
Advanced Methods for Collida Physics

WS 1024
Lau
Tambe



Motivation : why a course onadvanced methods

In collider physics" today" ?

Collidersor most naive & Effecte way
to

discover what our would is made of of the

most fundamental level

=> historically extremely successful

EXAMPLES of most recent discoveries

1983 E
,
W bosons & SppS

,
ce (630Gev)

1995 top quark & Teration
,
FEMIAD (2Tev)

2012 Higgs bown & CHC
,
CEN (7-13.

6 Ter)

↓ S
.

M
.
is "Complete" as for os particle content

? E
Dak Matter

,

Doh Energy
OPEN QUESTIONS Neutino masses

Details ef SSD
, strong CP, ...
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Discoveries often done of hadian collides-> they
allow to reachextenergy franties

C Colliding "non-elementary potides (aCDbounda
means much more "clutter" from

Il

"strong interactions. Collisions are len

dear and more difficult to interpret

LHC collides protons & 16 TeV

=> X z
X

/ S"HARD" Scale

o ⑰
3
scole-invoice breaking
B the proton es

aftera

depending or energy of
whichIs

probed 2



=>> to understand
collide physics If model it with

high precisio we need to UNDERSTAND Stronci interactions

Across Diff . SCES E different "physics" , offerent
methods developed to handle it.

In this course we will go deep into some of
these methods

, focus on

⑪1 "Hord Scotting" , High-energy collision
that hogens among elementory portices

=> QFT methods
, Scatteing Amplitudes , Feynman

integrals = DIFF . Eas.

④Combination of "Amplitudes" into IR-finte

physically well-definedSELVABLES &FIXED
ORDER

EIR divergences
,
subtraction & Fretoitation

⑬ Modelling realistic processes & LHC

=> PDFs, MC integration, Jets & Hadrons,
Paten showers

Figmentate 3



A "diverse" set of letizers with offerentexte
-

Today we start looking of Building blocks of

Fixed Order calculations -> Scattering Amplludes

& Feynman Intepals

We work in QCD = Quantim Chromodynamics

YM thery based on SU13) gorge group

Ca-tr(EmE]+ licy-m
↓ ↑

Nf quark flavours
in Su(3) Fundamental

Env = FUVATA Fundam I representation
genedors Typicallyj=

EFOAMARDiOgA
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QCD Feynman Rules = La + Lar

coraient
a] Car = -A gouges (+=3)

We won't derive them here
,

but just list them

PROPAGATORS Adjoint-

A

gluon I excuB--g +-
K

X = p"Ur

mine
a

VERTICES

"We in

rigsti QED
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eBA(q)g19-egg

AreBugXB(guuger gorg
,a

↳ Drig: fDBC (grugitgaggur]

-ig, fBXD /grigur- gug]

new vertices dueto

I Fr = -An As Ar I
*g, glae
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WAVE FUNCTIONS
-

/ Er) glon poloidi

-> u(p) Incoming quork

(p) incoming outiquark
=

(=<p) If qual
monen

!)
atgoing quart

#

& Tcp) outgoing quosk

=> t(p) outgoing outi quart

re = E(2) (igsTy) ucpe) D(q)
eps, Tps) (-igsTBy] cpa)
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ALTERNATNE : quaulite in "noncordant" gorge

3) Lar = -In Ap
is non-corriout (depends on direction Mr

of he spocelibe (n2< 0) = AXAL GAUGE

I if no lightlike (= 0) =
Laht-re Gauge

if nu time like (rso) = Coulomb Gauce

In proce ,
people all all of them And Gorges (A6

PROPAGATOR GLON/PHOTON CHANGES

-

DA(K)=-G+

·
[ j

for orbitory no introduces on most used light like
extra "non-physcol" singularly ! H2= 0

go



But the pho is
,
ghosts decouple and can

be ignored as in RED !

#dowdotnita b
Glen Propeptor in Oxid (light-like) gorge

JDa (K)=gues

We see that

knDKDT I Dur propagates

only 2 physical
polarization states-thogl

/ toaad nm !

which is thereason why ghosts or

not needed ! 9



SCATTERING AMPLITUDES In QCD

With this let's go dre deep into hard scottery

=>get z

/
seme

a
Las
w 2

9
9

Spotonic = SdqIA 12

I scotteing empertude0



Save important fats

1) Amplides re complex Judious ,
like

in Quantum Mechanics

=> interference potterns crucial quantum phenom.

