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Recap of integrand reduction using unitarity cuts

In the lectures we have seen that one-loop n-point amplitudes up to O(ε0) can be reduced to a linear
combination of basis integrals, which involves scalar boxes, triangles, bubbles and tadpoles. The coef-
ficients of these so-called “master integrals” can be computed from tree-level on-shell amplitudes that
result after performing generalised “unitarity cuts” on the original amplitude.
As a non-trivial application, in this exercise we will consider the computation of the coefficients of the
boxes that appear in the reduction of the one-loop five-gluon amplitude, A1-loop

5 (1+, 2+, 3−, 4−, 5−).

Figure 1: All momenta are considered incoming.

Box contributions to one-loop n-point amplitudes

Before working on the five-point amplitude, it is instructive to derive some general results concerning
box integrals and how they contribute to a generic one-loop n-point amplitude.

1. Consider the decomposition of a tensor 4-point integral,∫
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and qi are the so-called region momenta. Argue that at the integrand level in 4 space-time dimen-
sions (i.e. dropping all contributions proportional to (l ·nε) in the integrand), the above expression
will have only the following contributions, modulo lower point integrals
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, with d̃ = d1 (2)
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i.e., we do not need to keep any higher powers of (l · n4). Note that, since we are working at
the integrand level, we cannot neglect (l · n4), since it would only drop after one performs the
integration over the transverse space!

2. For a generic n-point one-loop amplitude, at the integrand level we have the following decomposi-
tion

Aone-loop
n =

∑
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+ lower point contributions. (3)

We can focus on the contribution of a specific box and write the previous formula as,

Aone-loop
n =

d0123(l)
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+ other boxes + lower point contributions. (4)

In order to compute the coefficient d0123 we will use unitarity cuts. The idea is to perform a
quadruple cut in both sides of (4) in such a way that we can isolate d0123.

(a) For the right-hand-side of (4), working on the box with coefficient d0123, use the Van Neerven-
Vermaseren decomposition for the loop momentum, using its three region momenta q1, q2, q3
and any extra momentum n4, to show that this freezes all components of the loop momentum
lµ to the two solutions
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(b) On the left-hand-side of (4), the quadruple cut can be written as the product of four tree-
level amplitudes, i.e. Atree

1 (l̄±)Atree
2 (l̄±)Atree

3 (l̄±)Atree
4 (l̄±). This will be equal to d0123, which

you have shown in previous steps to be d0234 = d + d̃(l · n4). Show that the scalar box
coefficient d can be written as,

d =
D+ +D−

2
(6)

with
D± = Atree

1 (l̄±)Atree
2 (l̄±)Atree

3 (l̄±)Atree
4 (l̄±). (7)

What is the corresponding formula for d̃? Do we need to compute it and if yes, for what?

Box coefficients of A1-loop
5 (1+, 2+, 3−, 4−, 5−)

1. Starting from figure 1, convince yourselves that the contributing boxes are

I(s12), I(s23), I(s34), I(s45), I(s51),

where I(sij) represents the box - integral with 2pi · pj as the massive leg.
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2. We write for the amplitude at the integral level

A1-loop
5 (1+, 2+, 3−, 4−, 5−) = d12I(s12) + d23I(s23) + d34I(s34)

+ d45I(s45) + d51I(s51) + lower point integrals (8)

and we focus on the computation of the coefficient of I(s12), which we denote as d12 following the
notation in eq. (2). The I(s12) scalar integral is defined as

I(s12) =

∫
d4l

(2π)4
1
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=

∫
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1
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(9)

with pi denoting the inflow momenta, qi the region-momenta and pijk = pi + pj + pk. The diagram
associated with (9) is shown in figure 2.

Figure 2: All momenta are considered incoming.

Now we’ll use eq. (2) and the general decomposition for the amplitude (8), evaluated on the
quadruple cut eq. (5), to fix the coefficients d12, d̃12, working only at the integrand level.

(a) Consider the helicity amplitudes that result from the quadruple cut ofA1-loop
5 (1+, 2+, 3−, 4−, 5−)

in such a way as to isolate the contribution of I(s12). What choices are allowed for the helic-
ities of the resulting tree amplitudes?

(b) After fixing the helicities, enforce the cut relations on the propagators and fix the loop
momentum. For convenience you can define li = l + qi, for i = 1 . . . 5, with q5 = 0 and solve
the cut relations for an appropriate choice of li instead of l.

(c) Having fixed the loop momentum in the previous step, use (7) to compute D± in terms of
specific helicity amplitudes and finally use (6) to obtain the box coefficient d12.
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