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Introduction

In this exercise we will consider the scattering amplitude for the fusion of two gluons into a Higgs via the
coupling to a top quark loop, which is the dominant production channel for the Higgs at the LHC. We
will use generalised unitarity techniques for the reduction of the amplitude in terms of master integrals,
along with the results from the previous exercise sheet for these integrals, to write an explicit formula
for the amplitude. A diagrammatic depiction of this scattering process can seen in Figure 1.

Figure 1: Feynman diagrams for gg → H.

Amplitude for gg → H

We call h1, h2 the polarisations of the gluons of momenta p1, p2 respectively. The amplitude can be
written as follows,

Ma1a2
h1h2

= δa1a2gHαSAh1h2 , Ah1h2 =

∫
dDk

(2π)D
Ah1h2(p1, p2, k) (1)

where gH is the Higgs-Top Yukawa coupling constant and αS denotes the strong coupling constant. The
kinematics of this process is:

p21 = p22 = 0, (p1 + p2)
2 = m2

H , (2)

where mH is the Higgs mass. In the following we will denote the fermion mass with m. We will also
define the following set of propagators:

D0 = k2 −m2, D1 = (k − p1)2 −m2,

D2 = (k − p2)2 −m2, D3 = (k − p1 − p2)2 −m2. (3)

Note that, even though generalised unitarity is often used to avoid the use of Feynman diagrams alto-
gether, here we will make use of it in order to reduce the amplitude to master integrals, starting from
a representation in terms Feynman diagrams.
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1. Using the diagrammatic representation of Figure 1, the massive fermion propagator /k+m
k2−m2 and the

conditions on the external gluons pi · εj = 0, ∀ i, j = 1, 2, write the amplitude at the integrand
level as follows

Ah1h2 =
Tr
[
(/k +m) /ε1(/k − /p1 +m) /ε2(/k − /p1 − /p2 +m)

]
D0D1D3

+ (1↔ 2), (4)

where the contribution of the second diagram is captured by the swapping of labels (1↔ 2). What
is the physical meaning of the four conditions pi · εj = 0, ∀ i, j = 1, 2? Could we make a different
choice?

2. Perform the trace and express the resulting scalar products between the loop momentum and the
external momenta in terms of the propagators in eq. (3) to write Ah1h2 as follows,

Ah1h2 = 4m

[
4(ε1 · k)(ε2 · k)− m2

H

2
(ε1 · ε2)

D0D1D3

− (ε1 · ε2)
D0D3

+ (1↔ 2)

]
. (5)

3. Starting from the considerations made in the lecture, write down the most general decomposition
for this three-point amplitude at the integrand level,

Ah1h2 =
c1(k)

D0D1D3

+
c2(k)

D0D2D3

+
b03(k)

D0D3

+ . . . . (6)

Taking into account that the gg → H amplitude is ultraviolet-finite, what other terms apart from
those explicitly given in (6) are allowed?

4. Compute the triple cut in (5) but at variance with what was done in class, keep also ε-dimensional
terms, and show that the triangle coefficient is

c1(k) = 4m(ε1 · ε2)
[
2m2 − m2

H

2
− 2µ2

]
, (7)

where µ = k · nε.

5. Now focus on the first bubble coefficient b03(k). Show that it vanishes by computing the respective
double cut.

6. Using the results in the previous two points, argue that the final form of the amplitude is

Ah1h2 = 8m(ε1 · ε2)
[(

2m2 − 1

2
m2
H

)
I3 − 2I3(µ

2)

]
(8)

where
−i(4π)D/2

eεγE
I3 = I(1, 1, 1). (9)

For the definition of I(1, 1, 1) see eq.(1) of exercise sheet 03. Notice that the funny prefactor
in eq. (9) has the role of adjusting the integration measure from the unphysical one used in the
previous exercise sheet, to the physical one.
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7. Starting from your final result in eq. (8), discuss what happens for different choices of the helicities
of the external gluons. You should find that some of the helicity amplitudes give an identically
zero result. Can you justify physically why this should be the case?
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