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Exercise 1 - Lorentz transformations

Consider a Lorentz transformation infinitesimally close to the identity, Λµ
ν = δµν + ωµ

ν , with ωµ
ν in-

finitesimal.

1. What condition should ω satisfy to make Λ a Lorenz transformation?

2. Find the form of ω that corresponds to rotations around the i-th axis. Give an explicit matrix for
an infinitesimal rotation around the z-axis.

3. Find the form of ω that corresponds to boosts along the i-th axis. Give an explicit matrix for a
boost in the x-direction.

4. Show that any ω satisfying the condition derived in the first point can be written as a linear
combination of boosts and rotations.

Consider now a generic Lorentz transformation Λµ
ν .

5. Prove that the totally antisymmetric tensor ϵµνρσ is invariant under proper Lorentz transforma-
tions, and that it changes sign under a parity transformation.

6. Prove that the measure
d3k⃗

(2π)32Ek

with Ek =

√
k⃗2 +m2 (1)

is Lorentz invariant using two different ways:

(a) Apply an explicit Lorentz transformation.

Hint: There is a subset of Lorentz transformations under which the measure is trivially in-
variant, so you only need to demonstrate it for the remaining one(s).

(b) Alternatively, find a way to express the integration measure in a manifestly Lorentz-invariant
form by introducing a suitable combination of δ and Θ functions and extending the integration
to include the energy component.

Exercise 2 - The Lorentz Algebra

Consider again an infinitesimal Lorentz transformation acting on a 4-vector V µ as V µ → V ′µ = Λµ
νV

ν

with
Λµ

ν = δµν + ωµ
ν . (2)
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1. Prove that the form of the generators Jµν of the Lorentz group acting on 4-vectors, i.e. in the
so-called vector representation, reads

[Jµν ]ρσ = i(gµρδνσ − gνρδµσ) . (3)

Hint: The generators are defined such that for infinitesimal ω, we have[
e−

i
2
ωµνJµν

]ρ
σ
V σ = V ρ + ωρ

σV
σ . (4)

2. Use the explicit form of the generators [Jµν ]ρσ derived above to derive the commutation relations
of the Lorentz group,

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ) . (5)

Consider now a scalar function ϕ(x) (a “classical field”) depending on the space-time coordinate xµ,
and a (proper orthochronous) Lorentz transformation Λ acting on the coordinates as xµ → x′µ = Λµ

νx
ν .

The fact that ϕ(x) is a scalar under Lorentz transformations can be phrased as follows:

ϕ′(x′) = ϕ(x) (6)

or alternatively, considering the transformed field at the original space-time point, we may write

ϕ′(x) = ϕ(Λ−1x) . (7)

3. Take now Λ to be an infinitesimal Lorentz transformation. Show that to first order in ω, we have

ϕ′(x)− ϕ(x) = − i

2
ωµνLµνϕ(x) (8)

where

Lµν = i(xµ∂ν − xν∂µ) , with ∂µ =
∂

∂xµ
. (9)

4. Prove that the Lµν just defined, satisfy the Lorentz algebra in eq. (5).

5. Even if we have not quantized anything yet, let us make the further step of thinking of ϕ(x) as
a quantum field, i.e. an operator-valued distribution acting on the Hilbert space of the quantum
theory. Let us then define U(Λ) as the (unitary) operator generating Lorentz transformations on
the Hilbert space of the quantum theory. If we label a state by its momentum |p⟩, we write

|p⟩ → |Λp⟩ = U(Λ)|p⟩ . (10)

With this, one can easily show that equation (7) can also be written as1

U(Λ)ϕ(x)U(Λ)−1 = ϕ(Λ−1x) . (11)

By writing

U(Λ) = exp

[
− i

2
ωµνMµν

]
and using the results you derived in the previous points, show that

[Mµν , ϕ(x)] = Lµνϕ(x) . (12)
1We will say more about this in the lecture once we consider quantum fields, for now you can take this transformation

law as given.
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Exercise 3 - Parity and Time Reversal

In this problem, we investigate parity and time reversal and the need of antiunitary operators.

Part 1 - Antiunitary Operators

A theorem by Wigner from the 1930s states that in order to represent a symmetry transformation as an
operator acting on the Hilbert space of physical states, there are fundamentally two options. The first
option is that the operator is linear and unitary. In your quantum mechanics courses, you have likely
encountered many examples of such operators, as this is the most common case in physics. The reason
is that most symmetries are continuous and connected to the identity, which is unitary. However, there
is a second option: the operator could also be antilinear and antiunitary.
Let H be a Hilbert space with scalar product ⟨· , ·⟩. Let ψ1, ψ2 ∈ H, then an antiunitary operator
A : H → H satisfies the property

⟨Aψ1, Aψ2⟩ = ⟨ψ1, ψ2⟩∗ . (13)

1. Show that eq. (13) is incompatible with A being a linear operator and that instead, A must be
antilinear,

A (a1ψ1 + a2ψ2) = a∗1Aψ1 + a∗2Aψ2 , a1, a2 ∈ C . (14)

Hint: You may safely assume A to be invertible.

