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Exercise 1 - Microcausality and the Schrödinger Lagrangian

For a scalar field Φ(x), the free equation of motion is given by the usual Klein-Gordon Lagrangian

L = ∂µΦ
†∂µΦ−m2Φ†Φ. (1)

If Φ(x) is non-hermitian, a general solution to the equation above for p0 = Ep =
√
p2 +m2 is given by

Φ(x) =

∫
d3p

(2π)32Ep

e−iEpt+ip·xa(p), (2)

with a generally complex coefficient a(p). Despite solving correctly the equation of motion associated
to Eq. (1), this solution is not consistent with relativistic causality.

1. Promote Φ(x) to an operator imposing

[a(p), a†(k)] = (2π)32Epδ
(3)(p− k) .

What is the commutator between Φ(x) and its conjugate momentum? Does it vanish for space-like
separated x and y? Does this suffice to claim that relativistic causality is broken?

Since the ansatz of Eq. (3) is not appropriate to describe a relativistic field, let us reduce ourselves to a
non-relativistic setting.

2. Using the approximation Φ(x) = e−imtϕ(x)/
√
2m show that the Klein-Gordon Lagrangian reduces

to

L = ϕ†

[
i∂0 +

∇⃗2

2m

]
ϕ. (3)

Using the ansatz of Eq. (2), show that the field respects the dispersion relation p0 = p2/2m.

3. Show that the wave function ψ(x) = ⟨Ω|ϕ(x)|Ψ⟩ of any single-particle state |Ψ⟩ in the Fock space
satisfies the Schrödinger equation

i
∂

∂t
ψ(t,x) = H0ψ(t,x) where H0 = −∇2

2m
. (4)

4. What would be the corresponding equation for a two-particle state with wave function ψ(t,x,y) =
⟨Ω|ϕ(x)ϕ(y)|Ψ⟩? Sketch the derivation for a general n-particle state. What kind of system does
this field theory describe?

As will be discussed in class, if the Lagrangian of Eq. (3) were to describe a fermion field ψ, this would
now satisfy canonical anti-commutation relations (CAR):

{a(k), a†(p)} = (2π)32Epδ
(3)(k− p)

{a(k), a(p)} = 0 , {a†(k), a†(p)} = 0.

5. Repeat the analysis of points 1. to 4. and discuss which results change for the fermionic case.
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Problem 2 - Canonical Quantization of a Rescaled Scalar Field

Consider the following Lagrangian

L =
1

2
Z2 (∂µϕ)

2 − 1

2
µ2 ϕ2 , (5)

where Z is a real positive constant and ϕ is a real scalar field.

a) In order to easily quantize this theory one can rescale the field ϕ → ϕ̃ = ϕ/Z and follow the
quantization procedure outlined in the lecture. What is the mass of the excitations of the field
ϕ̃? Write down explicitly the eigenvalue of the Hamiltonian for a state with one excitation of
momentum p, EZ

p :

H| p⟩ = H a†(p)|Ω⟩ = EZ
p |p⟩ , (6)

where |0⟩ is the vacuum state and the eigenvalue EZ
p depend in general also on Z.

b) Suppose now that you want to quantize this theory without rescaling the field as in point a).

b1) Derive the expression for the conjugate momentum π(x) and write down the explicit form of
the Hamiltonian in terms of ϕ and π.

b2) Prove that, in order to get the right equation of motion for the field ϕ(x)

i
d

dt
ϕ(t,x) = [ϕ,H]

one needs to impose the canonical equal-time commutation relations on ϕ(t,x) and π(t,y)

[ϕ(t,x), π(t,y)] = i δ(3)(x− y) . (7)

b3) Decompose the field ϕ(x) in Fourier modes by introducing creation and annihilation oper-
ators b†(p), b(p), which may differ from the a†(p) and a(p) introduced in point a). Which
commutation relations do you have to impose on b†(p) b(p) to make ϕ(x) and π(x) satisfy the
canonical equal-time commutation relations, Eq. (7)?

b4) Use the previous results to diagonalize the Hamiltonian H, (i.e. write the Hamiltonian in
terms of creation and annihilation operators b(p) , b†(p)). Show that the energy of a single
particle state defined as

|p̃⟩ = b†(p)|0⟩

is EZ
p , the same as in Eq. (6).

