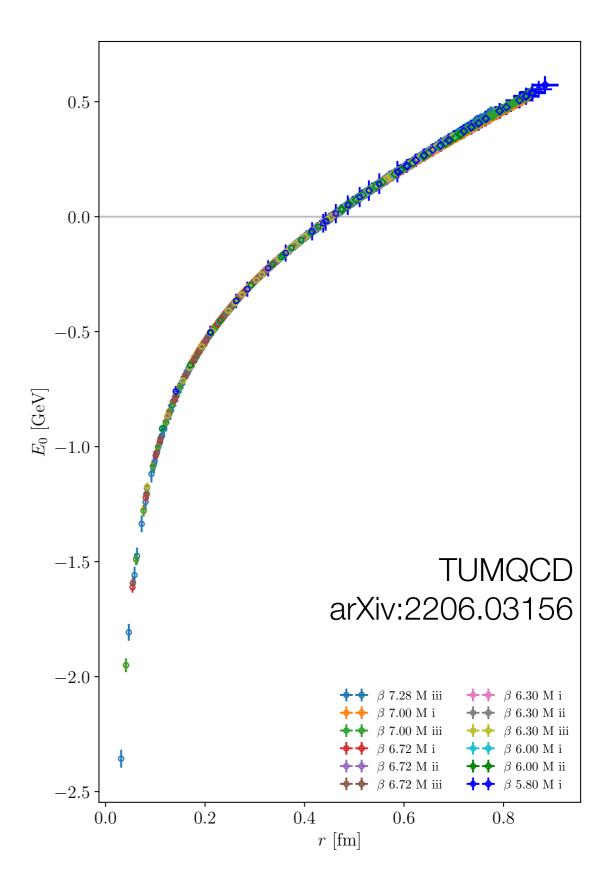
• Using the integral representation of $\Gamma(l+1+pb)$:

$$\begin{split} R_{\mathrm{B}}^{(p)}(Q) &= \frac{\alpha_{\mathrm{g}}(Q)R_{0}^{(p)}}{\Gamma(1+pb)} \sum_{l=0}^{\infty} \left[\int_{0}^{\infty} \left(\frac{2\beta_{0}\alpha_{\mathrm{g}}(Q)t}{p} \right)^{l} t^{pb} \mathrm{e}^{-t} \mathrm{d}t \right] \\ &\to \frac{\alpha_{\mathrm{g}}(Q)R_{0}^{(p)}}{\Gamma(1+pb)} \int_{0}^{\infty} \frac{pt^{pb} \mathrm{e}^{-t}}{p-2\beta_{0}\alpha_{\mathrm{g}}(Q)t} \mathrm{d}t \end{split} \qquad \textit{you know the sum} \end{split}$$

where 2nd line comes from (illegally) swapping Σ and \int .

• Principal part yields function; ambiguity of encircling the pole above/below yields discardable power term.

Worked Examples



Static Energy

- Quantity extracted from oblong Wilson loops:
 - perturbative potential has IR divergences starting at 3 loops [Appelquist, Dine, Muzinich 1978];
 - compensated by multipole term [Brambilla, Pineda, Soto, Vairo 1999, 2000].
- Perturbative series:

$$E_0(r) = -\frac{C_F}{r} \sum_{l=0}^{\infty} v_l(\mu r) \alpha_s(\mu)^{l+1} + \Lambda_0$$

• In notation used above, $Q \rightarrow 1/r$, $\mathcal{R}(1/r) = -rE_0(r)/C_F$.

Related Quantities

Perturbation theory carried out in momentum space:

$$\tilde{R}(q) = \sum_{l=0}^{\infty} a_l (\mu/q) \alpha_s(\mu)^{l+1}$$

- Leading power/factorial comes from Fourier transform, so $\tilde{R}(q)$ has p > 1.
- The "static force"

$$\mathfrak{F}(r) = -\frac{\mathrm{d}E_0}{\mathrm{d}r} \qquad \qquad \mathfrak{F}(r) = F^{(1)}(1/r) = -r^2 \mathfrak{F}(r)/C_F$$

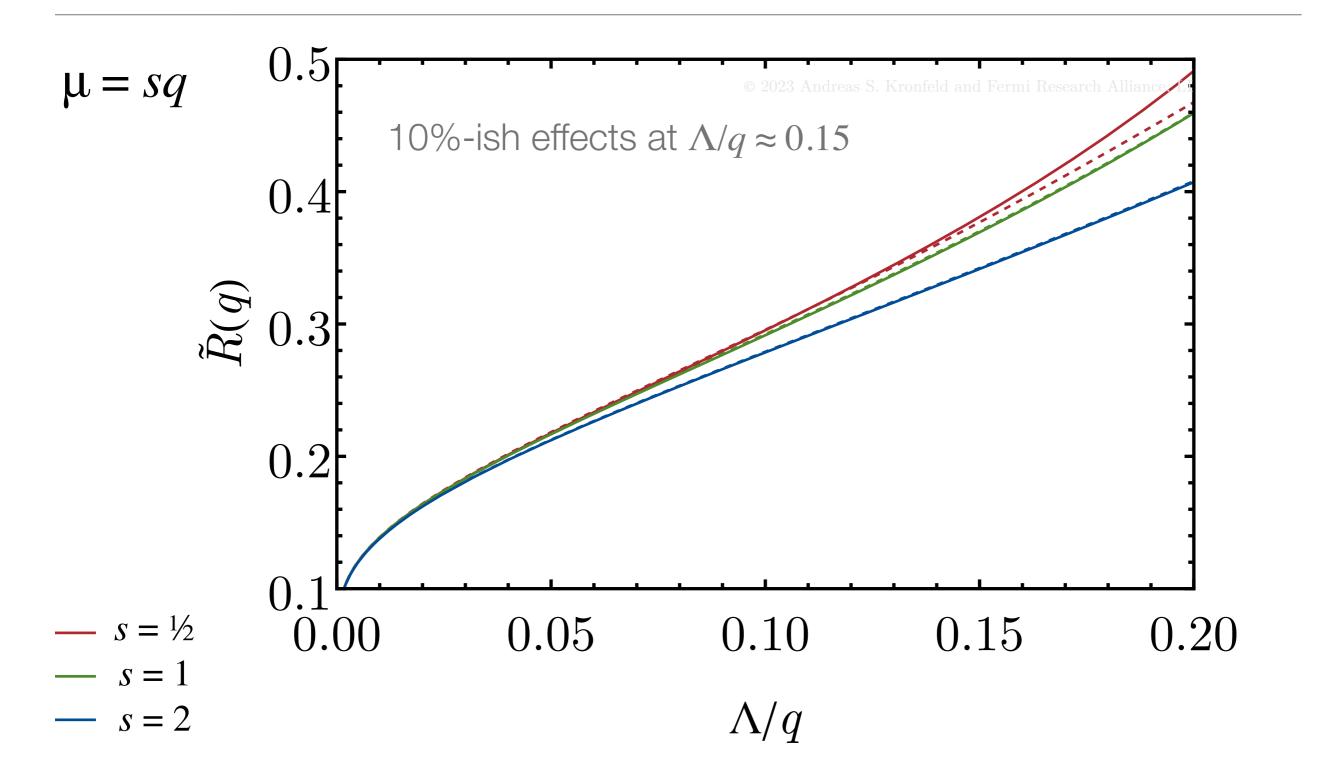
has no power corrections (until instantons at $p \ge 9$).

