Recorp of Group theory:

WS 1025126 Tours

Im lost lecture we have seen that dealing with FIELDS or fundamental dejects, is a possible way to write a theory that treats x & t in the very some way => relativishe consising Is possible! do our good now is to write a kelatoristic Covoiont (Quoulum) Field Theory. We stort with "Quantum" in brackets, since we will first see how to get such theories at the Classical Berel, and then discuss their quartization. the first step to get there, is to soundy the group of Transpurations of SR, the Poincare group, and understand how they set on FIELDS

In Ponticular, we will stort with the Corentz

group, then couries the addition of translations

Tomerre group. Our good vill be that

of writing a Pointere Invoicet LACKANGIAN

to describe fields of different type.

We will then ook ourselves what does this tell us about PARTICLES.

To understand dynametries in physics we need aroup THERY & especially LIE GROUPS. Let's

A GLOUP is a set G, ru which a multiplication operation is defined, such that

1. $\forall a,b,c \in G$ (a.b).c = a.(b.c)2. $\exists e \in G$; $\forall a \in G$ e.a = a.e = a

stat with a quick recap.

3. Vae G = 3 a-1 e G ; a a-1 a = e

A group is called ARECIAN if multiplication is commutative => Va, b & G Q.b = b.a.
Otherwise it is NON ARECIAN

A LIE GROUP IS a group G whose elements

depend in a smooth way (continuous & differentiable)

on a set of real parameters 9°, a=1, N

=> A LIE GROUP is also a DIFFERENTIABLE
MANIFOLD

g = g(0°) and e = g(0) by convention

A linear REPRESENTATION R of a group 15 a way to assign to each $g \in G$ or linear operator $D_R(g)$ on some vector space V such that

1. DR(e) = 1 ¥ 91,92 € 9 2. DR (g1) DR(g2) = DR (g1g2) 3. De(g-1) = [De(g)]-1 4g & 6 is represented by if V has dineus on h a nxn matix [De(g)] => the representation has then dimension in if ei is Basis of V then ei = [De(g)] ju ej 4 = 4: e: im fact 4 yeV theu [Dr(g)] + = 4. [Dr(g)] ei = 4. (D(g)), ej = \[[De(y)]_ji \(\),] ej Components of any vector

transform on expected!

4

A representation R is FAITHFUL if DR(g1) = DR(g2) => g1=g2 A representation R 13 soid to be REDUCIPLE . f I a sulspace of V, UCV, such that Y qeU, geC; Drig) q CU => U is a INVACIANT SURSPACE If this is NOT THE CASE, the representation is collect IRREDUCIELE => no invariant subspaces! A reducible representation con be written, with a Suitable choice of bonn, on the direct sum

Suitable choice of books, as the direct sum
of creducible representations

[nxn]

we say do that two representations R, R' ore epurishent if $\forall g \in G$ = 5 invertible such that [DR'(q)] = 5-1 [DR(q)] 5 => switching between two epicodent representations is like changing boson ei au V! Now, since Lie groups one smooth, and we ornound that $g(\theta^a) \in G$; g(0) = e, then for ANY REPRESENTATION R if θ^a we can write Dr[g] = Dr[0a] = 1+18aTa+0(0a)2) with TR = -1 DR good the GENERATORS

of the CROWS TR SPAN the LIE ALGEBRA => tangent space to Lie Group manifold at the identity! TANGENT SPACE

hote that the "i" is CONVENTIONAL We Physics One con then show that, for from the identity, this equation can be "resummed" and we can write De(g(0)) = e EXPONENTIAL MAP the "physics i" is becouse in Q. H., when we study symmetries, we wout the groups to act on STATES in a UNITARY way => Guseive probabilities (DR = DR1) With these conventions DR(g) UNITARY

=> TR one HERMITIAN (TRe)+=TRa

If G non ABELIAN, what can we say don't [Ta, Tb]=? => take two different clements of the group De(g1) = e ideTe DR (92) = e180TR

of course we have 18 TR De(g1) De(g2) = De(g192) ρ = 5°(2°, β°) What con we say don't 5°(2,B)? e e fe (de pe) Tra becouse in general Tea do not commute! We can write though log(eistre) = log(eistre eistre) => if a, b, 5° ore all infinite simal, then isate = log[(1+idate - 1/2 (date)2+...)

