Scattering Amplitudes in QFT WS 2023/24

Lecturer: Prof. Lorenzo Tancredi
Assistant: Fabian Wagner
https://www.ph.nat.tum.de/ttpmath/teaching/ws-2023-2024/

Sheet 05: Relations among colour-ordered amplitudes

Exercise 1-Kleiss-Kuijf relations and photon decoupling identity

In the previous exercises we have seen that the tree-level four-gluon amplitude in QCD admits a colour decomposition of the form

$$
\begin{equation*}
\mathcal{M}_{4 g}=4 \sum_{\sigma \in S_{3}} \operatorname{tr}\left(T^{a_{1}} T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{a_{\sigma(4)}}\right) \mathcal{A}[1, \sigma(2), \sigma(3), \sigma(4)] . \tag{1}
\end{equation*}
$$

The partial amplitudes \mathcal{A} satisfy several linear relations, for example the photon decoupling identity,

$$
\begin{equation*}
\mathcal{A}[1, \sigma(2), \sigma(3), \sigma(4)]+\mathcal{A}[1, \sigma(3), \sigma(4), \sigma(2)]+\mathcal{A}[1, \sigma(4), \sigma(2), \sigma(3)]=0, \tag{2}
\end{equation*}
$$

where $\sigma \in S_{3}$.

1. We argued that we can extend $S U(N) \rightarrow U(N)$ without changing $\mathcal{M}_{4 g}$ as the extra generator is proportional to the identity, which implies that the extra gauge boson (the "photon") doesn't couple directly to the gluons. Use this to prove eq. (2).

The photon decoupling identity might also be seen as a consequence of the fact that the colour basis in eq. (1) is overcomplete. Instead of the trace basis, the amplitude may be decomposed in the so-called multiperipheral colour basis given by products of structure constants that are independent under the Jacobi identity. For a tree-level n-point gluon amplitude, this basis can be written as

$$
\begin{equation*}
\left\{f^{a_{1} a_{\sigma(2)} b_{1}} f^{b_{1} a_{\sigma(3)} b_{2}} \cdots f^{b_{n-3} a_{\sigma(n-1)} a_{n}} \mid \sigma \in S_{n-2}\right\} . \tag{3}
\end{equation*}
$$

Relating the two colour bases leads to the so-called Kleiss-Kuijf relations among the colour-ordered amplitudes \mathcal{A}. One way to write these relations is

$$
\begin{equation*}
\mathcal{A}[1,\{\alpha\}, n,\{\beta\}]=(-1)^{|\beta|} \sum_{\sigma \in\{\alpha\} \amalg\left\{\beta^{T}\right\}} \mathcal{A}[1, \sigma, n], \tag{4}
\end{equation*}
$$

where $\left\{\beta^{T}\right\}$ denotes the reverse ordering of the labels $\{\beta\}$ and $|\beta|$ is the number of labels in $\{\beta\}$. The sum runs over all "shuffles" of the labels $\{\alpha\}$ and $\left\{\beta^{T}\right\}$. That is over all permutations of labels in the joined set $\{\alpha\} \cup\left\{\beta^{T}\right\}$ which respect the relative ordering within $\{\alpha\}$ and $\left\{\beta^{T}\right\}$ (i.e. all ways to slide two decks of cards into each other).
2. Write down all the Kleiss-Kuijf relations for $n=4$ and show that they reproduce the reversal and photon decoupling identities.
3. To familiarise yourself with the shuffle product, deduce the Kleiss-Kuijf relation for $n=6$ with $\alpha=\{2,3\}$ and $\beta=\{4,5\}$.

