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Sheet 09: BCFW Boundary terms & Dimensional Regularisa-
tion

Exercise 1 - Boundary Terms for BCFW shifts of gluon amplitudes

Consider an [i, j〉-shift applied to an n-gluon amplitude An. On the level of the external momenta, the
shift acts as

p̂µi = pµi + z
1

2
[j γµ i〉 , p̂µj = pµj − z

1

2
[j γµ i〉 , p̂µk = pµk , k 6= i, j . (1)

If the amplitude in terms of the shifted momenta goes to zero as z →∞, the shift is dubbed “good”, as
this implies that the amplitude can be fully constructed from lower-point amplitudes by mean of this
shift and the BCFW approach. The goal of this exercise is to determine which shifts are good shifts
for gluon amplitudes. To do so, we examine their large z-behaviour of gluonic scattering amplitudes
through the background field method. The relevant part of the QCD Lagrangian for tree-level gluon
amplitudes is the Yang-Mills Lagrangian,

LYM = −1

4
F a
µν F

a,µν , (2)

where the field strength tensor reads F a
µν = ∂µA

a
ν−∂νAaµ+gsf

abcAbµA
c
ν . In the large z-limit, we can view

the shifted gluon amplitudeAn(z) defined above, as an energetic gluon moving through a soft background
field. This motivates to study the problem with the background field method, where we split the gluon
field Aaµ into a quantum field Qa

µ carrying the large momentum modes ∝ z and a background field Ba
µ

carrying the soft modes ∝ z0, Aaµ = Qa
µ +Ba

µ.

1. Substitute this decomposition into the Lagrangian (2) and show that the terms quadratic in Qa
µ

take the form

LQ2 = −1

2

{
(DµQν)

a(DµQν)a − (DµQν)
a(DνQµ)a + gs f

abcQb
µQ

c
νB

a,µν
}
, (3)

where (DµQν)
a = (δac∂µ + gsf

abcBb
µ)Qc

ν and Ba
µν is the field strength tensor of the background

field Ba
µ.

We are interested in Green’s functions with exactly two external legs associated with the field Qa
µ and

momentum ∝ z, which we denote by M2Q,(n−2)B
1. At tree level, the only contributing terms in the

Lagrangian are those quadratic in Qa
µ

2. All terms linear in Qa
µ have to be neglected, which can be

explained from two points of view. On the one hand, such vertices would make it possible for a particle
associated with the quantum field Qa

µ to propagate into particles associated with Ba
µ, meaning that Ba

µ

would not be just a background field. On the other hand, vertices involving just one particle associated
with Qa

µ cannot obey momentum conservation, as we take the background field to be soft and there is

1By construction,M2Q,(n−2)B = An(z) for large z.
2Also those independent of Qa

µ, but those don’t add anything to the z-scaling behaviour ofM2Q,(n−2)B , which is what
we are ultimately interested in.
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only one edge with momentum ∝ z entering these vertices3. Further, as we threw away the vertices
linear in Qa

µ, all vertices cubic and quartic in Qa
µ contribute to M2Q,(n−2)B only at loop level.

2. Fix the gauge for Qa
µ by adding a gauge-fixing term

Lgf =− 1

2
(DµQ

µ)a(DνQ
ν)a (4)

and show that the part quadratic in Qa
µ of the gauge-fixed Lagrangian reads

LgfQ2 = LQ2 + Lgf = −1

2
(DµQν)

a(DµQν)a + gs f
abcQb

µQ
c
νB

a,µν . (5)

3. The first term has an extra “Lorentz”-like global internal symmetry, which the second term does
not possess. Identify this symmetry and give the corresponding transformations of Qa

µ and Ba
µ.

4. Identify the vertices with the most divergent scaling behaviour in z and deduce the class of Feyn-
man diagrams giving the most divergent contribution to M2Q,(n−2)B as z →∞.

5. We denote byMµν,ab
2Q,(n−2)B the amplitude with the polarisation vectors of the two particles carrying

the large momentum modes ∝ z stripped off and their colour indices as a, b. Combine your results
from the previous two points to argue that its z-expansion takes the form

Mµν,ab
2Q,(n−2)B = gµν δab z

∞∑
m=0

cm z
−m + fabcAc,µν +

∞∑
m=1

bab,µνm z−m , (6)

where Ac,µν is antisymmetric in µ↔ ν, Ac,µν = −Ac,νµ.

