Quantum Field Theory WS 2025/26

Lecturers: Prof. Lorenzo Tancredi, Prof. Murad Alim

Assistants: Camilla Forgione, Felix Forner, Leonardo Sartori,

Dr. Chiara Savoini, Fabian Wagner, Dr. Denis Werth

Sheet 05: Classical Spinor Fields

Please hand in your solutions on Moodle by Friday, 21.11.2025, 8am

Exercise 1 - Gamma Matrices

For this exercise, let us introduce the short-hand notation

$$\Gamma^{a_1...a_n} \equiv \gamma^{a_1} \cdots \gamma^{a_n}$$

for chains of gamma matrices, where every a_j may either be a Lorentz-index, $a_j = \mu_j$, or $a_j = 5$.

1. Using only

$$\begin{split} \{\gamma^{\mu},\gamma^{\nu}\} &= 2g^{\mu\nu}, \\ \sigma^{\mu\nu} &= \frac{i}{2}[\gamma^{\mu},\gamma^{\nu}] = 2\Sigma^{\mu\nu}, \\ \gamma_5 &= i\gamma^0\gamma^1\gamma^2\gamma^3 = -\frac{i}{4!}\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}, \end{split}$$

prove the following identities (without using any explicit representations of gamma matrices):

$$\Gamma^{\alpha}_{\ \alpha} = 4 \tag{1}$$

$$\Gamma^{\alpha\mu}_{\alpha} = -2\gamma^{\mu} \tag{2}$$

$$\Gamma^{\alpha\mu}_{\alpha} = -2\gamma^{\mu} \tag{2}$$

$$\Gamma^{\alpha\mu\nu}_{\alpha} = 4g^{\mu\nu} \tag{3}$$

$$\gamma^{\alpha}\sigma^{\mu\nu}\gamma_{\alpha} = 0 \tag{4}$$

$$\Gamma^{\alpha\mu\nu\rho}_{\alpha} = -2\Gamma^{\rho\nu\mu} \tag{5}$$

$$(\gamma^0)^2 = 1$$
, $(\gamma^i)^2 = -1$ and $(\gamma_5)^2 = 1$ (6)

$$\{\gamma_5, \gamma^{\mu}\} = 0 \tag{7}$$

$$\operatorname{tr}(\Gamma^{\mu_1\cdots\mu_{2n+1}}) = 0 \quad \forall n \in \mathbb{N}_0$$
 (8)

$$\operatorname{tr}(\Gamma^{\mu_1\cdots\mu_{2n+1}5}) = 0 \quad \forall n \in \mathbb{N}_0$$
(9)

$$\operatorname{tr}(\gamma^5) = 0 \tag{10}$$

$$\operatorname{tr}(\Gamma^{\mu\nu}) = 4g^{\mu\nu} \tag{11}$$

$$\operatorname{tr}(\Gamma^{\mu\nu}_{5}) = 0 \tag{12}$$

$$\operatorname{tr}(\Gamma^{\mu\nu\rho\sigma}) = 4(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho}) \tag{13}$$

$$\operatorname{tr}(\Gamma^{\mu\nu\rho\sigma}_{5}) = -4i\epsilon^{\mu\nu\rho\sigma} \tag{14}$$

$$[\gamma^{\mu}, \Sigma^{\nu\rho}] = i(g^{\mu\nu}\gamma^{\rho} - g^{\mu\rho}\gamma^{\nu}) \tag{15}$$

$$[\Sigma^{\mu\nu}, \Sigma^{\rho\sigma}] = i \left(g^{\nu\rho} \Sigma^{\mu\sigma} - g^{\mu\rho} \Sigma^{\nu\sigma} - g^{\nu\sigma} \Sigma^{\mu\rho} + g^{\mu\sigma} \Sigma^{\nu\rho} \right). \tag{16}$$

The last equation shows that $\Sigma^{\mu\nu}$ satisfies the Lorentz algebra.

2. Show that

$$\Lambda_D = \exp\left(-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu}\right) \qquad \text{with} \qquad \Sigma_{\mu\nu} = \frac{i}{4}[\gamma^{\mu}, \gamma^{\nu}]$$
 (17)

generates Lorentz transformations on Dirac spinors.

