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In previous lectures we studied the Finite

Dimensional representations of Lorentz group.

Since the group is non-compact
,

theya
NOT UNITARYS they cannot be read to construct

physical states

In this lecture we introduce RELDS & use

them to "uncover" also Infinite-din representations

of Create &f Full Poincare groups

We start with LORENTE andafterwards add

Translations to get full Poincare

What is a feld (x) ? It's a function

of the coordinates which trousfems "covrieutly"
under Lorentz

xn -> NuX = XM
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then in general k(x) -> Pix = (D())X(
-

Iamrepresentatia
infinite dim

repr .

1
.
SCALAR FIELDS
-

Scolar = nothing happens under Lozeutz

=p(x)
Ap = pix) - p(x) = 0 = "Trivid" representation

What we are considering here is how a Singe

degree of freedom , the field of XM
, transferred

to point X'M ; explicitly , write

D= Pix - p(x)= q(x + (x) - f(x)

= f(x) + (x(f(x) - q(x)=0 =
2



q(x) - P(x) = gx(up'(x)

= &xMGP(x) tofirst order

If we wate explicitly X
"-X= Avx

then 8X1 = wiX+ for infinitesimal transformations

which we dro wate or x" = -Wer(sJax
with (geryilgen ju-gurge) Just
Potting everything together we get

↑ (x) - p(x) = = wer (Ser]" x &up(x)

-

we
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so we find the following relation

&'(x - f(x) = - w(Lyrf(x)
what is Luv = i (Or-Xvdu) ?

We can check explicitly that

[Lur , Lys] = i (gre Lur-Guehur-gusLuy +gr(ve)

=> they fulfill Lorentz Algebra !

Las are generators in some representation ,which one?

=> the base space
Is now the INFINITE DIMENSIONAL

SPACE given by f(x) at all possible
u

because we are comparingp(x - p(x)

Indeed same (equivalent) result studying

&(x) - f(x) -8x4Gf(x)
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2 Lov = i(dux-duXm) infrite dim . repr . of
Lorentz group acting

on "Coordinate space"

remembering idn = Pr we get
↑

(av= Xp" - x M & ) = + Eijih
~
orbital angular
momentum

2 = xp

ZWELL FIELDS

remember its
,
4R in (2

,
0) & 10

, 2)

4- (x) -> 4((x) = At
RR

(i)
= C 4(x)

R 3



From here
,
as before , we we can find the

representation of Greutz generators octing or

Infinite Dimensional Space of He F X

take LEFT-HANDED

↑! (x) - yc(x) = 4((x +(x) - 42(x)

= 42(x) - 42(x) + 8x4804)(x)
=Hi-4(x) + Ex On th <x) (Ford)

= 4((x) - 4,(x) + clot last
↓

= JactCX (transferation of full field !(

so we read off :

+ (x) - +y(x) = - Ew0Lyr+ + 81c4

fo infinitesimal transformations we cate
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Li-weN = e

whichDefines Sav Boosts (Sii
Iwe already encountered

definitions : , gi ROTATIONSiShglk

themsof war ! ( S↳is=Di
=> 4,(x) = 4c(x) = - E War Jer He

jMV = car+ Sur

I ↑
spin ongule)orbital anguen momentum

momentio infinite
dimensional representation
Does not depend on SPIN of field (L =R)
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GRACSPINORELDS

It's interesting to study what hopes to Weyl
representation under a PARITY TRANSFORMATION I

Y - X

the reason is that many of the interactions

we know (ALL except Electroweak Interaction (

al party invariant ; if we want to build

a field theory ,
we need fields whichor

abso IRREDULIBE REPRESANTATIONS of I

Now, remember A Eit
=>Cla

,
lis)& Bi = Liki Irreps of

2 Creutz

now under Parity Be - E Crector (

↓

L + +E (pseudo vector)
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which means that under I (la
,
(B) r(1B

,
(a)

Spine fields in Weyl representation do not have

well-defined transformation properties under I !

How do we construct then a SPINOR which is a basis

to build a P-invariant theory 3 = need Ca = lB
-

=> DIRAC SPINOR FELD 4 : (I) -dim
-

complex !

Under Lorentz 2(x) + +(x = AD4(*)

ad =[]
this is Dirac Field in a special basis called

CHAL BASIS
,

where we nicely see operator
into LEFT-RIGHT components &
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In thiscind Bois
,
Polity acts or X= IX

↓ = (t
,
-Y)c X = (t, )

24(x) =y( : ]4xx =g()
where M = 11

is a possible Phase, in fret

Phy = m[]4(x") = yz()
= 1 since = 4 !