Coefficients at $\mu = 1/r$ or $\mu = q$

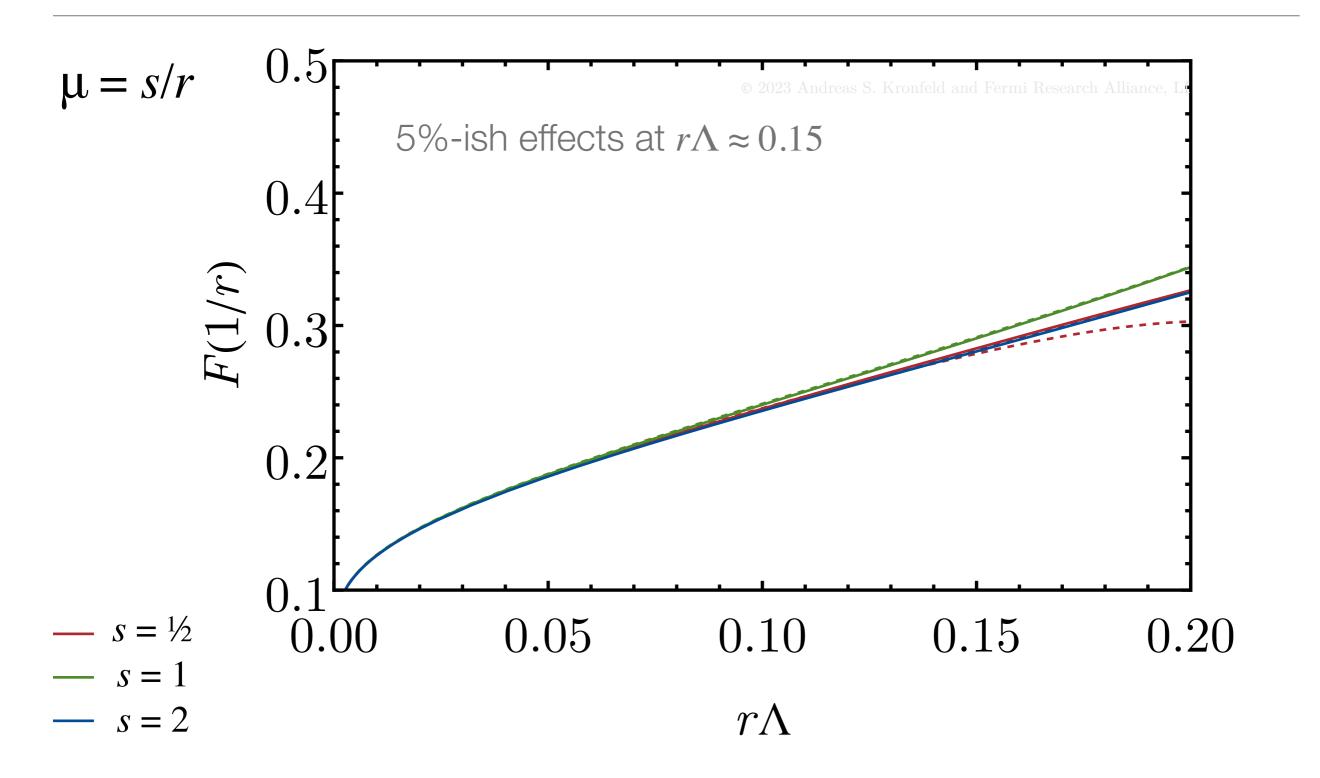
	MS		geometric		α_2	
l	$a_l(1)$	$f_l(1)$	$a_l(1)$	$f_l(1)$	$a_l(1)$	$f_l(1)$
0	1	1	1	1	1	1
1	0.557042	-0.048552	0.557042	-0.048552	0.557042	-0.048552
2	1.70218	0.687291	1.83497	0.820079	1.83497	0.820079
3	2.43687	0.323257	2.83268	0.558242	3.01389	0.739452

	\overline{MS}		geometric		α_2	
1	$v_l(1)$	$v_l(1) - V_l(1)$	$v_l(1)$	$v_l(1) - V_l(1)$	$v_l(1)$	$v_l(1) - V_l(1)$
0	1	0.206061	1	0.182531	1	0.177584
1	1.38384	-0.202668	1.38384	-0.249689	1.38384	-0.259574
2	5.46228	0.019479	5.59507	-0.009046	5.59507	-0.042959
3	26.6880	0.219262	27.3034	0.050179	27.4846	0.066468

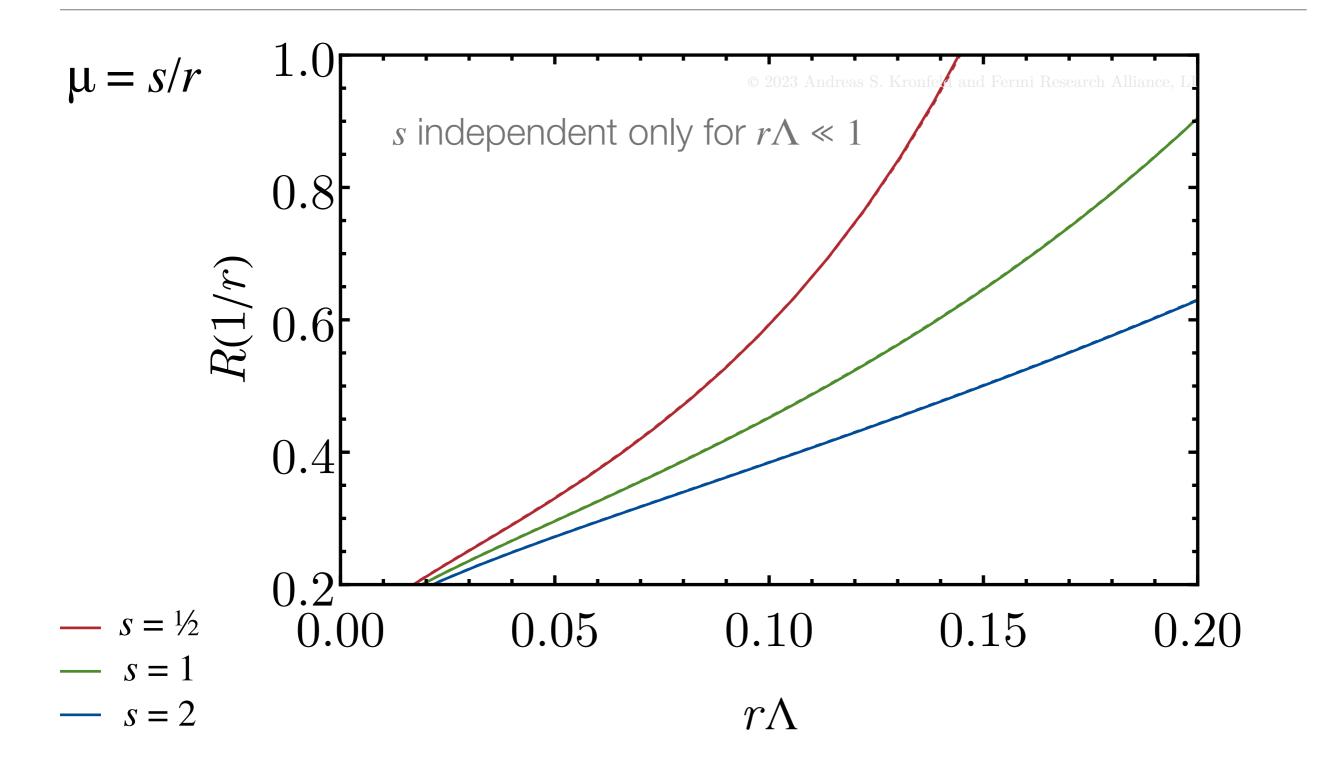
Good Series (at most p > 1 growth)