2) Aupliades are on-shell
, amputated concelotes

(LSZ farmla

=> they have poles & bronch cuts in complex

place : poles = single-particle intermediate states

-11th not recently elementary!

broch cuts => multipatide intermediate

stoles

-~tns-mim
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n-

3) Amplitudes ore Acrost" Creutz inveient

=> they trousem according to Little Group
of

extend particles
ih

Monten => (1) sole) ~U(1)-e

pu= (E
,
0

,
0

,
E) his helialy

It monter fanias

11 monter bosons

etc

Morive => S0(3)-sule) l=

pr= (m,) m =- A=+,...

--
+ 1z

(21+ 1) states
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Gucol role played by palisation vectors /

spiros =f they bi-transform

lountzlittle Group

Example 1)g(p) + g(p2) -> H(q)

Agg+ H=(e)A

Lorentz indices contracted

"Scolar under Geutz"

but En still reansforms under little group

Example 2] gpm)+(2) -> g(p3) + g(pu)

Agagg = Te(pe) ↑Mu(p1) En(3) Er>pu)
um

scolor in spirorspace
shel transforms under little group due to U!

13



=> Spira helcty freuden makes this

manifest , we won't use it here because

it works well onlyIn monter empeds

and we want to be more gard !

ESORDECOMPOSITION

We typically compute empenades in perhasation

they (tree-level
,
one-loop,... )

There ore Few things ,

neverthelen
,

that we

can say
aboutomplndes and that one

Finallorders

=>
Parametite their most gered hu

allowed by all "symmetrics"
- Lorentz + Little Group

=> Greience order S013) [Color]

Gorge "covoiance" - Bose symmetry ...

=> 14



Focus on Lorentz /Little Group

=>Tensor /Form Focho Decompostion

Start with our two examples 1. 99 -H

2
.
95- gg

8
. AggH = En(pu) Er(p2) Am

what can we sy about AMI ?

· rank-2 Corentz tence
-

. thery <P inveient = pr , per , gar

AME FPP + F2PMP2" + FzP2P + Fez PMPV

-> Foogmu

15



5 objects /Pingyo ; garl one a "bosis"

In a rector space ,
far lives in this spoce.

rectors & dual rectors spirps
,
gurg same !

metric in vector space [Guggus] sconduct
Do we know more ? Yes !

a) gluons or on-shell => Erpr = 0

Ez . P2 = 0

quV= (ForFe Pamp) +
Err An ErmEzu = o

-

I -

I con constrain

myself to work on

His subspace by#zamsubspace modifying METRIC
16



b) Further ,
I know that only physically

relevant post ofFur is the one that

fulfils Ward Identities

FM . Perezu =* per Enp = o

=> (Foo + F21 PrP2) Ezp1 = 0

Foo = - prope F21

Ahys =
F) - grV prpu + Pmpz)

Arv = A A
"one-dimensand" in tensor space

four 5 - 1 tensors/fem factor

Anhys so constructed is "gorge covariant" 17



b- 12] notice
, endent remet could

have

beenachieved FixinG Gauge of two gluons

f example En . P2 = Er . Pr = 0

this would have allowed me to write

Aur+ A

= Foo gar ;
A ErrEsu = o

=> how do I get to this form on

practice ?

Atl-loops ei---D
N-E Tov Trv = &ku ,

ku
, Par , Par]

abitory was 18



Computing teams intepals is complicated in gerend

=> Se e

it is useful
,

once gard from is known
,
to

"project out" directly the scoln from

factors that one physically relevant

PROJECTOR-FOR FACTOR METHOD (in'tHV)

Uring" duol rectors" ,
I can build a"projector

opeden" , which is just a combination of dual

rectas thatsingles out Foo
,

or F in previous

representationA = Foo-solduct !

19



SUBTETY : In generd P built out of ALL 5

If I want to use StandardProduct

-

on full space (5 dimeniou (

=Th = Spipp , gary;Th ... 3

Couy = Tr[grgrd] Ths
on 1-dim subspace I need a new

metic that lives on that space

= remember this is what now of genon prop
In AXAL gorge does

!

