Scattering Amplitudes in QFT WS 2023/24

Lecturer: Prof. Lorenzo Tancredi
Assistant: Fabian Wagner
https://www.ph.nat.tum.de/ttpmath/teaching/ws-2023-2024/
Sheet 04: Four-gluon amplitude squared and colour decompo-
 sition at higher points and loop level

Exercise 1 - Four gluon amplitude squared and summed over colours and polarisations

In the last exercise sheet, we derived the colour-decomposed tree-level four-gluon amplitude

$$
\begin{equation*}
\mathcal{M}_{4 g}=4 \sum_{\sigma \in S_{3}} \operatorname{tr}\left(T^{a_{1}} T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{\left.a_{\sigma(4)}\right)} \mathcal{A}[1, \sigma(2), \sigma(3), \sigma(4)],\right. \tag{1}
\end{equation*}
$$

where the MHV amplitudes read

$$
\begin{align*}
& \mathcal{A}\left[1^{+}, 2^{+}, 3^{-}, 4^{-}\right]=g^{2} \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}, \\
& \mathcal{A}\left[1^{+}, 2^{-}, 3^{+}, 4^{-}\right]=g^{2} \frac{\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}, \tag{2}\\
& \mathcal{A}\left[1^{+}, 2^{-}, 3^{-}, 4^{+}\right]=g^{2} \frac{\langle 14\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle} .
\end{align*}
$$

In the lecture, it was discussed that we can extend $\mathrm{SU}(N) \rightarrow \mathrm{U}(N)$ for tree-level gluon amplitudes since they do not receive contributions from fermions. This allows us to use $T_{i j}^{a} T_{k l}^{a}=\delta_{i l} \delta_{k j} / 2$ when manipulating strings of colour generators.

1. First, show that the following identities hold:

$$
\begin{align*}
\operatorname{tr}\left(T^{a} A\right)\left[\operatorname{tr}\left(T^{a} B\right)\right]^{\dagger} & =\frac{1}{2} \operatorname{tr}\left(A B^{\dagger}\right), \\
\operatorname{tr}\left(T^{a} A T^{a} B\right) & =\frac{1}{2} \operatorname{tr}(A) \operatorname{tr}(B) . \tag{3}
\end{align*}
$$

2. Using Eq.(3), show that squared traces in $\sum_{\text {col }}\left|\mathcal{M}_{4 g}\right|^{2}$ yield

$$
\begin{equation*}
\operatorname{tr}\left(T^{a_{1}} T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{a_{\sigma(4)}}\right)\left[\operatorname{tr}\left(T^{a_{1}} T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{\left.a_{\sigma(4)}\right)}\right)\right]^{\dagger}=\frac{N^{4}}{16} . \tag{4}
\end{equation*}
$$

3. Using Eq.(3), show that interference terms of traces in $\sum_{\text {col }}\left|\mathcal{M}_{4 g}\right|^{2}$ yield

$$
\begin{equation*}
\operatorname{tr}\left(T^{a_{1}} T^{a_{\sigma(2)}} T^{a_{\sigma(3)}} T^{\left.a_{\sigma(4)}\right)}\left[\operatorname{tr}\left(T^{a_{1}} T^{a_{\sigma^{\prime}(2)}} T^{a_{\sigma^{\prime}(3)}} T^{a_{\sigma^{\prime}(4)}}\right)\right]^{\dagger}=\frac{N^{2}}{16},\right. \tag{5}
\end{equation*}
$$

for $\sigma \neq \sigma^{\prime}$ different permutations.
4. Using the results for color traces in Eq.(4) and Eq.(5), we can write

$$
\begin{align*}
\sum_{\mathrm{col}}\left|\mathcal{M}_{4 g}\right|= & N^{4} \sum_{\sigma \in S_{3}}|\mathcal{A}[1, \sigma(2), \sigma(3), \sigma(4)]|^{2}+ \\
& +N^{2} \sum_{\substack{\sigma, \sigma^{\prime} \in S_{3} \\
\sigma \neq \sigma^{\prime}}} \mathcal{A}[1, \sigma(2), \sigma(3), \sigma(4)]\left(\mathcal{A}\left[1, \sigma^{\prime}(2), \sigma^{\prime}(3), \sigma^{\prime}(4)\right]\right)^{\dagger} \tag{6}
\end{align*}
$$

Using the relation between the colour-ordered amplitudes,

$$
\begin{align*}
& \text { (a) Cyclicity: } \mathcal{A}[a, b, c, d]=\mathcal{A}[d, a, b, c]=\mathcal{A}[c, d, a, b]=\mathcal{A}[b, c, d, a], \tag{7}\\
& \text { (b) Reflection symmetry: } \mathcal{A}[a, b, c, d]=\mathcal{A}[d, c, b, a], \tag{8}\\
& \text { (c) Photon decoupling: } \mathcal{A}[a, b, c, d]+\mathcal{A}[b, a, c, d]+\mathcal{A}[b, c, a, d]=0 . \tag{9}
\end{align*}
$$

show that we can write

$$
\begin{equation*}
\sum_{\mathrm{col}}\left|M_{4 g}\right|=2 N^{2}\left(N^{2}-1\right)\left\{|\mathcal{A}[1,2,3,4]|^{2}+|\mathcal{A}[1,2,4,3]|^{2}+|\mathcal{A}[1,3,2,4]|^{2}\right\} \tag{10}
\end{equation*}
$$

5. Compute the sum over helicities for the first partial amplitude in Eq.(10) using the results in Eq.(2). You should find

$$
\begin{equation*}
\sum_{\text {pol }}|\mathcal{A}[1,2,3,4]|^{2}=2 g^{4}\left[\frac{s_{12}^{2}}{s_{23}^{2}}+\frac{s_{13}^{4}}{s_{12}^{2} s_{23}^{2}}+\frac{s_{23}^{2}}{s_{12}^{2}}\right] \tag{11}
\end{equation*}
$$

6. Use the result in Eq.(11) to compute the final result

$$
\begin{equation*}
\sum_{\text {pol,col }}\left|M_{4 g}(1,2,3,4)\right|=2 g^{4} N^{2}\left(N^{2}-1\right) \times \frac{\left(s_{12}^{2}+s_{13}^{2}+s_{14}^{2}\right)^{3}}{s_{12}^{2} s_{13}^{2} s_{14}^{2}} \tag{12}
\end{equation*}
$$

Exercise 2-Colour ordering in QCD at higher point and higher loops

1. Argue that tree-level n-gluon amplitudes admit for any n a colour decomposition of the form

$$
\begin{equation*}
\mathcal{M}_{n g}^{\mathrm{tree}}=\sum_{\sigma \in S_{n-1}} \operatorname{tr}\left(T^{a_{1}} T^{a_{\sigma(2)}} \ldots T^{a_{\sigma(n)}}\right) \mathcal{A}[1, \sigma(2), \ldots \sigma(n)] . \tag{13}
\end{equation*}
$$

2. Argue that extending $S U(N) \rightarrow U(N)$ is no longer possible at loop level.
3. Argue that the colour basis must be enlarged at loop-level. Give an explicit example of a Feynman diagram leading to this enlargement at $n=4$ and derive the type of new colour basis elements produced by it.