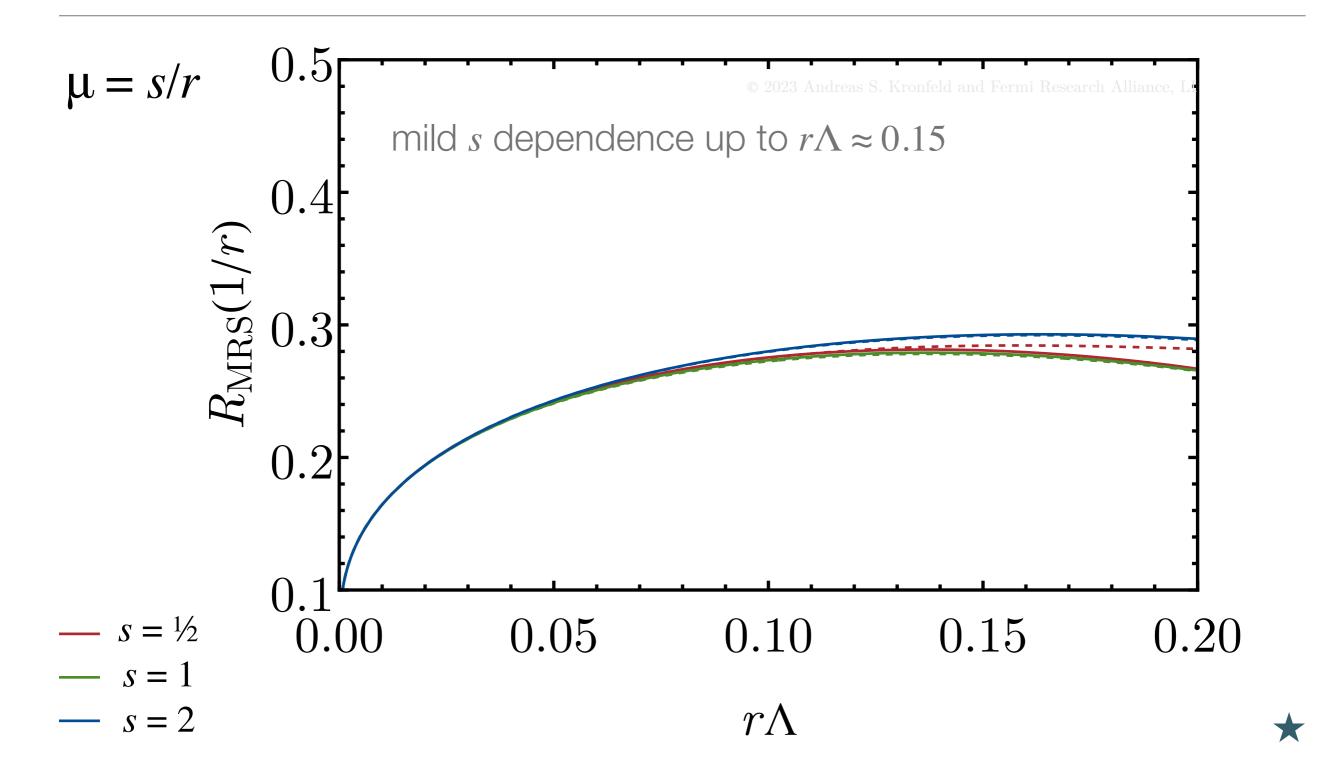
Great Series (instanton power $p \ge 9$)



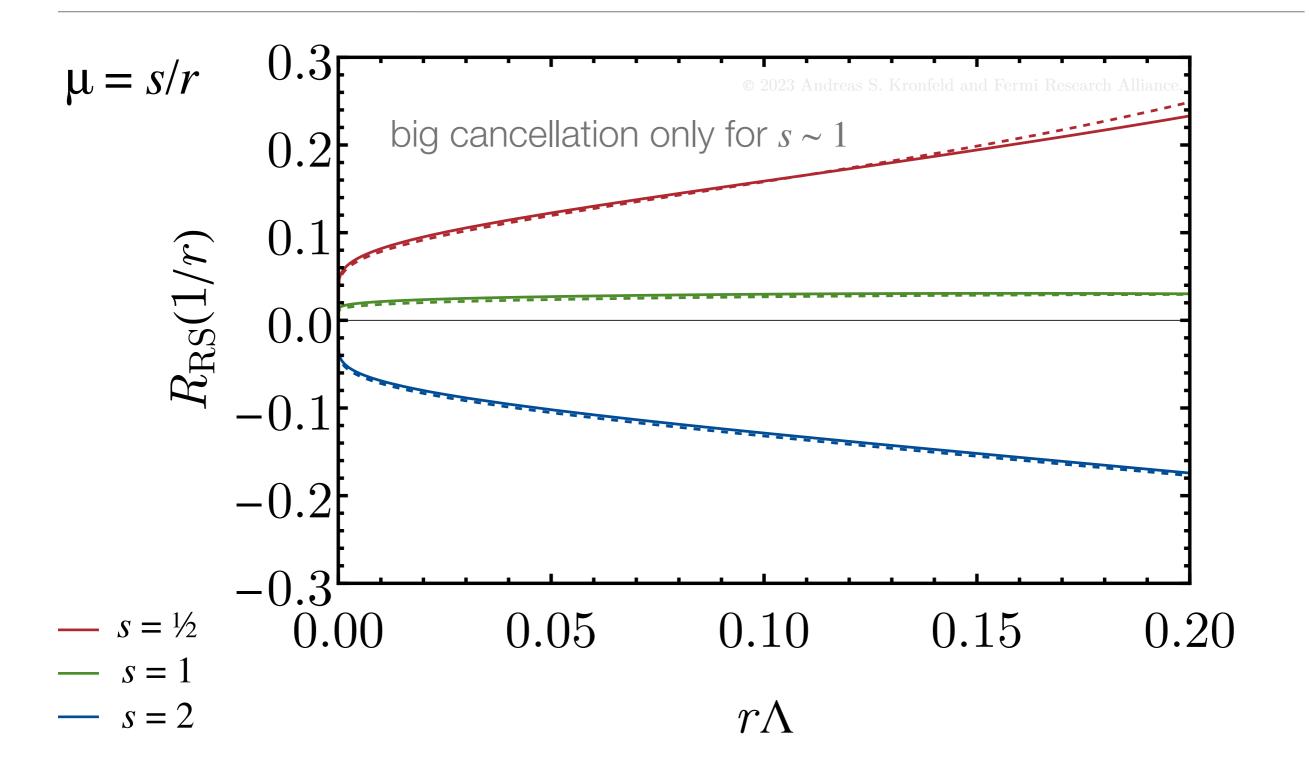
Horrible Series (p = 1)



