Scattering Amplitudes in QFT WS 2023/24

Lecturer: Prof. Lorenzo Tancredi
Assistant: Fabian Wagner
https://www.ph.nat.tum.de/ttpmath/teaching/ws-2023-2024/

Sheet 09:

Exercise 1 - Schouten Identity in $D=2$ dimensions

Prove the Schouten identity in $D=2$ dimensions, i.e. show that for a two-dimensional vector l^{μ}, $\mu \in\{0,1\}$, it holds that

$$
\begin{equation*}
\epsilon^{\mu \nu} l^{\rho}+\epsilon^{\nu \rho} l^{\mu}+\epsilon^{\rho \mu} l^{\nu}=0, \tag{1}
\end{equation*}
$$

where $\epsilon^{\mu \nu}$ denotes the Levi-Civita tensor in $D=2$ dimensions.

Exercise 2-Photon vacuum polarisation in $D=2$ dimensions

In this exercise, we study the one-loop photon vacuum polarisation in QED in $D=2$ dimensions, the so-called Schwinger model. The electron is taken as massless.

1. Draw the contributing Feynman diagrams and show that the one-loop contribution to the photon vacuum polarisation reads ${ }^{1}$

$$
\begin{equation*}
\Pi^{(1)}(p)=\Pi_{\mu \nu}^{(1)}(p) \varepsilon_{1}^{\mu} \varepsilon_{2}^{\nu}=-e^{2} \int \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \frac{\operatorname{Tr}\left(\not 申_{1} l \not 申_{2}(l+\not p)\right)}{l^{2}(l+p)^{2}}, \tag{2}
\end{equation*}
$$

where ε_{i} denote two-dimensional polarisation vectors of the off-shell photon with momentum p, $p^{2} \neq 0$, and we use dimensional regularisation, $D=2-2 \epsilon$.

To compute the integral, we perform an integrand reduction using the "van Neerven - Vermaseren" basis. For two-point functions in two dimensions, the physical and transverse spaces are both one-dimensional. They are spanned by unit vectors $v^{\mu}=p^{\mu} / \sqrt{p^{2}}$ and $n_{\perp}^{\mu}, v^{2}=n_{\perp}^{2}=1$, respectively. Furthermore, we denote the unit-vector spanning the remaining, $(D-2)$-dimensional space by $n_{\epsilon}^{\mu}, n_{\epsilon}^{2}=1^{2}$. By construction, $v \cdot n_{\perp}=v \cdot n_{\epsilon}=n_{\perp} \cdot n_{\epsilon}=0$. We can now decompose the loop momentum as

$$
\begin{equation*}
l^{\mu}=(l \cdot v) v^{\mu}+\left(l \cdot n_{\perp}\right) n_{\perp}^{\mu}+\left(l \cdot n_{\epsilon}\right) n_{\epsilon}^{\mu} \equiv l_{p}^{\mu}+l_{\perp}^{\mu}+l_{\epsilon}^{\mu} \tag{3}
\end{equation*}
$$

2. Use above decomposition and the trace identity ${ }^{3}$

$$
\begin{equation*}
\operatorname{Tr}\left(\gamma^{\alpha} \gamma^{\beta} \gamma^{\rho} \gamma^{\sigma}\right)=2\left[g^{\alpha \beta} g^{\rho \sigma}-g^{\alpha \rho} g^{\beta \sigma}+g^{\alpha \sigma} g^{\beta \rho}\right] \tag{4}
\end{equation*}
$$

to simplify the numerator in eq. (2). Your result should read

$$
\begin{equation*}
\Pi^{(1)}(p)=-2 e^{2} \int \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \frac{1}{l^{2}(l+p)^{2}}\left\{2\left(l_{\perp} \cdot \varepsilon_{1}\right)\left(l_{\perp} \cdot \varepsilon_{2}\right)+\frac{p^{2}}{2}\left[\varepsilon_{1} \cdot \varepsilon_{2}-\frac{\left(p \cdot \varepsilon_{1}\right)\left(p \cdot \varepsilon_{2}\right)}{p^{2}}\right]\right\} . \tag{5}
\end{equation*}
$$

[^0]3. Use Lorentz covariance to demonstrate that
\[

$$
\begin{equation*}
\varepsilon_{1, \alpha} \varepsilon_{2, \beta} \int \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \frac{l_{\perp}^{\alpha} l_{\perp}^{\beta}}{l^{2}(l+p)^{2}}=\left[\varepsilon_{1} \cdot \varepsilon_{2}-\frac{\left(p \cdot \varepsilon_{1}\right)\left(p \cdot \varepsilon_{2}\right)}{p^{2}}\right] \int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{l_{\perp}^{2}}{l^{2}(l+p)^{2}} . \tag{6}
\end{equation*}
$$

\]