Study CHARGE Consulation

remember is= tr ; -is ite = 4, 20

Defue

4 [] =Toy( )



we coll [0 = ya [Pr

4 = -ig24
*

charge conjugation or
Dirac Spimor

(4*]2 = Gig2] (ig24**

=-in] (igc)4
=
-[
= - [14 = 4

Charge conjugation will allow us to study
relation between particles andantiparticle once

we quaukze our field theory !
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& Majorana SPINORS (or "real"Dirac Spinas)

Dirac spiros , as Weyl spiros , one COMPLEX

[4 complex components)

Now if we have a complex scalar field f(x)
we can impose or it a really condition

p
*
(x) = f(x) which isGreutz

Inverent

= apply it in one frame ,
it remains true

For Dirac Spiros , we can't 4* If

is not Grentz invaient because Ad is complex !

We can define a reality condition using Charge

consulation If = 4

=> If that satisfies this is called a MAJORANA FIELD
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it must have half degrees of freedom or DIRAC
=> as many or Weyl !

4m =( ) = 4 -10vy it+
==

If you continue your studies with AQFT &

theoretical Particle Physics you'll see that

Majorana (rea) Spinors could be a possible

way to explain observed neutrino mosses

We will largely ignore Majorana Spinas in

what follows
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↳ . VECTOR FIELDS

We con now just generalize these considerations
to
a vector field , just changing the repr .

of the Coreutz group to (2 , 2)

VM(X) is vector field if

V" (x) 2) = VM(x) = NvV'(x)

t

4-vector representation
Finite Dimensional

(t,) M CE
,
5) so we can use it for

P-invaient theory

=> Fr example Electromagnetism AM(X)

we havenee if has spiro
~ to we will see

~
Y

tha gorge
Spin 1 Invariance removes

two of them !

Ih



As before

vM(x)) - VM(x) = VM(X -0x) - VM(x)

= v"(x) -v"(x) - (x GV"(x)

=GarV"(x)

so we find

vY(x) - VY(x) = Onyv"(x) - Ey0(eu(x)
↑

we have seen that

51 v() = -/geryur

[S90] = i(g(ju -gr)
is SpW Operator on racte representation !
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so transformation is again

VM(x) - V *(x) = - wer(joymv"(x)

Iyeng = 190 + ISTU]Y
↑ T

Orbital auguln Spin , finite
momentum

dimensional
Cinfinite dimensional

representation (
representation

PNCARE'GROUP

We have focussed on Lorentz , but thery should

be under full Poincare = Loceutz + Translationsimvoient

X - n*xv j
xm= xn+ qm

xim" + wayv YM-y + Em
T

infinitesimal
translation
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As INFINITE DIM . REPRESENTATION ON FIELDS

We urpose
that every field transforms triwally

under translations (independently of SPINS

q(x) - f(x) = 0 = p(x + 2) - f(x)
= p(x - p(x) + Eduf = P(x) - p(x) - isPut

f(x - f(x) = impmd(x)
Il

(a-p(x) = itpp(x) = T(a)$(x) :

↳
Tal = e-iPau ~ 1 + iPhEn +0(33

q= -EM-

sour sign conventions

Lorentz +Translations = Poincare ISO(z
,
3)

(inhomogeneous Lorentz group)

& (x
,
a) = Ultw ,

2) = 1- twrJurtiPhEm
-
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=> clearly fr U(1
,

a) to be Unitary UtU-

we needJar & PM to be Heritan

(jer(t = yar ; (Pr)
+
= pr

Before going
into Representation Theory notice

[PM
,
pVJ = o translations commute !

Similarly , using Lorentz generators in same repr.

(av = i(XMgV- x-gr]

=> [PM
,
(10] = i (grs p& gropf)

which can then be lifted to abstract definition
of the Poincare group ,

whose abstract gen.

we wrote je

[PM
,
JTr] = : (g + pU grope)

in any representation !
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note that requiring that $'(x+ 2) = p(x)
be every field in the only reasonable possibility

=) one can show that frite-dimensional
non-trivial representation ono consistent

with Lountz act al TRIVIALLY

In terms of 113hjir , ki=zio
Po = H pi

S
(Hamiltonia)

the commutation relations read

[(i
,
15] = :gin (k [p"

, pj] = 0

[L" , 23] = 1 gish I [C"
,
pjj = is is pl

[Ki
,
ki]= igistk [k", pi] = if gij

2
i

,
H] = 0 ; (pYH] = 0 ; (R",H]

= ipi
-

not usedTiconserved k"not ! to label states
19



TurPOINCARE' TRANSFORMATIONS

Until now we discussed Fields and their trauf.

properties under Poincare
.
In some sense

,
we

have only cared about Special ReCATIVITY and
--

gave
the ingredients to build a field theory

that is Lorentz Invoient·

The next questionis WHAT ABOUT Quantum Mechanics?