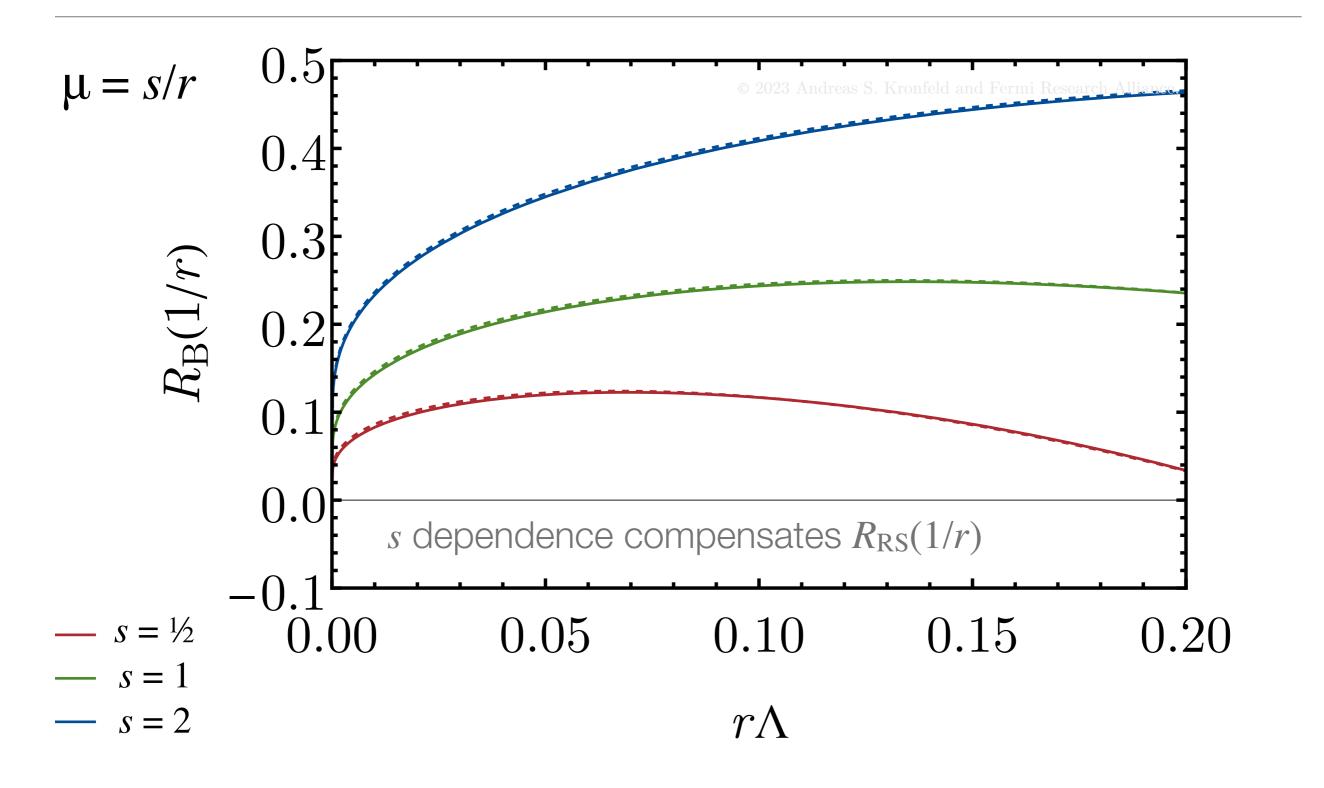
MRS Series

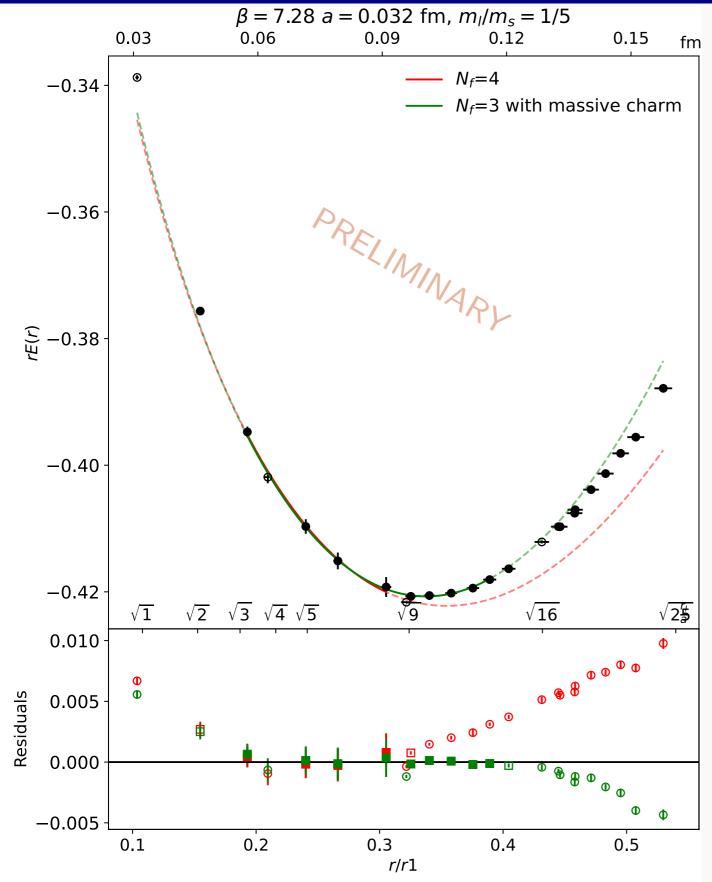


Renormalon Subtracted Series



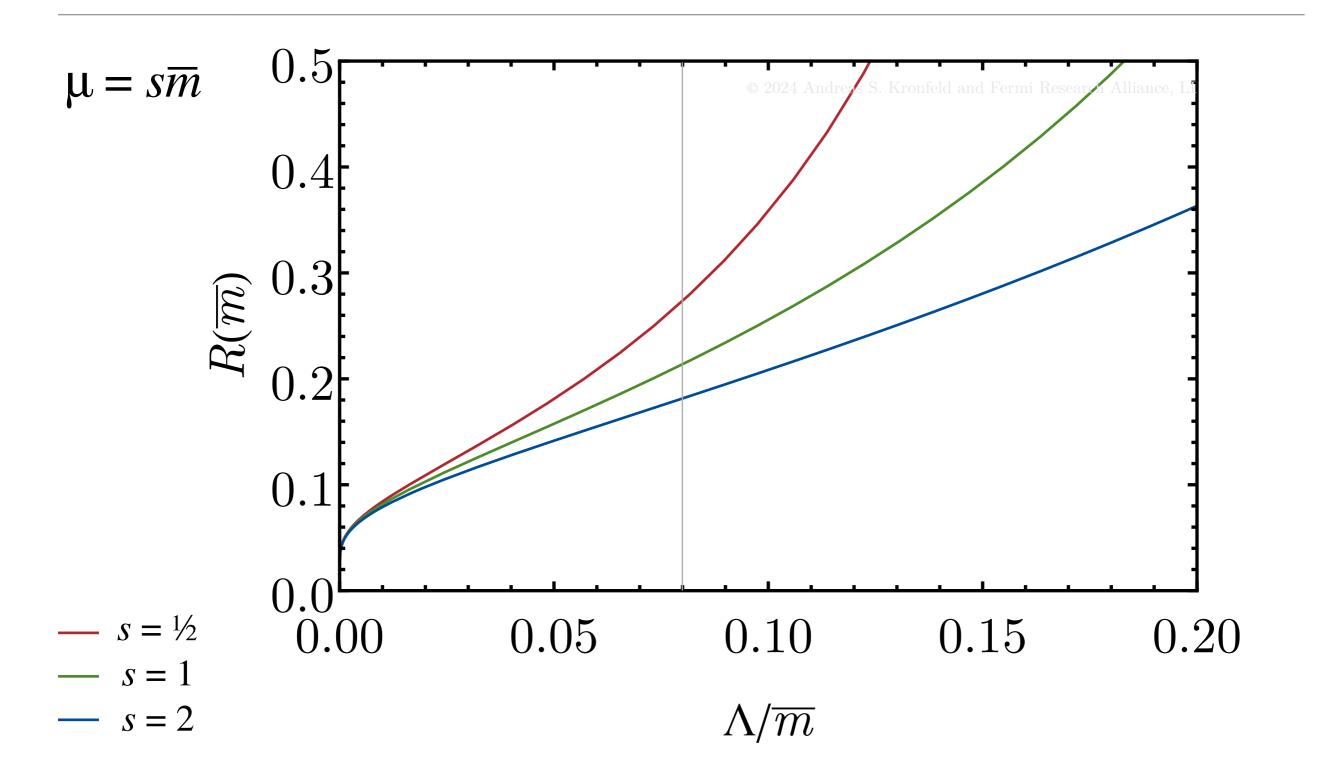
Borel Sum (the series convergent in $1/\alpha_s$)