Hint: Consider a general, symmetric solution $A g_{(2)}^{\alpha \beta}+B p^{\alpha} p^{\beta} / p^{2}+C g_{(\epsilon)}^{\alpha \beta}$ for the tensorial integral and derive A, B, and C by appropriate contractions. Here, $g_{(2)}^{\alpha \beta}$ is the metric tensor of the physical and transverse space and $g_{(\epsilon)}^{\alpha \beta}$ the one for the extra $D-2$ dimensions.
4. Contract eq. (3) with itself and use eq. (6) to show that

$$
\begin{equation*}
\Pi^{(1)}(p)=4 e^{2}\left[\varepsilon_{1} \cdot \varepsilon_{2}-\frac{\left(p \cdot \varepsilon_{1}\right)\left(p \cdot \varepsilon_{2}\right)}{p^{2}}\right] \int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{l_{\epsilon}^{2}}{l^{2}(l+p)^{2}} \tag{7}
\end{equation*}
$$

5. The result in eq. (7) shows that the only nonzero contribution to $\Pi^{(p)}(p)$ stems from ultraviolet regularisation. Such contributions are known as "rational terms" in generalised unitarity. Compute the remaining loop integral. You should find the final result

$$
\begin{equation*}
\Pi^{(1)}(p)=\mathrm{i} \frac{e^{2}}{\pi}\left[\varepsilon_{1} \cdot \varepsilon_{2}-\frac{\left(p \cdot \varepsilon_{1}\right)\left(p \cdot \varepsilon_{2}\right)}{p^{2}}\right] \tag{8}
\end{equation*}
$$

Resuming the vacuum polarisation contributions, Schwinger showed that the photon propagator in two-dimensional QED becomes

$$
\begin{equation*}
\Pi^{\mu \nu}(p)=\frac{-\mathrm{i}}{p^{2}-m_{\gamma}^{2}}\left(g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) . \tag{9}
\end{equation*}
$$

In other words, through these contributions the photon receives a mass $m_{\gamma}^{2}=\frac{e^{2}}{\pi}$ as already visivle in the result in eq. (8).

Exercise 3-Reduction of scalar triangles in $D=2$ dimensions

In this exercise, you will show that scalar triangle integrals in $D=2$ dimensions can be reduced to lower-point integrals. We start from the most general one-loop scalar triangle integral,

$$
\begin{equation*}
\mathcal{I}_{\Delta}=\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{1}{D_{0} D_{1} D_{2}} \tag{10}
\end{equation*}
$$

where the inverse propagators read

$$
\begin{equation*}
D_{0}=l^{2}-m_{0}^{2}, \quad D_{1}=\left(l+q_{1}\right)^{2}-m_{1}^{2}, \quad D_{0}=\left(l+q_{2}\right)^{2}-m_{2}^{2}, \tag{11}
\end{equation*}
$$

with region momenta q_{1}, q_{2} and we omitted the Feynman prescription.

1. Write down the van Neerven-Vermaseren basis for this problem and decompose the loop momentum l^{μ} in this basis plus a vector l_{ϵ}^{μ} parameterising the $D-2$ extra dimensions. Express the coefficients of this decomposition purely in terms of kinematic invariants and the inverse propagators.
2. Compute l^{2} from the decomposition obtained in the previous point and use $l^{2}=D_{0}+m_{0}^{2}$ to show that

$$
\begin{equation*}
l_{\epsilon}^{2}=\mathcal{N}+\mathcal{O}\left(D_{i}\right) \tag{12}
\end{equation*}
$$

where \mathcal{N} is a function of the kinematics only and independent of the loop momentum.
3. From eq. (12), it follows that

$$
\begin{equation*}
\mathcal{I}_{\Delta}=\frac{1}{\mathcal{N}} \int \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \frac{l_{\epsilon}^{2}}{D_{0} D_{1} D_{2}}+\text { lower point integrals } \tag{13}
\end{equation*}
$$

Conclude the proof that scalar triangle integrals can be reduced to lower-point integrals in $D=2$ dimensions by showing that

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \frac{l_{\epsilon}^{2}}{D_{0} D_{1} D_{2}}=\mathcal{O}(\epsilon) \tag{14}
\end{equation*}
$$

for generic external kinematics.

[^0]: ${ }^{1}$ The Feynman prescription is omitted for ease of typing.
 ${ }^{2}$ Remember that what this notation means, is that you need to consider (-2ϵ) of these extra vectors to span the (-2ϵ)-dimensional space, such that $n_{\epsilon}^{2} \rightarrow \sum_{i} n_{\epsilon, i} \cdot n_{\epsilon, i} \sim-2 \epsilon$.
 ${ }^{3} \operatorname{In} D$ dimensions, the identity reads $\operatorname{Tr}\left(\gamma^{\alpha} \gamma^{\beta} \gamma^{\rho} \gamma^{\sigma}\right)=D\left[g^{\alpha \beta} g^{\rho \sigma}-g^{\alpha \rho} g^{\beta \sigma}+g^{\alpha \sigma} g^{\beta \rho}\right]$.

