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1 Partial Wave Expansion

The goal of this exercise is to prove the partial wave expansion
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Hint: In the appendix, you will find formulas useful throughout the problem.

1. First, show that the partial wave expansion is equivalent to the statement
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where p = kr and 6 the angle between the two vectors, § = <I(E, 7). The functions P, are the
Legendre polynomials, while j; denotes the spherical Bessel functions given by Rayleigh’s formula,
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2. Next, show that eq. (3) is, in turn, equivalent to the spherical Bessel functions admitting the
representation
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Hint: Multiply both sides of eq. (3) by Py(cosf), I" € Ny, and integrate over cos @ from —1 to 1.

3. To show the equivalence of eq. (5) to the definition in eq. (4), prove the identity
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and plug it into eq. (4) to show that
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Hint: Notice that %(82 — 1) = 2s and use integration-by-parts.

4. Finally, use integration-by-parts once again to show that the integral in eq. (7) can be brought to
the form of eq. (5).

2 Phase Shifts for the potential well

Consider an incoming particle with mass m and momentum k= (0,0, k)T scattering off a target sitting
at the origin. Suppose our particle is subject to the spherical potential well,

V() =VoO(R —r). (8)

1. Explain that the wave function of the particle must take the form
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where k' = \/k? — 2mVj/h? and j; and y; denote the spherical Bessel functions.

2. Impose that the wave function should be continuous and differentiable at » = R to show that
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3. Examine the asymptotic behaviour of eq.(9) as 7 — oo to show that the phase shift J; is given by
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Hint: The spherical Bessel functions exhibit the asymptotic behaviour
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as r — OQ.

4. Calculate the phase shift for the [ = 0 partial wave and expand the result in the limit of small
potential, Vy < (A?k?)/(2m).

Hint: jo(z) =sin (z)/z, yo(x) = —cos (x)/x.



5. Compute the contribution of the [ = 0 partial wave to the scattering amplitude fx(6,¢). You
should find
mVy kR — cos (kR) sin(kR)
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On the last sheet, you calculated the full scattering amplitude in Born approximation (up to O (V).
The result you obtained was
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where |Ak| = k+/2(1 — cosf). Integrating over the angles, the full cross section, expanded in the low
energy limit kR < 1, reads
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6. Compute the contribution of the [ = 0 partial wave to the cross section and expand it in the low
energy limit, kR < 1. Compare the result to the full cross section (15).

3 Sommerfeld Enhancement

Consider an incoming, non-relativistic free particle with mass m, momentum k= (0,0,k)T and wave
function 7,01(60)(77) = ¢ and a target sitting at the origin, which can interact with the particle. Assuming
the interaction to be point-like (for example an annihilation process), the probability for the interaction
to take place is proportional to the probability to find the particle at the origin, \wéo)(0)|2.

Suppose now, that we turn on some central potential V() and the wave function of the particle scattering
off to the potential is ¢, (7). The interaction probability is now proportional to |1 (0)[>. The Sommerfeld
enhancement factor Sy is defined as the ratio of the interaction probability with the potential being
turned on compared to the potential being turned off,
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With the boundary condition, that scattering off the potential can only produce outgoing spherical
waves as r — 00, you derived in the lecture that the wave function ¢ (7) can be expanded in terms of
spherical harmonics as
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where §; is the phase shift and Ry (r) are the solutions to the radial part of the Schrodinger equation,
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1. Determine the behaviour of Ry ;(r) as r — 0, assuming that the potential does not blow up faster
than 1/r as r — 0.

Hint: Ry (r) should be regular at r = 0.

2. Show that the Sommerfeld enhancement factor can be calculated as
2
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3. In the case of the Coulomb potential
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Discuss the qualitative behaviour of the Sommerfeld enhancement factor for the two cases of a
repulsive potential o > 0 and an attractive potential, & < 0 as a function of the particle’s speed
v==Fk/m.

Appendix

Spherical harmonics, Y;,,(6, ¢), satisty
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where in spherical coordinates
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and P)(z) denotes the Legendre polynomials, given by Rodrigues’ formula,
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. They satisfy the orthogonality relation
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