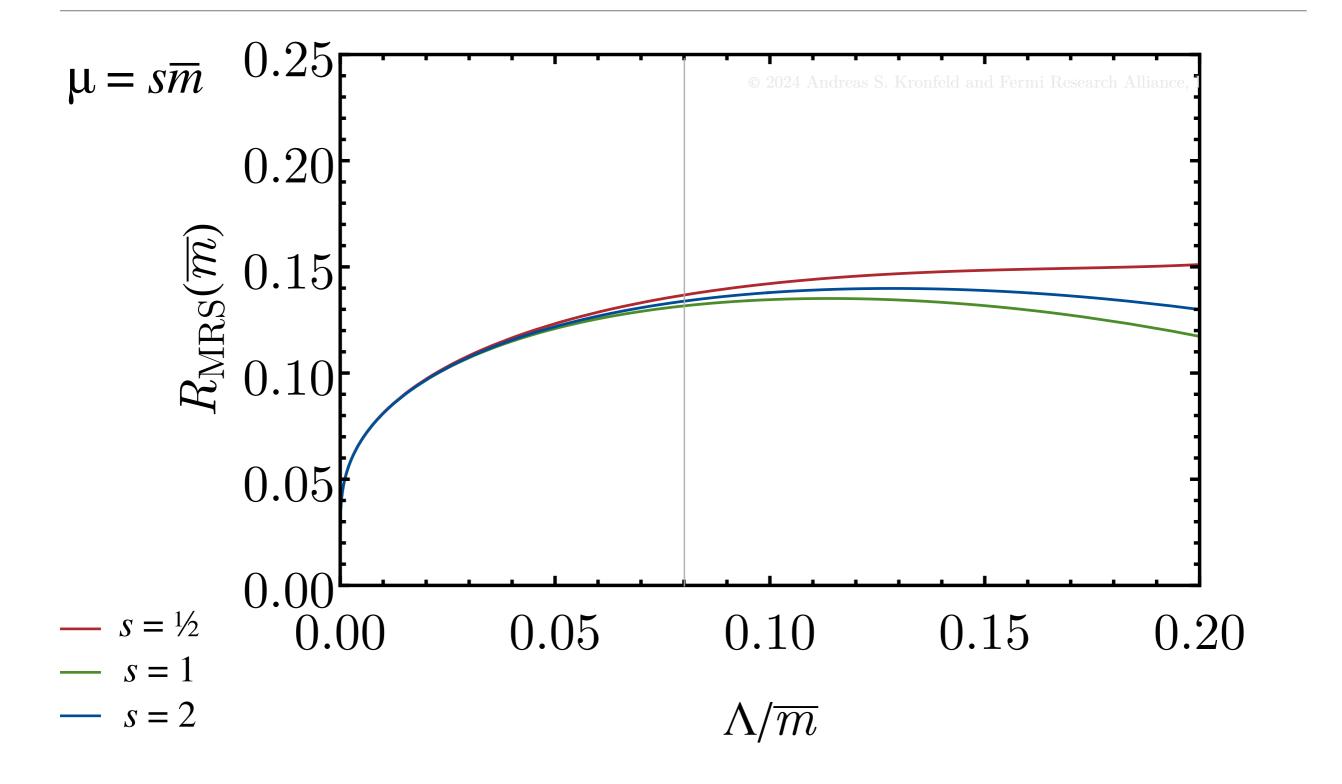


- Start fits from $r/a = \sqrt{3}$
 - ullet From TUMQCD2019 PT works up to $\sim 0.13 fm$
 - Charm effects noticeable already at r > 0.1 fm
 - Charm effects:
 limit to 2-loop accuracy
 - Drop on-axis points due to large discretization effects
 - Model average (AIC) over valid fit ranges
 - Correlated fits, blocked jackknife
 - ← Example: Finest ensemble,2-loops no us-resum., MRS

Pole Mass's Horrible Series (p = 1)