(1+ipate - 1/2 (pate)2+...)]

$$= \log \left[1 + i(\lambda^{2} + \beta^{2}) \right] \left[-\lambda^{\alpha} \beta^{b} \right]$$

= i(++p5)TR - 12ep5 TRTR + 12 db pe TRTR

swapped a >> b

14 second term

to fuelly we get 1[5a-2a-pe] TRQ = - 1 2 apb [TR, TRb] or $d^{\alpha}\beta^{\beta}$ [TR, TR] = $i\left[-2(\delta^{\alpha}-\lambda^{\alpha}-\beta^{\alpha})\right]$ TR when this relation should held for all values of de, pa

 \Rightarrow $-2(5^c-2^c-\beta^c) = C^{abc} 2^a \beta^b$ such that $2^a \beta^a$

[TR, TR] = 1 Cabc TRC

Cabc on colled STRUCTURE
CONSTANTS

they characterize the Lie Group up to IsomaRAHISMS Clearly, cobc must be antisymmetric in a <> b but in general NOT IN ALL INDICES!

Of course, for on ABECIAN GROUP the structure constants one trivially zero ruce all elements of the group commute, which carples that also the generators commute for an [Ta, Tb] = 0 ABELIAN Grev ? In a grew group, there can be SPECIAL ELEMENTS, or operators, constructed from the to that COMMOTE WITH ALL GENERATORS => there one collect CASIMIR OPERATORS C [[Ta] =0 + TR Second Schurr's Lemma guorantees that much

operators must be PROPORTIONAL TO THE IDENTITY

T = C.e this is true for ADTIMET group dements!

Once we specify to a KEANESENTATION

TR= CR 1/2 CR choracterres the representation

EXAMPLE :

if you recall sois) ~ su(z) (Angulon momenton)

there we have [Li, Lj] = 1Eijk Lk $L^2 = L_x^2 + L_y^2 + L_z^2 \quad is the CASIMIR$

$$\begin{bmatrix} L^2, L_1 \end{bmatrix} = 0 \implies L^2 \cdot |\ell,m\rangle = \frac{1}{2} \cdot |\ell,m\rangle = \frac{1}{2} \cdot |\ell,m\rangle$$
with $t_1 = 1$ Cosimir is $\ell(\ell+1)$

meducible terr babelled by l; Ce = l(l+1)

We have soid that - Lie group is a manifold. if this manifold is confact, then the Lie Group

IS COMPACT

EXAMPLE: SUL2)
$$\begin{bmatrix} a & b \\ -2 & d \end{bmatrix} \in GLC2, (C)$$
with $U^{\dagger} = U^{-1}$

det 0 = 1

 $= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ A matrix in \$U(2)

For U(2) => e'dU

one more ponameter!

 $U^{+} = \begin{bmatrix} \frac{1}{2} - i & \frac{1}{2} & \frac{1}{2} + i & \frac{1}{2} \\ -\frac{1}{2} & -i & \frac{1}{2} & \frac{1}{2} + i & \frac{1}{2} \end{bmatrix}$ $\det V = \sum_{i=1}^{2} 2i^{2} = 1$ => epuation of sphere S3

COMPACT MANADLD!

UUT = [2,2+2,2+2,3+2,2 $\begin{cases} 2^{2} + 2^{2} + 2^{3} + 2^{2} \\ 0 \end{cases} = \begin{cases} 1 & 0 \\ 0 & 1 \end{cases}$ Note that, if the group is COMPACT, we can chose the generator Te to form an ORTHONORMAL BASIS. using the TRACE on "scalor product" Jab Tr[Te Tb] = C where C= CR IN specific representation => Fixing C, Fixes also CR in every representation ? For example $T_r[T_F^aT_F^b] = \frac{1}{2} \delta^{ab}$ (Fundamente)

(a SU(N) $T_r[T_A^aT_A^b] = N \delta^{ab}$ (Adjoint) with this choice, one can show that the Structure constants cabe one TOTALLY AUTISYMPETRIC In this case, we typically call them peloc Once the normalization is fixed, the structure constarts one INDEPENDENT OF THE REPRESENTATION => they completely characterize the lie Algebra!

the Lorentz group is NOT COMPACT, or we will see explicitly in a moment. Note that not only compact groups can have totally out symmetric structure constants V the condition on the Scalar product con Le generalized to semi-simple groups on the Lorentz group But Not to Roimcore! IMPORTANT: there is a theorem about compact groups that soys that if the group is NON COMPACT, then there one NO FINITE DIMENJIMAL UNITARY REPORSENTATIONS, except for the trivial one where TR = 0 -> In Quantum Mechanics we want Unitary representations & Hermitian generators to represent physical observables

