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Exercise 1 - Lorentz algebra, rotations and boosts

1.1 Show that

Li =
1

2
εijkJ jk and Ki = J i0, (1)

defined in terms of Lorentz generators Jµν , transform as vectors under 3-dimensional rotations.

1.2 Using the Lorentz algebra

[Jµν , Jρσ] = i (gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ) , (2)

derive the commutation relations between Li and Ki:

[Li, Lj] = i εijkLk, (3)

[Li, Kj] = i εijkKk, (4)

[Ki, Kj] = − i εijkLk. (5)

1.3 Starting from an arbitrary Lorentz transformation

Λ = e−
i
2
ωµνJµν

, (6)

with parameters ωµν , and defining the parameters

θi =
1

2
εijkωjk, ηi = ωi0, (7)

show that a general Lorentz transformation in vector representation can be written as

Λ = e[−i θ⃗·L⃗+i η⃗·K⃗]. (8)

Exercise 2 - Lorentz vectors built from Weyl spinors

Prove that, if ψR and ξR are right-handed Weyl spinors, V µ ≡ ξ†Rσ
µψR is a four-vector, and similarly for

W µ ≡ ξ†Lσ̄
µψL, where ξL and ψL are left-handed Weyl spinors. Recall that σµ = (1, σ⃗) and σ̄µ = (1,−σ⃗).

Exercise 3 - Tensor representations and angular momentum

Part 1 — Tensor representations
By definition, a tensor T µν with two contravariant (i.e. upper) indices transforms as

T µν → Λµ
αΛ

ν
βT

αβ. (9)

Tensors provide examples of representations of the Lorentz group. For instance, a generic tensor T µν

has 16 components, and Eq.9 shows that these components transform among themselves, so they form
a basis for a 16-dimensional representation. However, this representation is reducible.
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3.1 Show that:

• if Aµν is antisymmetric, it remains antisymmetric under Lorentz transformations;

• if Sµν is symmetric, it remains symmetric under Lorentz transformations,

3.2 This allows us to conclude that the antisymmetric and symmetric parts of T µν do not mix un-
der Lorentz transformations. The 16-dimensional representation therefore decomposes into an
antisymmetric representation

Aµν = 1
2
(T µν − T νµ) (10)

and a symmetric representation
Sµν = 1

2
(T µν + T νµ). (11)

What are the dimensions (i.e. independent components) of these two representations?

3.3 Let’s focus on the symmetric part: show that the trace of a symmetric tensor,

S ≡ gµνS
µν , (12)

is invariant under Lorentz transformations as well.
This means that a traceless symmetric tensor remains traceless after a Lorentz transformation.

3.4 From the previous consideration, we can conclude that the symmetric representation decomposes
further into a traceless symmetric part Sµν − 1

n
gµνS and a part proportional to the metric 1

n
gµνS,

carrying the scalar trace S. What are the dimensions (i.e. independent components) of these two
further parts?

Part 2 — Decomposition of Lorentz tensors under SO(3)
Since we know how a tensor behaves under a generic Lorentz transformation, we can in particular study
its behaviour under the SO(3) rotation Lorentz subgroup. This allows us to determine the angular
momentum j associated with different tensor representations.
Recall that the representations of SO(3) are labeled by an integer j = 0, 1, 2, . . ., and that the dimension
of the representation with angular momentum j is 2j + 1.
In this notation,

• a Lorentz scalar is clearly invariant under rotations, so it has j = 0;

• a four-vector vµ = (v0, v⃗) is an irreducible representation of the Lorentz group but reducible under
SO(3) rotations: spatial rotations do not mix v0 with v⃗. v0 is invariant under spatial rotations,
so it has j = 0, while the three spatial components vi form an irreducible three-dimensional
representation of SO(3), so they have j = 1. In group theory language we say that, from the point
of view of spatial rotations, a four-vector decomposes into the direct sum of a scalar and a j = 1
representation:

vµ ∈ 0⊕ 1, (13)