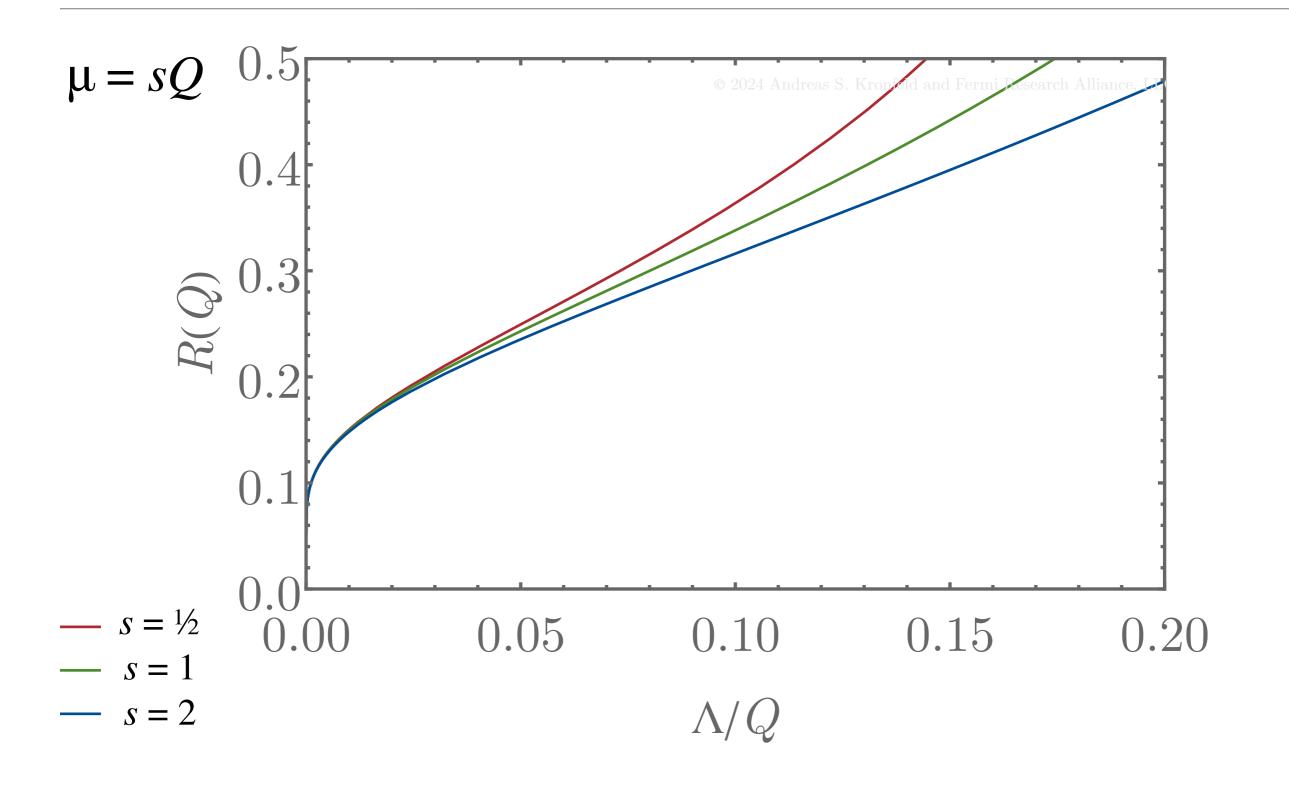
Pole Mass's MRS Series



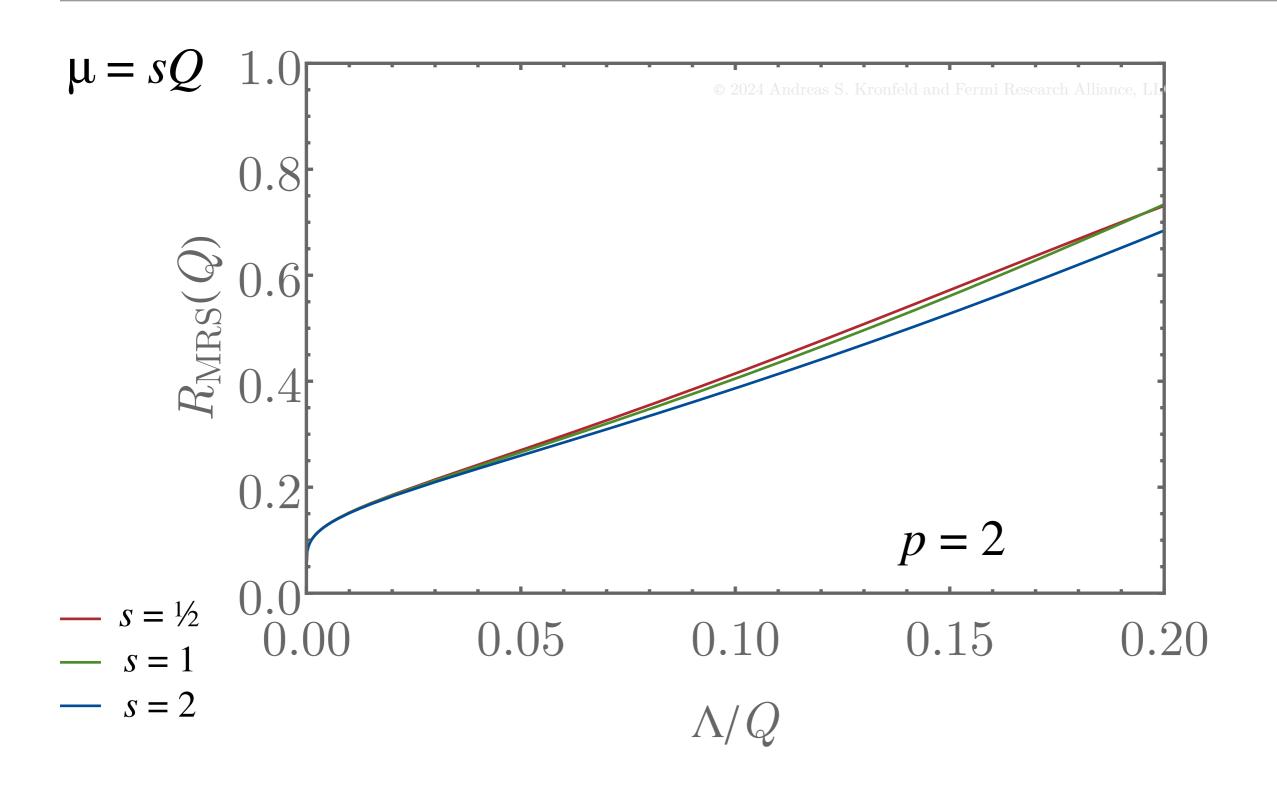
Fitting with Power Corrections

- The Λ on the horizontal axis is $\Lambda_{\overline{\rm MS}}-$
 - fits to data will have this as free parameter, i.e., optimization will stretch/shrink the curves to fit.
- Let's go back to the plots and get a feel for adding small amounts of order $(\Lambda/q)^2$ or 3 or 4, $(\Lambda r)^9$, or Λr .
- Disentangling power-law and logarithmic dependence seems hard for $\tilde{R}(q)$ and R(1/r), but not for F(1/r) and $R_{\text{MRS}}(1/r)$.

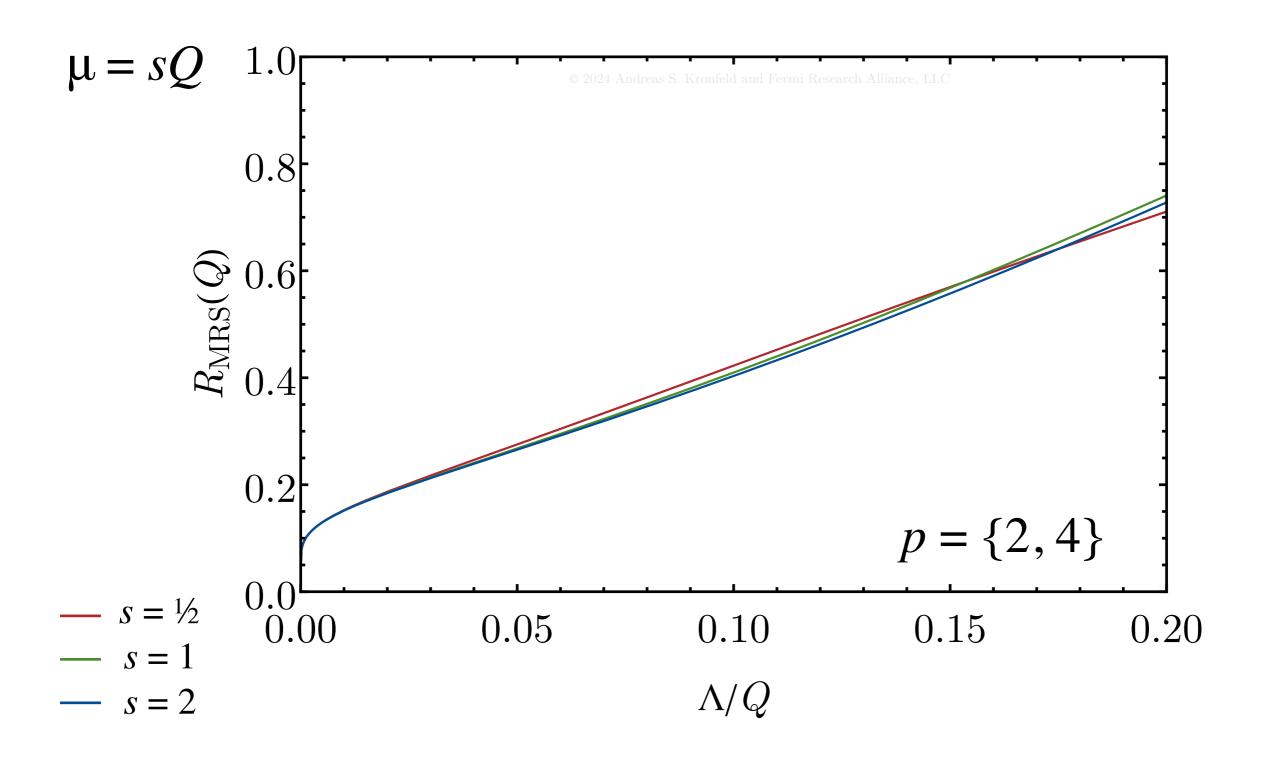
Bjorken Sum Rule's Horrible Series (p = 2)