How do we embed the transformation properties

under Poimuri on HILDERT SPACE Of PHYSICAL STATES

And
,
im turn

,
how does corriance under Paire

constraints the Hilbert space itself ?

· In QM
, physical states areRAYS in HILBERTSPACE H

two "vectors" (X)
, ly] = F ; alx+bly]

H

a
,be 4

< X
,
y >= <Y

,
X >*

< X
,
X) 1 O norm of a vector

20



🔗

a voy is a set of normalized rectors

Nal = dalX; 11 = 1] <Xm
,
Xr] = 1

normalized to 1

· Observables or represented by Hermition operators A

AN = IX) ; Ala+bM)= aAN+ bAN]

At = A =<
,
AY) = <A

+
X
,
Y]

=<Y ,**
*

· Eigenstates of A with eiguvalue I have
that value of the corresponding observable

AIR) = <IXr] for the Ray !

· Probability of finding system represented by(XR

In state /Ym) is P(IXR)+Mn))= KYRIXmL/2
21
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SYMMETRIES ON HILBERT SPACE

We want to know how to "implement" Poincare

transformations on Hilbert space .

In gener , any symmetry acts on tiebest space by

modifying rays(XR]- > IXR) etc
(Yr)-> Mr)

such that Probabilities are conserved

↑ (IR)-(r)) = PCIXrS->Mri))

A there by WIGNER says that any such

transformation on physical states can be represented
oron OPERATOR U

·f(XieXa) => UNX) = Ir

such that :
22



· either U is LINEAR And UNITARY (ut= u
-1)

· or U is ANTINER AND ANTUNITARY

Now if we deal with a continuous Symmetry

LA LIE Group) that is connected with the identity
CI . E .
I a value of parameters much that UK) =1 (

then U must be LINEAR AND UNITARY

=> because U= 1 Is clearly unitary !

then close to the identity U = 1 + is't

where ut =u"T Humition !

(the only transformation which is not unitary

Is TIME REVERSAL
,
which is not continuous

and not port of Sot(1
,
3) + translations

which we are considering now ! Re
EX. J
-
-
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Now we have studied Poincare Group of a lie

Group and we have clarified its Finitedin

REPS => what about action on Hilbest ?

Let's coll a generic element T (1 , 9)
EISO1

,
3)

A coceutz proper

a"4-vestor translation

Wigner's theran sys 7 Unitary liner U(1 , a)

(R) -> v( , a) R) => QUOU
R

States dependingWe will now classify IX (
on how they transform under ISO(1 ,3)

· We know that [PM
,
PVT = 0

,
so we can

choose eigenvalues of PM to start labelling
the states (VR) = 1 p ,

2)
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we use label2 fr any other degre of freedom.

= [41p ,5) = pelp ,L

so if we now perform a translation weget

(Tial = U(1, a) (Ip ,
sh

= e-iprar (p ,2)

·Consider now a pure lountz U(1
,) = U(1)

on such a state
no translation

UK) (p , a) = ?

We notice that

" (1) (p , r) = UK)[un]p, r7
Locutz tasf on

operatorI = its & 4-vector

=>
25



UC)PUI) = 1vpr such that

prU()(p ,
2) = a po U(1)/p ,

r>

un

it is Some state with momentum Ap

=>U)1p ,
> = & Crr( , p) /p ,

win

-

Linea combinations of states
with momentum Up

We then DEFINE ONE PARTICLE STATES af
-

liner combinations of IP , 2) such that

Crir'(
,p) gue IRREDUCIBLE REPRESENTATIONS

Of POINCare' Group

=> If we have a system made of more
particles , Criw' will be in Block

DIAGONAL FORM =S theyDo Not MIX under

Poincare' ! 26



to clarify ther representations "Cro notice that :

p2= pape invariant under A

po = E sign of E also inveiout if P210
CE cannot become negative ! (

Y pr we can choose a "reference" momentum fr
such that p=1ph

with (pesot(1 ,3) :

· If pso => K (m
,
5) each that Up

= LpES0h ,3) such that

[p]" kV = pr

· name for p= 0 => K* = CE
,
0
,
0
,
E) or similar

((p] kV = pr

then we can say Ip ,r) = Np[((p) /K ,2)
↑

normalization
27



how we perform some genera Counts U(1)