2. Give a brief explanation of the jargon “antiunitary operators anticommute with i (the imaginary
unit)”.

Part 2 - Concatenations of Poincaré Transformations

Relativistic quantum field theories are required to be invariant not only under Lorentz transformations,
but also under space-time translations. The corresponding symmetry transformation is given by

xµ → x′µ = Λµ
νx

ν + aµ (15)

with Λ a Lorentz transformation and a a constant 4-vector. Transformations of this type are called
inhomogeneous Lorentz transformations or Poincaré transformations. We denote such a transformation
by the tuple (Λ, a).

3. Verify that the transformations in eq. (15) form a group, i.e. show that two sequential Poincaré
transformations, say (Λ1, a1) followed by (Λ2, a2), amount to a single Poincaré transformation
(Λ2Λ1,Λ2a1 + a2).

4. Given a Poincaré transformation (Λ, a), derive its inverse.

The transformation from eq. (15) corresponds to the 4-dimensional vector representation of the Poincaré
group. Let us now study the Poincaré group as an abstract group, with the tuple (Λ, a) now denoting
an abstract element of the group. We can then understand your findings from point 3. as the group
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multiplication law, which can be generalized to any representation. Concretely, if we denote the abstract
group element (Λ, a) in some representation as R(Λ, a), then we must have

R(Λ2, a2)R(Λ1, a1) = R(Λ2Λ1,Λ2a1 + a2) . (16)

If one wants to study infinitesimal Poincaré transformations, it is conventional to write them as

R(1 + ω, ϵ) = 1− i

2
ωµνJ

µν + iϵµP
µ , (17)

where Jµν are the generators of the Lorentz group, Pµ the generators of translations in the form corre-
sponding to the particular representation, and ωµν = −ωνµ and ϵµ are taken infinitesimal.

5. Consider the product of an infinitesimal Poincaré transformation sandwiched between a general
Poincaré transformation and its inverse,

R(Λ, a)R(1 + ω, ϵ)R−1(Λ, a) . (18)

Use eq. (16) to write this product as a single Poincaré transformation R(Λ̄, ā).

6. While allowing the representation under consideration to be either linear or antilinear, expand
both R(Λ̄, ā) and eq. (18) to first order in ω and ϵ to show that

R(Λ, a) (i Jµν) R−1(Λ, a) = iΛ µ
ρ Λ ν

σ (Jρσ − aρP σ + aσP ρ) , (19)

R(Λ, a) (i P µ) R−1(Λ, a) = iΛ µ
ν P

ν , (20)

where on the right-hand-sides we have Λ and a appearing in the vector representation.

Part 3 - Parity and Time Reversal

Let’s specify now to the cases where (Λ, a) is either parity or time reversal,

P ≡ R(P , 0) , T ≡ R(T , 0) , (21)

Pµ
ν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , T µ
ν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (22)

Furthermore, let us assume that parity and time reversal are symmetries of our theory and that we
want to act with P and T on physical states in the corresponding Hilbert space. According to Wigner’s
theorem, this means that we want their representations to be either linear and unitary or antilinear
and antiunitary.

7. Specifying eq. (20) to the case µ = 0 and applying it to some physical state Ψ, show that P should
be represented in a linear, unitary representation, while T should be represented in an antilinear,
antiunitary representation.

Hint 1: In the lecture, you will see that the generator of translations in time corresponds to the
Hamiltonian H of the theory, P 0 = H.

Hint 2: A physical theory should have a lowest energy state (a vacuum).
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Exercise 4 - Normal Subgroups [Math problem 1]

Let G,H be groups and φ : G→ H a homomorphism. Prove the following:

1. φ(1) = 1, and φ(g)−1 = φ(g−1).

2. kerφ is a subgroup of G, and Imφ is a subgroup of H.

3. φ is injective if and only if kerφ = {1}.

4. Prove that kerφ is a normal subgroup of G.

Let φ : R → SO(2) be defined by

φ(t) =

(
cos t − sin t
sin t cos t

)
.

5. Prove that φ is a group homomorphism.

6. Determine kerφ and Imφ.

Exercise 5 - Semidirect Product [Math problem 2]

Let G and H be groups and let ρ : G → Aut(H), g 7→ ρg, be a homomorphism. Prove the following:
Then G×H with multiplication

(g1, h1)(g2, h2) = (g1g2, h1 ρg1(h2))

is a group, the semidirect product G⋉ρ H.
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