=> Generator's Eigenvenes one observances => Ang. Hom if we deal with a non-compact group like beentz (or Poincné), me ville le forced to work with INFINITE - DIMENSIONAL representations which act on the HILBERT SPACE of ONE-PARTICLE STATES IMPORTANT We need UNITARY REPS ONLY WHEN ACTING => the physical states (one-postide states!) the Fields that we will use one "bookkeeping" devices, so in working with them we con (and we WILL!) use NON-UNITARY Fraite-Dim Representations of Lorentz l'Romane? But let us now findly look at lorant a group:

THE LORENTZ GROUP

Coulder a h-vector X^{M} ; the bounts group O(1,3) is defined such that \forall $\Lambda \in O(1,3)$

 $|X^{\mu}| \rightarrow |X^{\mu} \times Y^{\mu}| \rightarrow |X^{\mu} \times Y^{\mu}| = |X^{\mu} \times Y^{\mu}|$

Since XMXH= XMXY gmy > MM No XPX gmv

=> 1 € O(1,3) implies No No gnv = gro (*)

g = NTg 1 14 matrix nototion

 \Rightarrow det (g) = det ($\Lambda^T g \Lambda$) = [det Λ]² det g

det 1 = ± 1

roverse t (THE REVOUAL) are examples of 1 with det 1 = -1 the subset $\Lambda \in O(1,3)$ with $\det \Lambda = \pm 1$ is called Proper Lorentz Group Soll, 3) $\forall \tilde{\Lambda} \in O(1,3)$ can be written or $\Lambda \cdot Q$; $Q = \frac{\Lambda \in Scd(1,3)}{Q}$ reverse coordinates Moreover, the 00 component of (*) gives 10 No 9 mv = 1 $\Rightarrow 1 = (1^{\circ})^{2} - \sum_{\lambda=1}^{3} [1^{\lambda}]^{2}$ which ruplies (1°.) > 1 bo either N° ≥ 1 or N° ≤ -1

Transformations that reverse 1 xi

18

transformations with No > 1 ore alled those with 10 4-1 NON-CHRONUS CHRONUS they reverse flow of these two components on DISCONNECTED, there 10 no continuous trough. that con switch 100 or the determinant => We obtain NON-ORTHO by coursing ortito + time reversal! => We can then focus on SO(1,3) with 1021 PLOPER ORTHOGHRONUS LONGUTZ GROUP

1 50(1,3)

INFINITESIMAL LORDITZ TRANSFORMATIONS

Consider now an infintesimel transformation in Sot (1,3)

we write

ΛMV = SMV + WMV oud potting this into

gre = gm ymp no

=> 3/6 = 8/1 [8/6 + 0/6][8/6 + 0/6]

= 900 + WOP + WPO Wpo = - wop it must be ontogrametra!

Antisymmetric uxu matrix was hos 6 components

1] Fix $t=x^{\circ}$, $So(1,3) \mapsto So(3)$ rotation group has 3 parameters

2] Fix each xi, x; \\ ij = 1,2,3 => transfermations that leave t2-X12 invoicet

there are 3 of them (u (t,x), (t,y), (t,z)Sub planes \Rightarrow collect Boosts $(u (t,x) \Rightarrow t^2 - x^2$ invariant For example

$$\begin{cases} t \rightarrow 8(t+vx) \\ \times \rightarrow 8(x+vt) \end{cases}$$

$$-1 < v < 4$$

$$velocity in$$

inded for v >0 units of c X ~ X+ nt + O(n2)

We can parametrite boosts or hypetalic notations $t = (\omega h \eta) t + (h m h \eta) x$ $x = (h m h \eta) t + (\omega h \eta) x$ => t2 x2 15
conserved becare

Cosh n - rombn = 1

then a boost in tex plane is $\Lambda(\eta) = \begin{bmatrix} \omega h \eta & \delta m h \eta & 0 & 0 \\ \delta m h \eta & \omega n h \eta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- 100 LM L+100 heuce set May C Muxu(R) 18 UNBOUNDED

SOTU,3) CANNOT DE COMPACT!

So 80+(1,3) is a Lie group, continuously populated through 3 angles and 3 boosts but it is

not compact => there are NO FINITE-DIM UNITARY REPRESENTATIONS.