We now want to understand what angular momenta appear in a generic tensor T µν with two indices.
By definition, T µν transforms as the tensor product of two four-vector representations.
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3.5 Using the above result, expand the following product:

T µν ∈ (0⊕ 1)⊗ (0⊕ 1), (14)

then use the usual rule of composition of angular momenta (that adding j1 and j2 gives all j
between |j1 − j2| and j1 + j2) to show that

(0⊕ 1)⊗ (0⊕ 1) = 0⊕ 1⊕ 1⊕ (0⊕ 1⊕ 2). (15)

Thus, in the decomposition of a generic tensor T µν in representations of the rotation group, the
j = 0 representation appears twice, the j = 1 representation appears three times, and the j = 2
once.

3.6 It is interesting to see how these representations are shared between the symmetric traceless,
the trace and the antisymmetric part of the tensor T µν , since these are the irreducible Lorentz
representations.
Consider the following objects:

• T 00: time-time component;

• T 0i: time-space component;

• T i0: space-time component;

• T [ij] = 1
2
(T ij − T ji): antisymmetric part;

• 1
3
δijT kk: spacial trace part;

• T
(ij)
traceless =

1
2
(T ij + T ji)− 1

3
δijT kk: traceless symmetric part.

For each of them, indicate whether it corresponds to a scalar, a vector, or a tensor representation.
Specify the number of independent components, the associated angular momentum value j, and
identify the correspondence between these six tensor components and the six terms in Eq. 15.
Mention some physically relevant examples.

Part 3 — Generalization

3.7 Show that a totally symmetric and traceless spatial tensor Si1,i2,...,iN with N spatial indices has
angular momentum j = N .

Exercise 4 - The isomorphism SL(2,C)/{±I} ∼= SO+(1, 3) [Math Problem]

Let H be the real vector space of Hermitian 2× 2 matrices and identify R4 ∋ x = (x0, x1, x2, x3) with

x̂ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
= x0 1+

3∑
j=1

xjσj,
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where σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices.

Define the Minkowski bilinear form on R4 by

(x, y) = x0y0 − x1y1 − x2y2 − x3y3, and ∥x∥2M = (x, x).

4.1 Show that det(x̂) = ∥x∥2M . (Conclude that x is lightlike iff x̂ is singular.)

4.2 For A ∈ SL(2,C) define Φ(A) : H → H by Φ(A)(X) = AXA∗. Prove that Φ(A) preserves
determinants on H, i.e. det(Φ(A)X) = det(X) for all X ∈ H.

4.3 Using the identification x ↔ x̂, prove that there exists a unique linear map ϕ(A) : R4 → R4 such
that

A x̂A∗ = ϕ̂(A) x for all x ∈ R4.

Show that ϕ : SL(2,C) → O(1, 3) is a group homomorphism.

4.4 Prove that ϕ(SL(2,C)) ⊂ SO+(1, 3), i.e. det(ϕ(A)) = 1 and ϕ(A) is orthochronous (it maps the
future light cone into itself).
Hint: Use that SL(2,C) is connected and ϕ is continuous; check the claim at A = I.

4.5 Determine the kernel of ϕ.
Hint: If Ax̂A∗ = x̂ for all x, first show A ∈ U(2), then use linear independence of {1, σ1, σ2, σ3}
to conclude A = λI; combine with detA = 1.

4.6 Show that ϕ is surjective.
One route: Every Λ ∈ SO+(1, 3) factorizes as Λ = R1 L(χ)R2 with R1, R2 ∈ SO(3) and a boost
L(χ) along the z-axis. Exhibit preimages:

ϕ

((
eθ 0
0 e−θ

))
= L(2θ), ϕ

(
U
)
= the rotation in SO(3) corresponding to U ∈ SU(2).

Conclude that every element of SO+(1, 3) lies in the image of ϕ.

4.7 Deduce that ϕ descends to a bijective homomorphism

ϕ : SL(2,C)/{±I} −→ SO+(1, 3),

hence is an isomorphism of Lie groups.
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