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Sheet 06: Gluon emission in soft and collinear limits

Exercise 1 - Universality of the eikonal factor in QCD

We are interested in the behaviour of arbitrary tree-level n-point (all incoming) QCD amplitudes as an
external gluon becomes soft. After performing a colour decomposition, we may restrict our analysis to
colour-ordered amplitudes, which we denote by A[. . . ]. In the lecture, you argued that if the soft gluon,
which we label with s, is adjacent to massless quark lines, the leading behaviour of the colour-ordered
amplitude comes from the diagrams

ps

pi

pj

ps

pi

pj

Further, you showed that the amplitude behaves in this limit as

lim
ps→0
A[1, . . . , i, s, j, . . . , n] ∝ gs

{
εs · pi
ps · pi

− εs · pj
ps · pj

}
A[1, ..., i, j, ..., n] , (1)

where A[1, ..., i, j, ..., n] is the colour ordered amplitude without the soft gluon.

1. Show that if the quark lines have a mass m, we nevertheless find the same behaviour.

2. Repeat the exercise for the case, where the adjacent legs are (physical) gluons instead to convince
yourself that the eikonal factor is universal.

Hint: The leading contributions come from the diagrams

ps

pi

pj

ps

pi

pj
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Exercise 2 - Collinear limits in QCD

We consider again generic tree-level QCD n-point amplitudes, which we denote by M. In the lecture,
you studied the limit of an external gluon attached to a massless quark line becoming very collinear to
that quark, gq → q.

i

a

p1 + p2p2

p1

(2)

1. Convince yourself that there is no singular collinear limit if the quark is massive.

In the rest of this exercise, we will consider the two remaining scenarios admitting collinear limits,
qq̄ → g and gg → g. We parameterise the momenta p1 and p2 in Sudakov decomposition,

p1 = x1 p+ y1 p̄+ p⊥ , (3)

p2 = x2 p+ y2 p̄− p⊥ , (4)

where p and p̄ denote light-like momenta to which p⊥ is orthogonal, p · p⊥ = p̄ · p⊥ = 0. The collinear
limit corresponds to ~p1,2 ‖ ~p, and the decomposition is realised such that x1 + x2 → 1 in the collinear
limit.

2. Check that the collinear limit can be studied by taking p⊥ → 0, by showing that

y1,2 = − p2⊥
2x1,2(p · p̄)

, (p1 + p2)
2 = −(x1 + x2)

2

x1x2
p2⊥ . (5)

Consider first the case qq̄ → g with a massless quark-antiquark pair. We write an associated amplitude
as

iM(q(p1), q̄(p2), . . . ) = gsT
a
ijV̄ (p2)γµU(p1)

−gµν

(p1 + p2)2
M̃a

ν(g(p1 + p2), . . . ) , (6)

where M̃ν is the amplitude stripped of the quark-antiquark pair,

iM = j

i

p1 + p2p1

p2

, M̃a
ν(g(k), . . . ) = a, ν

k

. (7)

The cross means to omit the polarisation vector associated with the external line.

3. Argue that one can make the replacement

gµν → −
∑
λ

εµλ(p, p̄) [ενλ(p, p̄)]
∗ +O

(
p2⊥
)

(8)

in Eq.(6), where p and p̄ are the two light-like momenta used for the Sudakov decomposition.
Hence, the scattering amplitude can be written as

iM(q(p1), q̄(p2), . . . ) =
gs

(p1 + p2)2
T aij
∑
λ

V̄ (p2) /ελ(p, p̄)U(p1)M̃(g−λ(p), . . . ) +O
(
p2⊥
)
. (9)
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4. Take the collinear limit in Eq.(9). You should find1

iM(qL(p1), q̄R(p2), . . . )→−
√

2gs T
a
ij

{
z

[12]
M̃(g−(p), . . . ) +

1− z
〈12〉

M̃(g+(p), . . . )

}
, (10)

iM(qR(p1), q̄L(p2), . . . )→
√

2gs T
a
ij

{
1− z
[12]

M̃(g−(p), . . . ) +
z

〈12〉
M̃(g+(p), . . . )

}
, (11)

where parameterised x1 = z and x2 = 1− z in the collinear limit.

Consider now the last case, gg → g. An associated amplitude reads

iM(g(p1), g(p2), . . . ) =i fabc gs ε
λ1
µ1
ελ2µ2

[
gµ1µ2(p2 − p1)µ3 + gµ2µ3(−p1 − 2p2)

µ1 + gµ3µ1(2p1 + p2)
µ2

]
× −gµ3ν

(p1 + p2)2
M̃c,ν(g(p1 + p2), . . . ) ,

(12)

iM = a

b

p1 + p2p1

p2

, M̃c
ν(g(k), . . . ) = c, ν

k

. (13)

5. Argue that we can again make the replacement in eq. (8), such that the amplitude in eq. (12) can
be written as

iM(g(p1), g(p2), . . . ) = i fabc gs
∑
λ

Splitλ(g
λ1(p1), g

λ2(p2))M̃(g−λ(p1 + p2), . . . ) +O
(
p2⊥
)

(14)

where we introduced the so-called splitting function

Splitλ(g
λ1(p1), g

λ2(p2)) =
ελ1µ1(p1, r1) ε

λ2
µ2

(p2, r2) ε
λ
µ3

(p, p̄)

(p1 + p2)2
×

×
[
gµ1µ2 (p2 − p1)µ3 − 2gµ2µ3pµ12 + 2gµ3µ1pµ21

]
.

(15)

6. Discuss, why in the collinear limit only r1 = r2 = p̄ is a sensible choice of reference vectors.

7. Compute the collinear limit of Splitλ(g
λ1(p1), g

λ2(p2)) in eq. (15) for all independent helicity con-
figurations. You should find

Split+(g+(p1), g
+(p2)) = 0 , Split−(g+(p1), g

+(p2)) = −
√

2

[12]

1
√
z
√

1− z
, (16)

Split+(g+(p1), g
−(p2)) = −

√
2

[12]

(1− z)2
√
z
√

1− z
, Split−(g+(p1), g

−(p2)) =

√
2

〈12〉
z2

√
z
√

1− z
. (17)

1We use the convention that a left-handed anti-quark spinor corresponds to a right-handed quark spinor and vice versa.
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