Scattering Amplitudes in QFT WS 2023/24

Lecturer: Prof. Lorenzo Tancredi
Assistant: Fabian Wagner
https://www.ph.nat.tum.de/ttpmath/teaching/ws-2023-2024/

Sheet 12: Box contributions in Generalised Unitarity

In the lectures you have seen that one-loop n-point amplitudes up to $\mathcal{O}\left(\epsilon^{0}\right)$ can be reduced to a linear combination of basis integrals, which involve scalar boxes, triangles, bubbles and tadpoles. The coefficients of these master integrals can be computed from tree-level on-shell amplitudes that result after performing "generalised unitarity cuts" on the original amplitude.

Exercise 1 - Box contributions to one-loop n-point amplitudes

Consider the decomposition of a tensorial 4-point integral,

$$
\begin{aligned}
\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{\prod_{j=1}^{r}\left(l \cdot u_{j}\right)}{D_{0} D_{1} D_{2} D_{3}}= & d_{0} \int \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \frac{1}{D_{0} D_{1} D_{2} D_{3}}+\sum_{n=1}^{4} d_{n} \int \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \frac{\left(l \cdot n_{4}\right)^{n}}{D_{0} D_{1} D_{2} D_{3}} \\
& + \text { lower-point integrals, }
\end{aligned}
$$

where $r \leq 4$ and the inverse propagators are

$$
\begin{equation*}
D_{0}=l^{2}-m_{0}^{2}, \quad D_{1}=\left(l+q_{1}\right)^{2}-m_{1}^{2}, \quad D_{2}=\left(l+q_{2}\right)^{2}-m_{2}^{2}, \quad D_{3}=\left(l+q_{3}\right)^{2}-m_{3}^{2}, \tag{1}
\end{equation*}
$$

with region momenta q_{i}. The unit vector n_{4} is orthogonal to all region momenta, $n_{4} \cdot q_{i}=0$.

1. Show that at the integrand level in strictly 4 space-time dimensions, we actually have

$$
\begin{equation*}
\frac{d(l)}{D_{0} D_{1} D_{2} D_{3}} \equiv \frac{d_{0}+\sum_{n=1}^{4} d_{n}\left(l \cdot n_{4}\right)^{n}}{D_{0} D_{1} D_{2} D_{3}}=\frac{d+\tilde{d}\left(l \cdot n_{4}\right)}{D_{0} D_{1} D_{2} D_{3}}+\text { lower-point integrands } \tag{2}
\end{equation*}
$$

so we do not need to keep any higher powers of $\left(l \cdot n_{4}\right)$.
2. The coefficient $d(l)$ can be isolated via a quadruple unitarity cut in $D=4$ space-time dimensions. For simplicity, set all internal masses to zero, $m_{i}^{2}=0$. Use the Van Neerven-Vermaseren decomposition for the loop momentum, using its three region momenta q_{1}, q_{2}, q_{3} and the extra momentum n_{4}, to show that the quadruple cut "freezes" all components of the loop momentum l^{μ} to the two solutions

$$
\begin{equation*}
\bar{l}_{ \pm}^{\mu}=-\frac{1}{2} \sum_{i=1}^{3} q_{i}^{2} v^{\mu} \pm \frac{1}{2} \sqrt{-\left(q_{1}^{2} v_{1}^{\mu}+q_{2}^{2} v_{2}^{\mu}+q_{3}^{2} v_{3}^{\mu}\right)^{2}} n_{4}^{\mu} . \tag{3}
\end{equation*}
$$

Consider now an n-point one-loop amplitude with integrand A_{n}. One-loop integrand reduction in four space-time dimensions allows us to write

$$
\begin{equation*}
A_{n}=\frac{d(l)}{D_{0} D_{1} D_{2} D_{3}}+\text { other boxes }+ \text { lower point contributions } . \tag{4}
\end{equation*}
$$

On the quadruple cut, the left-hand side can be written as the product of four tree-level amplitudes $A_{i}^{\text {tree }}, i=1, \ldots, 4$, while on the right-hand side the cut isolates the coefficient $d(l)=d+\tilde{d}\left(l \cdot n_{4}\right)$.
3. Show that the scalar box coefficient d can be written as,

$$
\begin{equation*}
d=\frac{D_{+}+D_{-}}{2} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{ \pm}=A_{1}^{\text {tree }}\left(\bar{l}_{ \pm}\right) A_{2}^{\text {tree }}\left(\bar{l}_{ \pm}\right) A_{3}^{\text {tree }}\left(\bar{l}_{ \pm}\right) A_{4}^{\text {tree }}\left(\bar{l}_{ \pm}\right) \tag{6}
\end{equation*}
$$

What is the corresponding formula for \tilde{d} ? Do we need to compute it and if yes, for what?

Exercise 2-Box coefficients of a five-gluon amplitude

In this exercise we will consider the computation of the coefficients of the boxes that appear in the reduction of a one-loop five-point diagram contributing to the one-loop colour-ordered five-gluon amplitude $\mathcal{A}^{(1)}\left[1^{+}, 2^{+}, 3^{-}, 4^{-}, 5^{-}\right]$,

1. Explain that the contributing boxes are

$$
I\left(s_{12}\right), I\left(s_{23}\right), I\left(s_{34}\right), I\left(s_{45}\right), I\left(s_{51}\right),
$$

where $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$ and $I\left(s_{i j}\right)$ represents the box integral with momenta p_{i} and p_{j} entering in the same corner.

Focus now on the computation of the coefficient of $I\left(s_{12}\right)$, which we denote as d_{12}. Concretely, the $I\left(s_{12}\right)$ scalar box integral is defined as

$$
\begin{equation*}
I\left(s_{12}\right)=\int \frac{\mathrm{d}^{4} l}{(2 \pi)^{4}} \frac{1}{l^{2}\left(l+q_{2}\right)^{2}\left(l+q_{3}\right)^{2}\left(l+q_{4}\right)^{2}} \tag{8}
\end{equation*}
$$

with region momenta $q_{1}=p_{1}, q_{2}=q_{1}+p_{2}, q_{3}=q_{2}+p_{3}, q_{4}=q_{3}+p_{4}$.
2. Consider the helicity amplitudes that result from the quadruple cut of $A^{(1)}\left(1^{+}, 2^{+}, 3^{-}, 4^{-}, 5^{-}\right)$ in such a way as to isolate the contribution of $I\left(s_{12}\right)$. What choices are allowed for the helicities of the resulting tree amplitudes?
3. Compute the solution to the quadruple cut constraints.

Hint: For convenience you can define $l_{i} \equiv l+q_{i}$, for $i=1 \ldots 4$ and solve the cut conditions for an appropriate choice of l_{i} instead of l.
4. Finally, use (6) to compute $D_{ \pm}$in terms of specific helicity amplitudes and use (5) to obtain the box coefficient d_{12}.

