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1 Colour singlet production at NLO QCD

1.1 Real-emission amplitudes for Drell-Yan and Higgs boson production

• Compute the squared matrix element for the scattering processes

q(pa) + q̄(pb)→ Z(pZ) + g(k), q(pa) + g(pb)→ Z(pZ) + q(k) (1)

working in conventional dimensional regularisation (CDR), setting d = 4− 2ε. Express the final result in
terms of Mandelstam invariants

ŝ = (pa + pb)
2, t̂ = (pa − k)2, û = (pb − k)2 . (2)

The external Z boson is on-shell and has mass mZ .

• Working in the heavy-top mass limit, namely adopting the effective Lagrangian

LHTL = −λ
4
H Ga1µν G

a,µν , with λ =
αs

3πv

(
1 +

(
5

2
CA −

3

2
CF

)
αs
2π

)
,

compute the squared matrix elements for all relevant real-emission channels contributing to Higgs boson
production at NLO QCD. We recall that the relevant Feynman rules for the interaction vertices, including
also those for standard QCD, are

= −gsfabcT µ1µ2µ3(p1, p2, p3) = −λfabcT µ1µ2µ3(p1, p2, p3)

= −iλδab (pµ12 p
µ2
1 − g

µ1µ2p1p2)

= −ig2s
[
facxf bdxGµ1µ2µ3µ4 + fadxf bcxGµ2µ1µ3µ4 + fabxf cdxGµ1µ3µ2µ4

]

= −iλ
[
facxf bdxGµ1µ2µ3µ4 + fadxf bcxGµ2µ1µ3µ4 + fabxf cdxGµ1µ3µ2µ4

]

where we introduced the tensors

T µ1µ2µ3(p1, p2, p3) = gµ1µ2 (pµ31 − p
µ3
2 ) + gµ2µ3 (pµ12 − p

µ1
3 ) + gµ3µ1 (pµ23 − p

µ2
1 ) ,

Gµiµjµkµl = gµiµjgµkµl − gµlµigµjµk ,

and all the momenta pµii in the vertices are taken as incoming.
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1.2 Drell-Yan and Higgs one-loop form factor

Compute the one-loop QCD correction to the processes

q(pa) + q(pb)→ Z(pZ), g(pa) + g(pb)→ H(pH) (3)

where the H couples to the gluon through a point-like effective vertex (see above). In deriving these results,
extract all the relevant scalar one-loop integrals and compute them explicitly.
The Higgs-boson production amplitude, will contain both UV and IR singularities. You can renormalize the for-
mer in the so called MS scheme, which amounts to replacing the bare coupling constant α0

s with its renormalised
counter part αs as

α0
sSεµ2ε = αsµ

2ε
R

(
1− αs

4π

β0
ε

+O(α2
s)

)
(4)

where β0 is the first coefficient of the QCD β-function and it is given by β0 = (11/3)CA − 4nfTF /3 and µR is
the renormalisation scale.

1.3 Contribution from quark-gluon scattering to the Drell-Yan cross section

Extend the discussion seen in class for the NLO QCD corrections to Z boson production to the case of the
q(pa)g(pb) scattering channel.

• Derive the differential cross-section in the variables z and λ seen in class. What are the differences in the
z → 1 and z → 0 limit of the cross-section wrt the qq̄ channel?

• Integrate over λ and write down the inclusive cross-section.

• Discuss the small pT behaviour of the pT differential cross section and compare it with the qq̄ case.

In deriving this result you will need the Altarelli-Parisi splitting kernel

Pqg(z) = TF
[
z2 + (1− z)2

]
. (5)

1.4 NLO QCD corrections to Higgs-boson production

Using the amplitudes computed in exercises 1.1 and 1.2, and using the same phase-space parametrisation
adopted in the Drell-Yan case, derive the double differential cross-section for Higgs boson production. In
deriving this result you will need the Altarelli-Parisi splitting kernels

Pgq(z) = CF

[
1 + (1− z)2

z

]
,

Pgg(z) = CA

[
2z

(1− z)+
+

2(1− x)

z
+ 2z(1− z)

]
+
β0
2
δ(1− z) . (6)

As in the previous exercise, discuss the main features of the cross section, in particular the z → 0 and z → 1
limit of the cross-section. What is the main difference arising from having initial-state gluons? How does the
cross-section behave in the small pT limit. What differs wrt the qq̄ case in Drell-Yan production?
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2 Infared poles of 1-loop QCD amplitudes

2.1 Color bases of low-multiplicity QCD amplitudes

Consider the 2→ 2 scattering processes

qi1 q̄i2 → Qi3 Q̄i4 , qi1 q̄i2 → ga gb, ga gb → gc gd (7)

where the subscripts in and superscript a, b refer to color indices in the fundamental and adjoint representation.

• How are these amplitudes formally expressed in color space? Can you estimate a priori, i.e. without an
explicit calculation what is the dimensionality of the basis?

• Derive the color bases spanning the complete color space for each amplitude. Express your results in
terms of the so-called tracebasis, namely where all elements in the color space are written as product of
SU(Nc) operators T aij . You may find the follow identities useful

fabc = −2iTr
(
T c
[
T a, T b

])
dabc = +2Tr

(
T c
{
T a, T b

})
, (8)

where dabc is the totally symmetric structure constant

• Which elements in the color bases contribute at tree-level for each amplitude, namely are there any
vanishing partial amplitudes at LO?

• How does the picture change if we add an extra gluon to each of the above amplitudes? After discussing
the dimensionality of the bases, extract them explicitly.
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