Hint: you can do this in (at least) two ways, either starting from the explicit form of the γ^{μ} matrices in the Chiral representation and computing Λ_D explicitly, or in a representation independent way. Both are allowed and instructive!

Exercise 2 - Majorana Mass

In this exercise, we would like to study Majorana fermions and, in particular, how to write a Lagrangian for a massive Majorana field. Remember that a Majorana field ψ_M is defined as a Dirac field, with the extra condition that it is equal to its charge conjugate, i.e.

$$\psi_M^c = \psi_M$$

where $\psi^c = -i\gamma^2\psi^*$. As we have seen, thanks to this definition, a Majorana field effectively depends on a single Weyl field, say a left-handed field ψ_L , such that we can write

$$\psi_M = \begin{pmatrix} \psi_L \\ i\sigma^2 \psi_L^* \end{pmatrix} . \tag{18}$$

1. Show that the Dirac equation for a Majorana fermion,

$$(i\partial \!\!\!/ - m)\psi_M = 0,$$

becomes

$$\bar{\sigma}^{\mu}i\partial_{\mu}\psi_{L} = im\sigma^{2}\psi_{L}^{*}.$$

2. Show that the equation above implies

$$(\Box + m^2)\psi_L = 0.$$

3. For a Dirac fermion, the equation of motion (Dirac equation) can be obtained by variation of the action

$$S_{
m Dirac} = \int d^4 x ar{\psi}_{
m D} (i \partial \!\!\!/ - m) \psi_{
m D}.$$

Can the massive Majorana equation be derived from the same Lagrangian with the substitution $\psi_D \to \psi_M$? Which condition should our classical Majorana field satisfy for this to be possible?

4. Show that the Majorana equation is not U(1) invariant. What is the physical implication of this?

Exercise 3 - Covariant Derivative

Consider a real scalar field ϕ that transforms under a local U(1) transformation $\phi \to e^{i\alpha(x)}\phi$. Since the x-dependence of $\alpha(x)$ spoils the right transformation behavior of $\partial_{\mu}\phi$, one introduces the covariant derivative

$$D_{\mu}\phi = (\partial_{\mu} + B_{\mu})\phi,$$

where we impose that the real vector-field B_{μ} transforms as

$$B_{\mu}(x) \to B_{\mu}(x) - i\partial_{\mu}\alpha(x).$$
 (19)

- 1. Consider a scalar field ψ that transforms as $\psi \to e^{-i\alpha(x)}\psi$. How does B_{μ} need to transform to make the covariant derivative transform in the right way?
- 2. Now consider a theory with both scalar fields ϕ and ψ , transforming under the same U(1) symmetry as $\phi \to e^{i\alpha(x)}\phi$ and $\psi \to e^{-i\alpha(x)}\psi$. From part 1., $D_{\mu}\phi$ and $D_{\mu}\psi$ seem to require inconsistent transformation laws for B_{μ} . What is a way out to build invariant kinetic terms for both ϕ and ψ , with a single gauge field B_{μ} ?
- 3. Now redefine $B_{\mu}(x) = iqA_{\mu}(x)$ and go back to the theory of a complex scalar field that we studied in class. Discuss the implications of your findings.

Exercise 4 - Total Derivatives and Noether Theorem

The free Lagrangian of a left-handed Weyl-spinor may be written as

$$\mathcal{L}_1 = i\psi_L^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_L.$$

1. Show that

$$\mathcal{L}_2 = \frac{i}{2} \psi_L^{\dagger} \bar{\sigma}^{\mu} \overleftrightarrow{\partial}_{\mu} \psi_L$$

differs from \mathcal{L}_1 only by a total derivative, and check explicitly that both lead to the same equations of motion.

- 2. Compare the energy-momentum tensor and the corresponding conserved charges derived from \mathcal{L}_1 and \mathcal{L}_2 and discuss your findings.
- 3. Both Lagrangians are invariant under a global U(1) transformation

$$\psi_L \to e^{i\theta} \psi_L$$
.

As for the previous point, derive the conserved currents and charges from both Lagrangians and discuss your result.