U(1) (p ,2) = NpUG) U(lp) 16 ,2)

= NpU(1 . (p) 1k, 5)
a

insent UKLmp)U(lip) = 1

= NpU)Lp)U(LA (p) (k , r)
*p -> p +k

special type & C "Little Group" of

of Guentz transf kn

W& = ka

so if W is a trust In little group of her

U(w(1k
,
r) =Pw) (k,

w>

one can prove Dow provide a

representation of little Group of hi

28



20 LALp = Wa
, p

and we can wate

U(a)(p
,
u) = Np[Dro (Wap) UCLap)Ik ,w
-

V +
,
s' numerical

coefficient

Using finally (p ,u) = Np[((p) (k ,2)

=> th U(cap) 16 ,
03 =
+ Up ,

0 >

Nap

wo can write

U()(p ,r) = [P][Drw()I
which is what we wanted

u((p. r) = [Cro( ,pl19p ,
r

=> Cron Dur' 29



=> representations of Poincare are clarified

through Dro (Wa
,p) representations of 1

Little Group o

Called method of induced representations
we ignore normalization up/Nap ,

see Weinberg[ Section 2 .5 1
So everything we are left to do is study little group

be different closes of momenta

1. ↳30 (monive particles

2 . k = 0 (mosslen particles)

3. ↳20 (tachions
,
umphyical)=>ore

=) of course Kn = 0 is just "trivial

vacuum" and there nothing to say
-
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1. R = m2 > o Massive Particle States
--

Little group easy
to see from K = (m, 0, 0,0

clearly 5013) leaves ke invariant

Irrepsore the reps of 5013) N SU(2)
,
including

spira representations !

Irreps labelled by m & l = 30
, 1
,

2
, 3, 2, ... 3

H
Vl => 1z = 4 -1,1+1,..., ly "SPIN OF

thereor 22 + 1 STATES PARTICLE"

=> a monive spin o has I state

a massive Spin 1 has 3 states (-1, 0, 1)

etc

We clarify these states viny Casimirs of Group

pup = pC is clearly invoient => it gues the
mass !
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there is a second Casimir (and only a 2nd one !)

which indeed reparents Spin

PAULI-LUBANSKI VECTOR

wa= - garyw Jug Po

WMWa Lorente invariant => [WMWr
,
jre] =

[W
,
puj = o

go
to rest mon frame fr motive particles PE (m,)

W= - grupo

Ju Not onins
-WuWM = mi l(l+1) &

=
mLi it's the

Spin ! angula
momentum

morless limit iselicate !
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2. G = 0

_

MASSLESS PARTICLE STATES

Here we choose our momentum of K= (E
,
0
,

0
, E

Inventional

z-axis !
What is the Little Group in this case ?

E it looks like 5012)
,

but the story is more
delicate !

Going to so-called light-come Coordinates [
k+ =k
k - = ko-kz

we see that F

ku = (k+, k- , kx, ky) = (k+,%
there is more than 50(2)

One can prove that
the full group is ISO(2)

=> Euclidean group of ROTATIONS - TRANSLATIONS

↓z A
,
B
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Since translations commute [A
,
B] = 0

&

We could then try to label states with a, b

Alp ; 9 ,

b) = a (p ; a,b)

B1p ; a ,b = blp ; e ,b)

but now consider e-iOz(p ; 9 ,b) = (p ; ab,0)

& this states
,
with arbitrary & , one can prove

that

Alp ; a ,
b
,

0) = lacd-bend) (pjabd)

BI p ; ab;
03 = laund + band) Ip ; abo

↑
states labelled by continuous depre
of freedom ,

thatwehave never Seen

=> Continuous Spin States , usually neglected

potting a= b = 0 ;
theywre subject

of new research recently ! 35



If we fr a=b= 0 then only solz) is left !

representations ~UH) labeled by the eigenvalue

of Lz => spir of particles, ie direction of

propagation calledLCITY

(p
,
b) => ei8(z(p

,
h) = echo p, h)

his in gerd Continuous to prove that

i must be quantized we need to reset to

Topoway of Lorentz group SL(2
,
4)

=> SLI2
,
4) is DOUBLE COVERING just like SU(z)

it means eit = 1 = h= b HALF Inter
.

Note : each helicity is a Different PARTICL

Why Photons have 2 states : # 1

=> because of US Wanting PARITY-INVARIANCE

we need to put (h , -h (together ! 35


