Scattering Amplitudes in QFT WS 2023/24

Lecturer: Prof. Lorenzo Tancredi
Assistant: Fabian Wagner
https://www.ph.nat.tum.de/ttpmath/teaching/ws-2023-2024/

Sheet 08: Gravity Amplitudes

In this exercise sheet, we are going to investigate tree-level three- and four-point graviton amplitudes with on-shell methods without resorting to an explicit Lagrangian. It suffices to know that massless spin-two particles have two helicity states (as all massless non-scalar particles) and their polarisations are rank-two tensors that can be constructed as

$$
\begin{equation*}
\varepsilon_{ \pm}^{\mu \nu}(p, r)=\varepsilon_{ \pm}^{\mu}(p, r) \varepsilon_{ \pm}^{\nu}(p, r), \tag{1}
\end{equation*}
$$

with $\varepsilon^{ \pm}(p, r)$ the polarisation vectors of massless spin-one particles. Further, the three-graviton vertex is proportional to the coupling constant of gravity $\kappa \propto \sqrt{G_{N}}$, which has mass dimension -1 in natural units. In the following, we will denote an n-graviton amplitude with incoming momenta $\left\{p_{1}, \ldots, p_{n}\right\}$ and helicities $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ as $\mathcal{M}\left(1^{\lambda_{1}}, \ldots, n^{\lambda_{n}}\right)$.

Exercise 1 - Three-graviton helicity amplitudes

As for gluons, the tree-level three-graviton amplitude can be determined from Little group scaling arguments alone (up to normalisation).

1. In the lecture, you found the Little group scaling relation for any amplitude \mathcal{A} to read ${ }^{1}$

$$
\begin{equation*}
\mathcal{A}\left(p_{1}, \ldots, W_{i}^{\mu} p_{i \mu}, \ldots, p_{N}\right)=z^{+2 h_{i}} \mathcal{A}\left(p_{1}, \ldots, p_{i}, \ldots, p_{N}\right), \tag{2}
\end{equation*}
$$

where h_{i} is the helicity of the particle with momentum p_{i} and W_{i} is a Lorentz transformation which leaves p_{i} invariant (a Little group transformation). Check that eq. (2) remains valid for massless particles with spin-two.
2. Now use eq. (2), together with dimensional analysis and three-particle kinematics, to compute all three-graviton helicity amplitudes up to overall numerical factors. Concretely, show that

$$
\begin{equation*}
\mathcal{M}\left(1^{ \pm}, 2^{ \pm}, 3^{ \pm}\right)=0, \quad \mathcal{M}\left(1^{+}, 2^{+}, 3^{-}\right)=c_{+} \kappa \frac{\langle 12\rangle^{6}}{\langle 23\rangle^{2}\langle 31\rangle^{2}}, \quad \mathcal{M}\left(1^{-}, 2^{-}, 3^{+}\right)=c_{-} \kappa \frac{[12]^{6}}{[23]^{2}[31]^{2}}, \tag{3}
\end{equation*}
$$

where $c_{ \pm}$are numbers. Parity invariance implies $c_{+}=c_{-} \equiv c$ and we may eliminate the constants by redefining $\kappa \rightarrow \kappa / c$.
Hint: An n-point amplitude has mass dimension $4-n$ in natural units.

Exercise 2-Four-graviton helicity amplitudes

The four-graviton helicity amplitudes can be determined from the three-graviton ones by means of the BCFW approach.

1. Show that for gravitons the all-plus and single-minus amplitudes vanish, just as for gluons.

[^0]2. Using the BCFW recursion with a valid shift, show that the MHV graviton amplitude is given by
\[

$$
\begin{equation*}
\mathcal{M}\left(1^{+}, 2^{+}, 3^{-}, 4^{-}\right)=\kappa^{2} \frac{\langle 12\rangle^{7}[12]}{\langle 13\rangle\langle 14\rangle\langle 23\rangle\langle 24\rangle\langle 34\rangle^{2}} . \tag{4}
\end{equation*}
$$

\]

As shift, you can use $[1,2\rangle$ and verify a posteriori that this is indeed a valid shift.