6. Finally, associate to the gluon with indices (µ, a) the momentum p̂i and to the gluon with indices
(ν, b) the momentum p̂j and show by contracting eq. (6) with the external polarisation vectors
that for z →∞ the helicity amplitudes scale as

M++
2Q,(n−2)B ∼

1

z
, M+−

2Q,(n−2)B ∼
1

z
, M−+

2Q,(n−2)B ∼ z3 , M−−
2Q,(n−2)B ∼

1

z
, (7)

where the first helicity belongs to the gluon with momentum p̂i an the second one to the gluon
with momentum p̂j.

Hint: Use the Ward identities p̂i,µMµν,ab
2Q,(n−2)B ε

±
ν (p̂j, rj) = 0 = ε±µ (p̂i, ri)Mµν,ab

2Q,(n−2)B p̂j,ν .

Exercise 2 - Dimensional Regularisation and partial fractioning

1. Compute the dimensionally regularised integrals

I1 =

∫
dDk

iπ
D
2

1

k2 −m2 + i0+
, (8)

I2 =

∫
dDk

iπ
D
2

1

(k2 + i0+)(k2 −m2 + i0+)
. (9)

Hint: Even I2 can be easily evaluated without introducing Feynman parameters.

3If you are familiar with SCET, you may notice the parallels in the construction.
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2. Partial fraction the integrand of I2 with respect to k2 and relate the result to I1. Check that
this is consistent with the results from the previous points, given that scaleless integrals vanish in
dimensional regularisation.

3. Use Feynman parameterisation to show that

I3(p2) =

∫
dDk

iπ
D
2

1

(k2 −m2 + i0+)((k − p)2 −m2 + i0+)
= (10)

= Γ

(
2− D

2

) 1∫
0

dx
[
m2 − x(1− x)p2 − i0+

]D
2
−2

. (11)

The result of the previous point implies that

I3(p2 = 0) =
(
m2
)D

2
−2

Γ

(
2− D

2

)
. (12)

Like I2, also I3 can be partial-fractioned with respect to k2,

I3(p2) =

∫
dDk

iπ
D
2

1

2k · p− p2

(
1

(k − p)2 −m2 + i0+
− 1

k2 −m2 + i0+

)
. (13)

For p2 = 0, shifting the loop momentum in the first term in the brackets according to k → k+p suggests
that I3(p2 = 0) = 0 in contradiction to the result in eq. (12).

4. Show that the two individual integrals appearing in eq. (13),

Ia(m2) =

∫
dDk

iπ
D
2

1

(2k · p)[(k − a p)2 −m2 + i0+]
, a ∈ {0; 1} , p2 = 0 . (14)

are divergent for any (complex) value of D.

That dimensional regularisation fails to regularise a Feynman integral is an issue that can arise when
eikonal propagators4 appear in the integrand and an external leg goes on-shell5. As a consequence,
performing the shift k → k+p only in one of the two integrals in eq. (13) is not a well-defined operation.
One way to resolve the whole issue is by treating the Feynman prescription with more care and write

I3(p2 = 0) =

∫
dDk

iπ
D
2

1

(k2 −m2 + iε1)((k − p)2 −m2 + iε2)
= (15)

=

∫
dDk

iπ
D
2

1

2k · p− i(ε2 − ε1)

(
1

(k − p)2 −m2 + iε2
− 1

k2 −m2 + iε1

)
, (16)

4Propagators that are linear in the loop momentum instead of quadratic.
5Common lingo refers to an external leg with momentum p as on-shell if p2 = 0 and off-shell if p2 6= 0.
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where we now keep track of the limits ε1 → 0+ and ε2 → 0+ independently. For ε1 6= ε2 and at least one
of the two ε1, ε2 > 0, the two individual integrals

J1 =

∫
dDk

iπ
D
2

1

[2k · p− i(ε2 − ε1)](k2 −m2 + iε1)
, (17)

J2 =

∫
dDk

iπ
D
2

1

[2k · p− i(ε2 − ε1)][(k − p)2 −m2 + iε2]
, (18)

with p2 = 0 are now well-defined.

5. Use Feynman parameterisation to calculate the integrals J1,2 and show that

I3(p2 = 0) = lim
ε1,2→0+

(J2 − J1) =
(
m2
)D

2
−2

Γ

(
2− D

2

)
(19)

in agreement with the result from eq. (12).

Hint: One of the two limits can be taken before evaluating the Feynman parameter integral(s).
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