Gryga1->-guy +PenP
-Gro + Part

V n, P, & n= m = 0

28



by fixing nh-per & Ne = Per I our selecting
EXACTLY He 1.dm subspace > At

=> in gara ,

I would madly have to do

this do for "gorge Corriout" variou
Y

and in this case
ony n ,

he would

work .
Nevertheles in this cose its not

needed because (-grv prp2 +pye) s

by construction Orthogonal to all other

teams ! Addr n + up -
* etc

has No effect

In this cose
,
convenient to proceed with

Aar = F(-grV pr . pr + PrpeM)
21



PE c[-gruppe -P+24]

P . A = P : [Inggur] Alt

=c .F [ +D(Pipz(2 - (PrP2)2

- (ope)+]

= c . F . (D-2) (Prp2 F

c=(Propul c 192] 2

Pr . pz = & (pn+ p2)2 = + g2

↑= ]t-gar .

- Apri
2



= D or L dimensions ?

We do this olgebo in D dimations become

Loop celepos ore typically dvergent !

Still remember AMP . En Er
~

4-di extend states

, 't Hooft-Veltman

regularization scheme !

->
similarly to the betCon We EXPLOIT THIS

-

that Ener "cut out" some new-plisial

tenris due to word identities etc ?

=> nothing to improve fr ggzt (we are

already down to1 single Form Factor)

but when dealing
the 2-n scating ,

It

can zered to be very useful [Perdo ,
Toundi 19

,
20]
23



Let's consider a cose where the problem

is expecially "visible".

9q-QG scotting
,

two flowers of

MISSESSQUARKS

g(p1) + j(p) + Q(ps) + &(a)

9x 19
11

Al incoming①
↑ XX

-

re u
,
j

Age-(p2)Iacpe) Olpul M UCp3)

For example :

(p) Unu(pe) O(pa) UnU(p3)

(pe)/3 u(p) (Pal(1U(pe)
24



E(p)/UMyr ze(p) Ecpal YnOr UCPs

u(pa) jegoga upel OCPul &rUrWe UCPB)
etc

when do I stop ?

=> of 9 &Q both monter
,

I con never have

↑jn
ever number of JM = helaty conservation !

=> Apart from this to compute thisocpehde

to I-loops in CDR eventually all these
/

steuchizes can contribute

J = 2 loops => 5 jM per One

etc

J bloops e 7 je per e

etc

25



these are all independent if M is a Ddi index

=> Je olgeba is not closed in D dierios !

Bot : we can work in
't Hooft-Veltman !

2
,
i

,

U
,
0 live in 6-dim space

only 6-dim component of &M matters

Le external states

then STARTING from 2-2 I can build

a BASIS fr the h-dm ace es follows

P , , Pg + WMPRPM ANAL VECTOR

- ORTHOGONAL TO

p- P2 P3

um-i piw,
immaterial explicit
experien !

26



this is on easy way
to see that any

(2)yng ... (9 u(ph) ->(2)/j ... &nulpe)
when giv : Spr , P24, pet, way

then ving u <pe=u(p) =

& Pu =(p + P + ps) we see that only 2

possibilities remains

<P2)/M(P1) -) $320 Gebidder
is(p2)( u(p1) 34i nuposible

once only
2 momenta

con be used !

Ps
,

w !
-

=> similarly be other fermion le

[lpu)(1U(p3)
-> not indep by momentum

Tlpa) fu U(pc) conservation !
27



tHV

AggQ
=FUU
+ Es <P2)/x(pe) OCP2) fo O(ps)

Joe
+ Fu (P2) /o uspes Tlpu) @U(P3)

h independent ones > as
many o the posise

14 D = 4 external

dimensions belicity (or spir !
CtHV( configurations 42

,
<R

,
RL

,

Dr

=> now onome weoe u QCD
, they

in CP even les fr os we know)

L (RBJ* CLR)* RL CP trof

so only 2 structures should matter t in first

Fu= o in QCD
28



note doo that working

Agg = FiTh
=1

Tenso strudes

they in this cose the " scole product "O the

"dual vectors" require defring

T = dual rechos

Fi
[Te

,
Ti) = 2<ple(P2) (p) it M(P2)

pol

(i) inUpa) TeUp)
Du

= Tr [1142 (2 Tj1vn/4e]

=> His imples that Th
,
T2 to Th

,
Ty

once Pi= 0 !

ea



this means that in CP even thery I can

completely throw away Ts
,
Th

Also if I don't like wa = EPPBM I cor

wate

Cpa) juecpt) TCPaS gU(ps)

~gar+j
drady

-per je empes Elpa)UrVIP3) the

- Ignore!