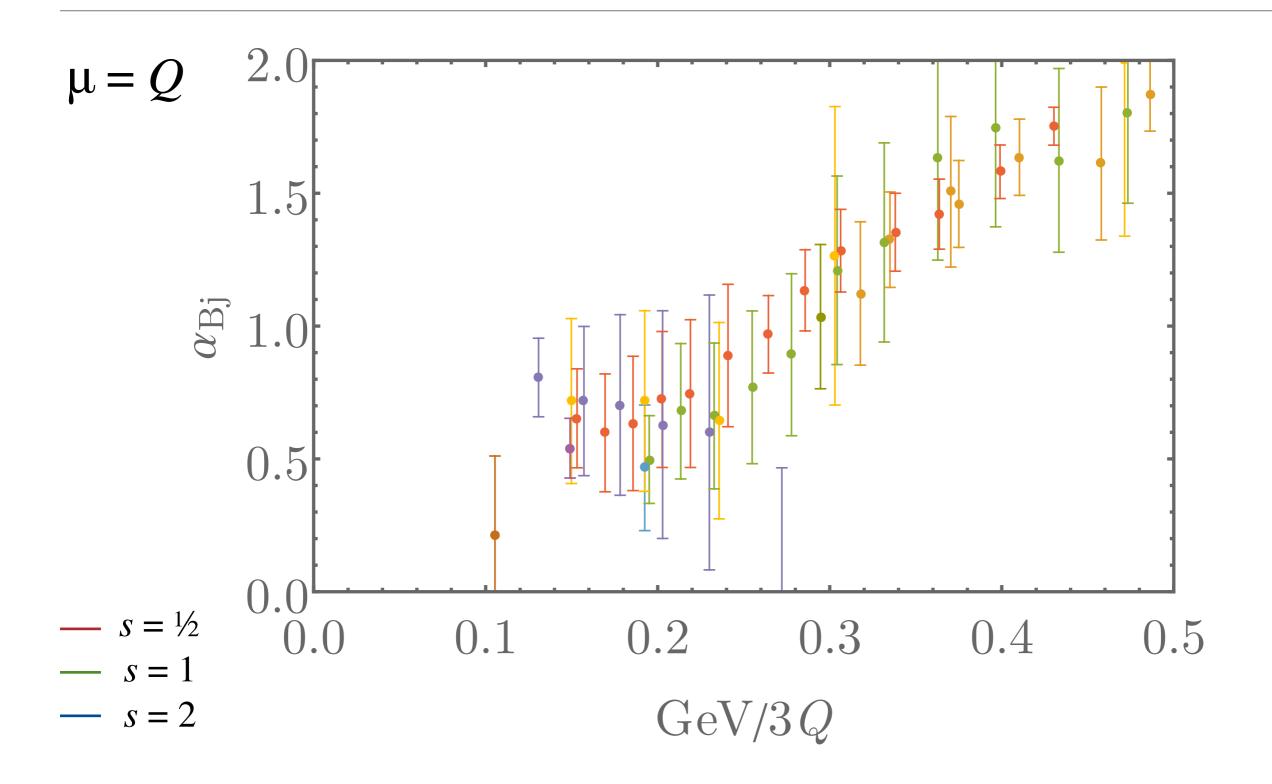
Bjorken Sum Rule's MRS Series



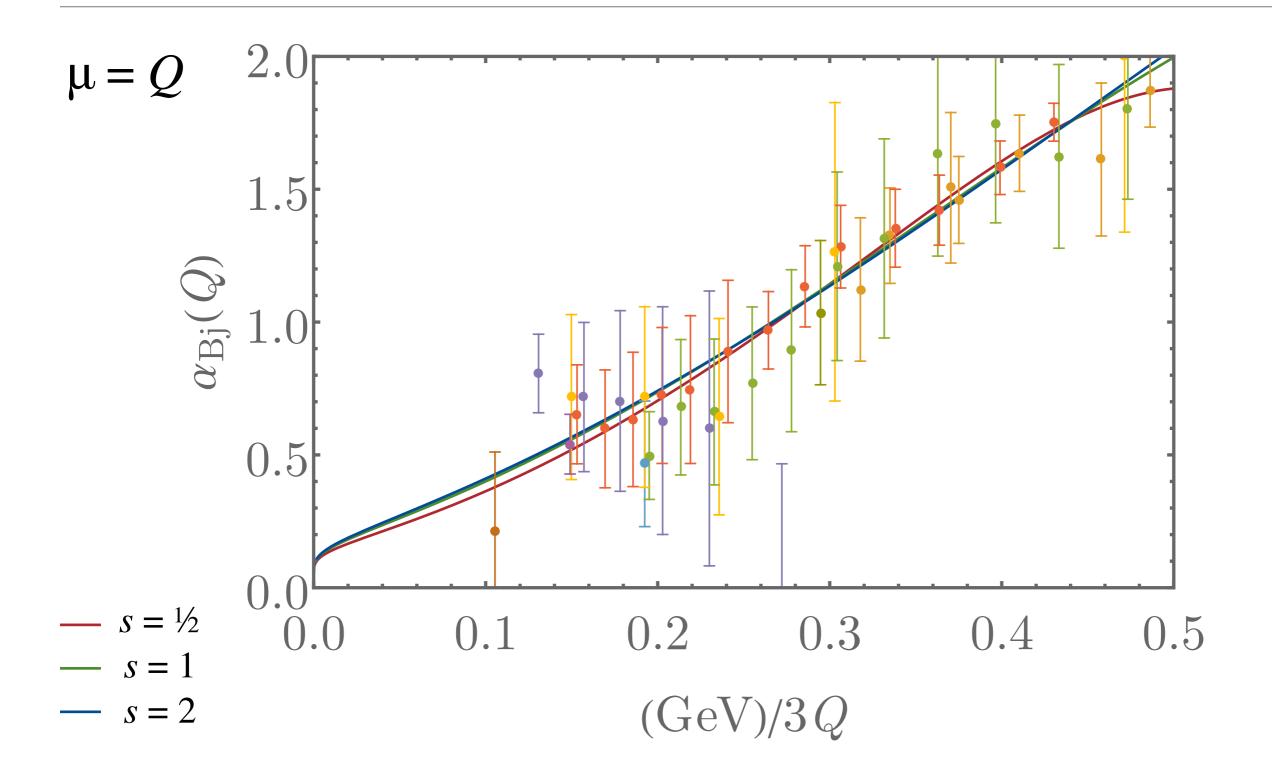
Bjorken Sum Rule's MRS Series



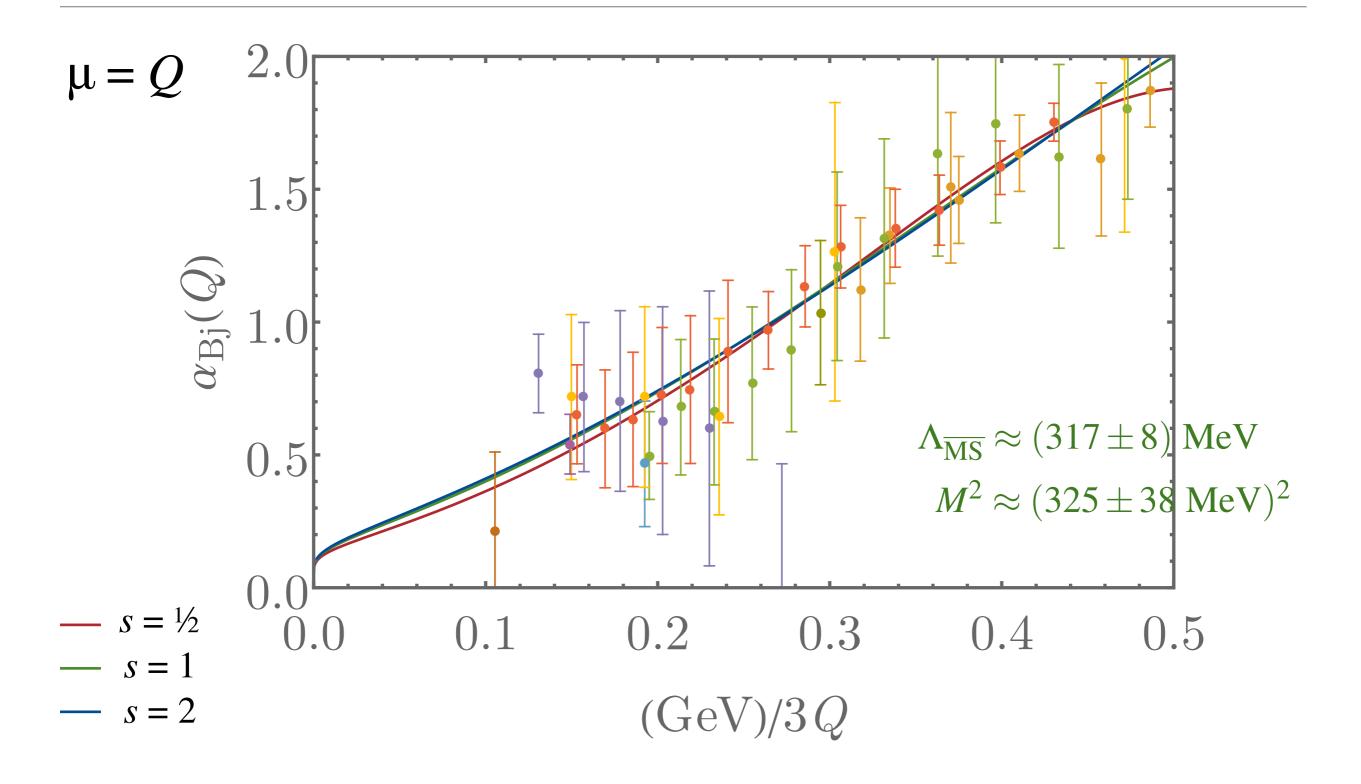
Bjorken Sum Rule Experimental Data



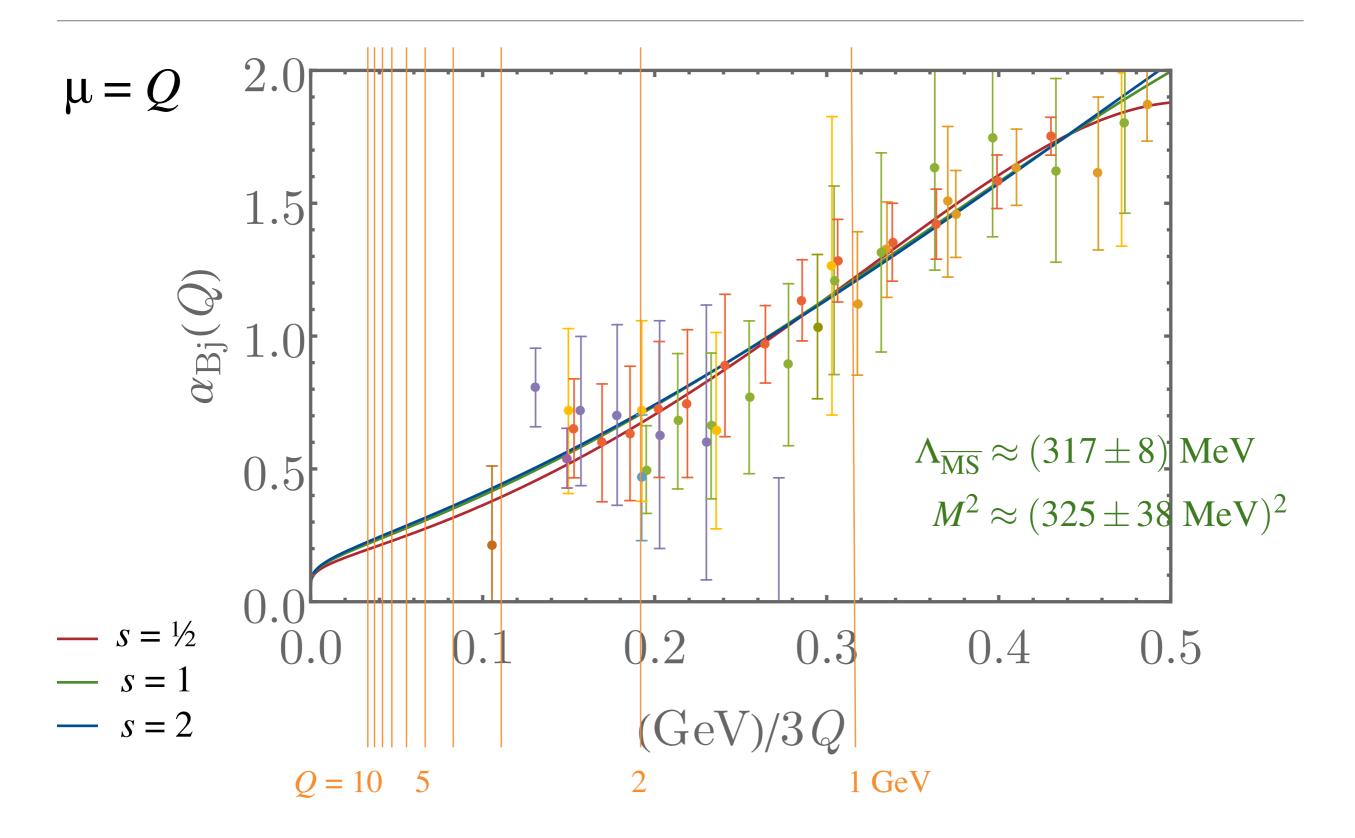
Bjorken Sum Rule Two-Parameter Fits



Bjorken Sum Rule Two-Parameter Fits



Bjorken Sum Rule Two-Parameter Fits



Two or More Power Corrections

Next Approximation

- If there is another power correction with $p_2 > p_1 = p$, then f_k will grow in a similar but slower fashion.
- Apply previous procedure with p_1 ; then repeat with p_2 :

$$\mathbf{f}^{\{p_1,p_2\}} \equiv \mathbf{Q}^{(p_2)} \cdot \mathbf{Q}^{(p_1)} \cdot \mathbf{r}$$

$$\Rightarrow \mathbf{r} = \mathbf{Q}^{(p_1)^{-1}} \cdot \mathbf{Q}^{(p_2)^{-1}} \cdot \mathbf{f}^{\{p_1,p_2\}}$$

$$= \left[\frac{p_2}{p_2 - p_1} \mathbf{Q}^{(p_1)^{-1}} + \frac{p_1}{p_1 - p_2} \mathbf{Q}^{(p_2)^{-1}} \right] \cdot \mathbf{f}^{\{p_1,p_2\}}$$

Extension to any sequence of higher powers by induction.

Summary

Summary

- MRS formulas for growth and normalization both follow from RGE and hold exactly at low orders.
- Generalized to any sequence of power corrections ↔ dominant, subdominant, sub-subdominant, ... growth.
- Scale dependence of total is mild: even though details of cancellation depend on $s = \frac{1}{2}, 1, 2$
- MRS shape not like leading power, when latter matters.
- Standard to sum logarithms; let's sum factorials too!

Thank you for your attention

Questions?