Exercise 3 - Intrinsic Parity

To the extent that the symmetry under the transformation x → −x is really valid, there must exist a
unitary operator P under which free multiparticle states transform as a direct product of single-particle
states:

PΨp1σ1n1; p2σ2n2; ... = ηn1ηn2 . . .ΨPp1σ1n1;Pp2σ2n2; ... (8)
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where ηn is the intrinsic parity of particles of species n, and P reverses the space components of pµ.
Being P unitary, the ηn just amount to phases, which can either be inferred from dynamical models or
from experiment. However, neither of the two can provide a unique determination of the ηn. This is
because we are always free to redefine P by combining it with any conserved internal symmetry operator.
For instance, if P is conserved, then so is

P′ = P exp (iαB + iβL+ iγQ) , (9)

where B,L and Q are respectively baryon number, lepton number, and electric charge, and α, β and γ
are arbitrary real phases.

1. Find a judicious choice of the parameters α, β and γ so that we can define the intrinsic parities of
an electron, a proton, and a neutron to all be +1.

Hint: In Eq. (9) the quantities B, L, and Q are conserved numbers assigned to each particle due to
global symmetries. Protons and neutrons each have baryon number B = 1, while their antiparticles
have B = −1, and all other particles in this problem have B = 0. Electrons, muons, and neutrinos
have lepton number L = 1, their antiparticles have L = −1, and protons and neutrons have L = 0.
The electric charge Q is the usual one, namely (Q(p) = +1, Q(e−) = −1, etc.).

2. The redefinition in Eq. (9) effectively modifies the parity eigenvalues ηn. Show that, provided
that we have have enough conserved internal symmetries which form continuous groups of phase
transformations, it is always possible to introduce an operator IP and redefine (P′)2 = (IPP)2 = +1
so that every particle species has intrinsic parity equal to either ±1.

3. Consider now the case of a purely fermionic system. It is a consequence of angular-momentum
conservation that the total number F of all particles of half-integer spin can only change by even
numbers, so the internal symmetry operator (−1)F is conserved. Suppose we start from a choice
of P such that P2 = (−1)F , which constraints should now B,L and Q satisfy to ensure that a
redefinition of P as per the previous point is always possible?

4. Is there a particle not fulfilling this requirement? What is it and why? How can we redefine its
intrinsic parity?

Exercise 4 - Lorentz Transformations of Spinors

In the lectures, we will soon derive transformation laws for the creation/annihilation operators as(p), a
†
s(p)

of a spinor field ψ from the transformation law of a general state |p, s⟩. Indeed, up to a normalisation

U(Λ, 0)|p, s⟩ =
∑
s′

Dss′ (WΛ−1, p) |Λ−1p, s′⟩, (10)

where the coefficients Dss′ (WΛ−1, p) provide little group representations as given in Lecture 4, we can
find that

U(Λ, 0)a†s(p)U(Λ
−1, 0) =

∑
s′

Dss′ (WΛ−1, p) a
†
s(Λ

−1p) (11)

U(Λ, 0)as(p)U(Λ
−1, 0) =

∑
s′

D∗
ss′ (WΛ−1, p) as(Λ

−1p), (12)
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with the very same laws applying to bs(p), b
†
s(p).

1. Starting from considering ⟨Ω|ψs(x)|Ψ⟩ and ⟨Ψ|ψs(x)|Ω⟩ (where |Ψ⟩ is a suitable one-particle state),
derive now the transformation laws for us(p) and vs(p) under a generic Lorentz transformation Λ.

2. Specialize to the case of P,T and C. How do us(p) and vs(p) transform in this case?

3. Consider now the fields ψ, ψ̄ and the bilinears ψ̄ψs, ψ̄γ
µψ, iψ̄[γµ, γν ]ψ, ψ̄γµγ5ψ and iψ̄γ5ψ. How

do they transform under P,T and C and combinations thereof?

4. Let ϕ(x) be a complex Klein-Gordon field. Find unitary operators P,C and an anti-unitary
operator T (all defined in terms of their action on the annihilation operators a(p) and b(p) for the
Klein- Gordon particles and antiparticles) that give the following transformations of the Klein-
Gordon field:

Pϕ(t,x)P = ϕ(t,−x), (13)

Tϕ(t,x)T = ϕ(−t,x), (14)

Cϕ(t,x)C = ϕ∗(t,x). (15)

Find the transformation properties of the components of the current

Jµ = i(ϕ∗∂µϕ− ϕ∂µϕ∗) (16)

under P,C and T.

5. Show that any Hermitian Lorentz-scalar local operator built from ψ, ϕ and their conjugates has
CPT = +1. How would you write an operator violating CPT-invariance?
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