Equudent doice forTnotsoua
space ! (

age master quarks has 2 tenses stuctives

In DeG EXTEWAL dimentang

CtHV-scheme (
30



IMPORTANT: imague I infist to wal in Car

A=Fit Fi
&

Independent only1

then I con do a Grau-schmidt othogaster

A=Fiti+F

Fi = Ti-Ti
projector

along the fast 2

now compute Fi
,
Fi (ALL ! )

,

then cubtiet

UV & IR poses CHARD FUNCION)
, fully send

250to FiFINITE !3



=> Tinte remainder in tHV & IDR is the

bue

Genera Formalism :

A = [FiTic tennis
i

Tfrm Foetes

Ti should be thought of as elements of a rechos space

we can defue "dual rectors" T (fnex build out of E

e "scolor product" in this rector space

Using [MgrV
*

Dependingan conditions

we used to defie TiFigimpliesa Crestrict reche space !
theer

Pi : [c when
check Mi

32



INTERSa Feynman Digou

representation ofon emplude ,

of sintary #

of loops ,
we saturate all corentz & lite Group

cocience indices -> result must be contudio

orRSALAR OBJECTS

For gg-

P
= -gar . +

u+p,+Pz
-P .n - = p.TLM S

~
↳ scoln interpols !

33



DOCIBLESCALAR PRODUCTS :

Of 1 loop ,

all scolor products can always be zewritten

in tems of the propagators of the problem

EXAMPLEABOVE :

S
Dr = =m2

[· ---

Dz=R +pel-m2 e
D3 =

(h+p+pal -m2
K . P2

=> k . k = De +M2

R - p = z(D2 - D1 - P]

k . 4 = & [53 - De - Pz2 -
2pip2]

so substituting these ,

all scolor into become of the

type=I ,a
Diet

34



#OopCase IS Special :

eloop a points 7
S

! E
n "propagola's Dr .

- Du

=
Dn = (k +pp) -mi

"

Dn =
k2-Mr

n-scole productshi

scolor intepals will always be of the type

Ide
ait

35



CARFEYNMAN INTEGRALS & L-loops

& (loops ,
122

,

not all scolor products

you be expered in terms of Di , we need to

generals the notation :

2MBINATORIC EXERCISE SHOWS THAT ↳ loops,
N points

# SCALPRODS 8 iS :

3 = ((+ - z) = L =1
#flegs , notwoea & 1 LoopN

I can you prove it ? )

EXAMPLE : Two loop glmon propagator

neUz+P

eum,n2= f = 2(2+ 1 -2) = 5

#
kn 3 propoglos ; 5

scol products

S. = & K,
12

,
kn . Ka

,
Kn . pe ,

Kz . py
36



a possible choice fogiven propopters(k Ips Rpe

Kn Rn = Dr = Ki

& Ke . Rz : Dz = Rih

(1 . Kz =D3-2p-2RP-D-D-p
there on my two ISPs

FAMILYOf INTEGRALS : Eoobject of study
!

Sad =

=I(an
,
92

,
93 ; -ba)

humerators

37



GanNomenclatio :

#la
, ...,
95
;-bu)S
negative indices

munumerators !

[11
,...,
1; 0. -

,
0) = defies the TOP SECTOR

-

orOp-Topology,e

the groph we are considering

EXAMPLE : a 2-lop double box for ggzygi

#d,
zI

↑

we draw groph associated to scolor integral, we
mean

- No Feynman Riley =

38



Rambutesto these

dig
SKIP

country showsa sademodus

FAMILY

k?Fin [k1-k2]2

k?
2

(1- pt)2

(R1 - piz)2

(k2 -p ,z)2
Pijn = Pi + Py + Pr etc &

(2-py)

(12 - p1z3j2
ADD entire props

(B1 - pizz)2
39



So Integrals we one interested in will be

Ilh, ...,
47 ; no ,

na) Me
, .,
172043

n8
,
na10

·
[11

,
1
,
1
,
1
,
1
,

1
,
1
,

0
,

0) as Top Sector
-

topology

· we call all its obtained removing one or more

propagate in all possible ways SUBSECTORS

or SUB TOPOLOGIES

=> they give subtopologye

For example [10
,

1
,
1

,
1
,

1
,

1
,
2
,

0
, %)