Exercise 3 - Colour-Kinematics Duality and Double Copy

Examining eq. (3), you may notice that the three-graviton amplitudes are just squares of (colour-ordered) three-gluon amplitudes with the couplings stripped off,

$$
\begin{equation*}
\widetilde{\mathcal{M}}\left(1^{+}, 2^{+}, 3^{-}\right)=\widetilde{\mathcal{A}}\left[1^{+}, 2^{+}, 3^{-}\right]^{2}, \quad \widetilde{\mathcal{M}}\left(1^{-}, 2^{-}, 3^{+}\right)=\widetilde{\mathcal{A}}\left[1^{-}, 2^{-}, 3^{+}\right]^{2} \tag{5}
\end{equation*}
$$

where the $\tilde{\sim}$ denotes that the coupling constants are stripped off. This observation can be seen as the starting point of a procedure referred to as double copy, which allows to construct graviton amplitudes from"squares of gluon amplitudes". At tree-level, this goes as follows: given a general n-gluon amplitude $\mathcal{A}(1, \ldots, n)$, start by writing it in the form

$$
\begin{equation*}
\mathcal{A}(1, \ldots, n)=g_{s}^{n-2} \sum_{i} \frac{c_{i} n_{i}}{D_{i}}, \tag{6}
\end{equation*}
$$

where the c_{i} are colour factors, the D_{i} are products of inverse propagators and the n_{i} denote the remaining numerator factors as coming from Feynman rules. The amplitude is said to obey colourkinematics duality if the numerator factors n_{i} obey the same linear relations as the colour factors c_{i}. In that case, it can be shown that the n-graviton amplitude $\mathcal{M}(1, \ldots, n)$ is given by

$$
\begin{equation*}
\mathcal{M}(1, \ldots, n)=\mathcal{N} \kappa^{n-2} \sum_{i} \frac{n_{i}^{2}}{D_{i}} \tag{7}
\end{equation*}
$$

where $\kappa=\sqrt{8 \pi^{2} G_{N}}$ and \mathcal{N} is a constant depending on normalisation conventions between the colour factors c_{i} and numerator factors n_{i}. Let's make this concrete for the case $n=4$. As done in an earlier exercise, the four-gluon amplitude can be written as

$$
\begin{equation*}
\mathcal{M}(1,2,3,4)=g_{s}^{2}\left(\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}\right) \tag{8}
\end{equation*}
$$

where $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}+p_{3}\right)^{2}, u=\left(p_{1}+p_{4}\right)^{2}$ are the usual Mandelstam variables and the colour factors are given by

$$
\begin{equation*}
c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}, \quad c_{t}=f^{a_{1} a_{3} b} f^{b a_{4} a_{2}}, \quad c_{u}=f^{a_{1} a_{4} b} f^{b a_{2} a_{3}} . \tag{9}
\end{equation*}
$$

The amplitude obeys colour-kinematics duality ${ }^{2}$ in form of the Jacobi identity $c_{s}+c_{t}+c_{u}=0$ and for numerator factors $n_{s}+n_{t}+n_{u}=0$. The four-graviton amplitude is then given by

$$
\begin{equation*}
\mathcal{M}(1,2,3,4)=-\kappa^{2}\left(\frac{n_{s}^{2}}{s}+\frac{n_{t}^{2}}{t}+\frac{n_{u}^{2}}{u}\right) . \tag{10}
\end{equation*}
$$

[^1]1. Show that eq.(10) can be rewritten in the form

$$
\begin{equation*}
\mathcal{M}(1,2,3,4)=\kappa^{2} \frac{s u}{t} \mathcal{A}[1,2,3,4]^{2}, \tag{11}
\end{equation*}
$$

where $\mathcal{A}[1,2,3,4]$ denotes a colour-ordered gluon amplitude.
Hint: Recall the relation between the numerator factors and colour-ordered amplitudes we found in a previous exercise ${ }^{3}$:

$$
\begin{equation*}
\mathcal{A}[1,2,3,4]=\frac{n_{u}}{u}-\frac{n_{s}}{s} . \tag{12}
\end{equation*}
$$

2. Verify that eq.(11) reproduces eq. (4) for the MHV helicity configuration.
[^2]
[^0]: ${ }^{1}$ We associate massless left-handed fermions with helicity $-1 / 2$ and massless right-handed fermions with helicity $+1 / 2$.

[^1]: ${ }^{2}$ In fact, all gluon amplitudes do after performing appropriate generalised gauge transformations $n_{i} \rightarrow n_{i}+\Delta_{i}$ with gauge functions Δ_{i} subject to the constraint $\sum_{i} \frac{c_{i} \Delta_{i}}{D_{i}}=0$. It is easy to check that this transformations leaves the amplitude invariant.

[^2]: ${ }^{3}$ The factor-of- 2 difference comes from a slightly different normalisation convention for the colour factors, such that $\mathcal{A}\left[1^{+}, 2^{+}, 3^{+}, 4^{+}\right]$is given by the Parke-Taylor formula.