There is another way to formulate the Kleiss-Kuijf relations, which has a natural generalisation to colour decomposition beyond tree level. Collecting the colour trace basis into a ($n-1$)!-dimensional vector \vec{t} and the multiperipheral basis into a $(n-2)$!-dimensional vector \vec{c}, we may write the n-gluon amplitude in either colour decomposition as

$$
\begin{equation*}
\mathcal{M}_{n g}=\sum_{i=1}^{(n-1)!} t_{i} \mathcal{A}_{i}=\sum_{i=1}^{(n-2)!} c_{i} \tilde{\mathcal{A}}_{i} \tag{5}
\end{equation*}
$$

We may relate the two by expressing \vec{c} in terms of the traces \vec{t},

$$
\begin{equation*}
\vec{c}=M \cdot \vec{t} \quad \Rightarrow \quad \mathcal{A}_{i}=\sum_{i=1}^{(n-2)!} \tilde{\mathcal{A}}_{j} M_{j i} \tag{6}
\end{equation*}
$$

where M is a $((n-2)!\times(n-1)!)$-dimensional matrix. The matrix M has $((n-1)!-(n-2)!)$ right null eigenvectors \vec{r}^{λ}, which we can use to derive relations among the colour-ordered amplitudes \mathcal{A}_{i},

$$
\begin{equation*}
M \cdot \vec{r}^{\lambda}=0 \quad \Rightarrow \quad \sum_{i=1}^{(n-1)!} \mathcal{A}_{i} r_{i}^{\lambda}=0 \tag{7}
\end{equation*}
$$

4. Check for $n=4$ that this construction reproduces the Kleiss-Kuijf relations you already found above.

Exercise 2-BCJ relations

We have seen that the Kleiss-Kuijf relations reduce the number of independent n-gluon tree-level partial amplitudes to $(n-2)$!. However, there exist even more relations, which reduce this number further to $(n-3)!$. We will study these so-called $B C J^{1}$ relations for the concrete case $n=4$ in this exercise. We start from the expression for the amplitude as given by Feynman rules

$$
\begin{equation*}
\mathcal{M}_{4 g}=\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u} . \tag{8}
\end{equation*}
$$

Here, $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}+p_{3}\right)^{2}, u=\left(p_{1}+p_{4}\right)^{2}$ are the usual Mandelstam variables, the c_{i} are the colour factors

$$
\begin{equation*}
c_{s} \equiv f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}, \quad c_{t} \equiv f^{a_{1} a_{3} b} f^{b a_{4} a_{2}}, \quad c_{u} \equiv f^{a_{1} a_{4} b} f^{b a_{2} a_{3}}, \tag{9}
\end{equation*}
$$

and the n_{i} collect all the other factors, which depend on the kinematics and the polarisations.

1. Relate the three colour factors by the Jacobi identity. Use it to show that the amplitude $\mathcal{M}_{4 g}$ is invariant under

$$
\begin{equation*}
n_{s} \rightarrow n_{s}+s f, \quad n_{t} \rightarrow n_{t}+t f, \quad n_{u} \rightarrow n_{u}+u f, \tag{10}
\end{equation*}
$$

where f is an arbitrary function. This symmetry transformation is often referred to as generalised gauge transformation.

[^0]2. Use the Jacobi identity once more to obtain the multiperipheral colour-decomposition of the amplitude.
3. Use your results from point four of the previous exercise and eq. (6) to express the partial amplitudes \mathcal{A} from eq. (1) in terms of the Mandelstam variables and the factors n_{i}. Verify the Kleiss-Kuijf relations explicitly.
4. Colour-Kinematics Duality states that the numerator factors satisfy a "Jacobi identity" of their own, analogous to the colour factors,
\[

$$
\begin{equation*}
n_{s}+n_{t}+n_{u}=0 \tag{11}
\end{equation*}
$$

\]

Verify this result from explicit expressions in terms of Feynman rules.
5. Use eq. (11) to verify the BCJ relation

$$
\begin{equation*}
u \mathcal{A}[1,2,3,4]=t \mathcal{A}[1,2,4,3] . \tag{12}
\end{equation*}
$$

[^0]: ${ }^{1}$ After Z. Bern, J. J. M. Carasso and H. Johannson (2008).