=

·TYFit's a sab sector

pindey pinsch ↑

= 10,
1

,

1
,
1
,
1
,

0
,

1
,

0
.%)= Instector of 40



-HERE

In these cases we often say that subsectors on

obtained by PHING Propagators of topsector

INTEGRAL FAMILY & SUBTOPOLOGY THREE
- -

WH

H

201 ↳
&

Cl



Now, as you car inogue , if we start unting
down dFerroudigrams for e gree problem,

performe projections to compute scolor form factors,

and fally colleall scole intipols, we will

in gre finduse ofopocentlydffect

Intyols = & 1 loop O(100) ints

# gg+ gg & Cloops 0(10000) ints

(a) I & sloops2) ints !
simple combinatorics-clearly hopelen to
compuls all of them one by one-

Luckily, not all these intepols are independent !

42



EGRATIONBY PARTS & MASTER INTEGRALS

We work in Lim Regularization to regular-ze
ou & IR singularities -

The axiom of dim zeg -uply
that wow

performa genertransformeror loop momenta

Inenitesimally +Go p)
Y

complete set
=> f(, ) + flu,) +25fina of momenta

plus :

di + (1 + 2D)di= k

inveioue of integral icuples the

J deke Orjfe- I
used

where Dij = Disj
11. Die
j2i jacobian ! 43



Oij generate a Lie Algebra-

Let's wid these identifies in a human friendly
form - gree a FAMILY Of INTEGRALS :

SS] =

↑
it's nothing but generalisation of 1-dimensional

J fix = 0 if Face
- X

=> Unally referred toos INTEGRATION BY PARTS

Identities (OBPs)

[Chetyrkin ,
Thachov 181]

Wh



· by inspection ,
it is clear that by differentiating

we generate interols in the someAMILY

to we expect that IBPs relate oppocently

different integrals in some family

· Using Lie Group property ,

one can prove

finally that all intepals can be expressed in

thms ofare NumberOFMASTER INTS

=> theyore a BASIS of all integrals

[A.
V

.
Smirnov

,
A .
U

.

Petukhov 2010]

Proof above isNotSTRUCTIVE-

Let's see how this works in practice :

45



IAPPOLE

Iwill work

in Elideou&Statea
!Wick I
-

Family &min
= I (n)

11BP JaRmen] =

=jek

=migh
- Intent

46



which ineplies

(D-2n) [(n) + 2n mr[(n+1) = 0

In +1) = - [In) In s

[(2) = -P

[(3) = - (2)=
↑

we
soy that toople family has

masterintegrat ,

coube chosen as F(1)

In this cose
, easy to solve IBP for generic "n"

in gered the will not be possible -> we

yar instead "generate" and "Solve" IBPs for

specific choices of indices as
, ...,

An

47



· ONE Loop BUBBE CEuclidean Signature (

⑫ : Jami(Ch+p(2+ma)

= I(g
,
b) family

I con deive2now :

② Jan

②I[] = 0

Denve them for specific values of (a,b = ((0 ,
1)% /

Prove that

#G
,
2) =F(2

,
1) =- 48
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=> this problem has 2 moster interpols
[1

,
0) = the ToolpoleIF(1

,
1) = the one loop bubble I

EDUCIBEINTEGRASQUOTERESULTConsider the morler though
LAPORTA
-

I-pu- pe -pe()
D D D

with Pe= Pc= 0 ; gElpetpul= S

thre IBPs

SJan P
49



ERCISE Prove

S[(1
,
1

,
2) + (D -4) [(1

,
1
,
1) = 0

S[(1
,
1

,
2) + [ (1

,
0

,
2) +1(2

,
0
,
7) = 0I

S[(e
,

1
,
1) + [ (1

,
0

, 2) +[ (2
,
0

,
1) = 0

NOTICE

->

not all IBPs one independent!3

- solving 1)

[(
,
2

, 2)=_ (1
,
1
,
1)

potting of into 2)

(D-4)[(, 1
, 1) = [ (1

,
0

,
2) +=(2

,
0
,

1)

tiongle gets "reduced" to bubbles !
- 30



noticing F(1,
0

,
2) = #(2

,
0
,
7) we find

[(
,
1

,

1) = gE [(2 ,

0
,
1)

*=-

H jeducing
do bubble

Integral with > integral with
IR divergences ↓

WV diregences

two plemixed up" by IBPs
-

Im genera ,
we solve IBPs in this way :

genhote all of
them starting from "seed" intepole

take big her system,
solve it

=> [APORTA ALGORITHM '00] 31


