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Exercise 1 - One-dimensional chain of particles connected by springs

In this problem, we will see how the formalism of quantum field theory naturally emerges from a known,
discrete system, once the continuum limit is taken. To this end, we will consider the case of a one-
dimensional chain of N particles connected to each other by springs, see fig. 1. We will quantize this
system for finite values of N and then consider the continuum limit N → ∞.
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Exercise 1. Discrete and continuous models of an elastic rod

We consider a one-dimensional array of N particles connected by elastic springs with spring force
constant . Let us assume that all the particles have the same mass m and that, at rest, their
relative distance is a. By qi(t), i = 1, . . . N , we denote their position relative to the equilibrium.
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a) Derive the Lagrangian L(qi(t), q̇i(t)) of this system in the limit of large N .

b) Compute the Euler-Lagrange equations.

c) Take the limit a ! 0 of the Lagrangian and the Euler-Lagrange equations that you ob-
tained in a) and b). As in the lecture, denote by �(t, ~x) the vibration amplitudes, by µ
the mass density lima!0

m
a , and by Y Young’s modulus lima!0(a) .

d) Check that you obtain the same result if you derive the Euler-Lagrange equations directly
from the Lagrangian of an elastic rod.

Exercise 2. Equations of motion of electrodynamics

In electrodynamics the Lagrangian density has the following form:

L = �1

4
Fµ⌫F

µ⌫ � jµAµ

where Fµ⌫ := @µA⌫ � @⌫Aµ and jµ is some external current density.

Using the Euler-Lagrange equations (see lecture 1) and the expression for L above, derive the
equations of motion of the electromagnetic field.

Exercise 3. Lorentz transformations

Consider a classical field �(x) and assume its Lagrangian density is invariant under (infinitesimal)
Lorentz tranformation x ! x + �x, with:

�xµ = !µ
⌫ x⌫ (1)

where !µ
⌫ is an infinitesimal, antisymmetric constant matrix: !µ⌫ = �!⌫µ. Apply Noether’s

Theorem to find the conserved current and charge, writing them in terms of the conserved
energy-momentum tensor Tµ⌫ .

Hint. Use the Euler-Lagrange field equations.
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Figure 1: One-dimensional array of springs

Let us begin by reviewing a very well-known system, the one-dimensional harmonic oscillator. Its
Lagrangian L is given by

L =
m

2

(
ẋ2 − ω2x2

)
, with ẋ =

dx

dt
, and m,ω > 0 . (1)

1. Derive the expressions for the momentum p conjugate to x and for the Hamiltonian H.

2. Show that the system can be quantized by introducing creation and annihilation operators a†, a
defined as

x =

√
ℏ

2mω

(
a+ a†

)
, p = −i

√
mωℏ
2

(
a− a†

)
. (2)

To do so, give the commutation relation between a, a† and check that it leads to the correct
canonical commutation relation for x and p. Subsequently, express the Hamiltonian H in terms
of a, a† and show that all its (physically relevant) eigenvalues are quantized.

Let us consider now the system in fig. 1. We assume that all N particles have the same mass m and
that the displacement of particle j from its equilibrium position is denoted as qj/

√
m. Furthermore,

we take the chain to be closed (forming a ring) and impose that each particle can only move along the
chain, i.e. transverse displacements are not allowed. Moreover, we take a harmonic approximation and
assume that every particle interacts only with its two neighbors and that the displacements are small
compared to their equilibrium separation. The Lagrangian of the system can then be written as

L =
1

2

N∑
j=1

q̇2j −
ν2

2

N∑
j=1

(qj+1 − qj)
2 , (3)
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with ν > 0 denoting the stiffness of the springs and we identify qN+1(t) ≡ q1(t).

3. Show that the classical equations of motion are given by

q̈j(t) = ν2 [qj+1(t)− 2 qj(t) + qj−1(t)] , ∀j = 1, . . . , N . (4)

The so-called normal mode solutions to eq. (4), i.e. solutions that are harmonic functions of time can
be written as

qj(t) = ℜ
{
Ae−i(K j−ωt)

}
, (5)

where A is a normalization constant. The frequency ω does not depend on j, and K is a boundary
constant.

4. Imposing periodic boundary conditions, qj(t) = qj+N(t), show that K can take only a discrete set
of values which can be chosen as

K =
2πα

N
, with α = 0, 1, ..., N − 1 .

5. Derive the dispersion relation, i.e. show that for every given value of α, the corresponding frequency
ωα is given by

ωα = 2ν
∣∣∣sin(πα

N

)∣∣∣ . (6)

We now write the normal mode solutions for a given value of α ∈ {0, 1, ..., N − 1} as

qαj (t) = ℜ{aαj eiωαt} , with aαj = Ae−i2πα j/N . (7)

6. Show that the coefficients aαj satisfy the orthogonality relation

N∑
j=1

aα∗j aβj = |A|2N δαβ , (8)

as well as the completeness relation

N−1∑
α=0

aα∗j aαk = |A|2N δjk . (9)

To render the coefficients aαj properly orthonormal, we, from now on, fix A = 1/
√
N .

7. Show that by introducing the normal coordinates

Qα(t) =
N∑
j=1

aαj qj(t) (10)

the Lagrangian (3) becomes similar to the Lagrangian of N independent harmonic oscillators,

L =
1

2

N−1∑
α=0

(
Q̇∗

αQ̇α − ω2
αQ

∗
αQα

)
. (11)
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While the original coordinates qj were real, the normal coordinates Qα are complex. In principle, N
complex degrees of freedom correspond to 2N real degrees of freedom. However, as we started from N
real degrees of freedom, only half of them can be linearly independent.

8. Use that Qα+N = Qα as well as Q∗
α = Q−α to show that it is possible to write the Lagrangian

in terms of a single set of N real coordinates that is now equivalent to the Lagrangian of N
independent harmonic oscillators. Concretely, show that it can be written in the form

L =
1

2

N−1∑
α=0

(
˙̃Q2
α − ω2

αQ̃
2
α

)
, (12)

where all the Q̃α are real coordinates.

Hint 1: Distinguish the cases of N odd and even.

Hint 2: Split the Qα into their real and imaginary part according to

Qα =
1√
2
(Qc

α − iQs
α) (13)

and examine the special cases α = 0 and α = N/2 explicitly.

We can now quantize each of the N harmonic oscillators individually in the same fashion as reviewed
at the beginning of this exercise.

9. Give the commutation relation between the coordinates Q̃α and their conjugate momenta Π̃β.

10. Show that the commutation relation of the original coordinates and their conjugate momenta are
given by

[qj, pk] = i ℏmδjk . (14)

Finally, let us consider now the continuum limit N → ∞ for this system. Given a particular normal
mode of motion (value of α), the phase difference between adjacent particles is 2πα/N . If we denote
the equilibrium separation between two neighboring particles as d, particles separated along the chain
by a multiple of the distance Nd/α oscillate with the same phase. This lets us introduce the notion of
a wavelength

λ = Nd/α

to the motion of the particles along the entire chain. One wavelength contains N/α particles, and in
the limit when the wavelength λ is much larger than the relative spacing d (corresponding to each
wavelength consisting of many particles), one can imagine to describe the system as a continuum. To
this end, we introduce the wave number

k =
2π

λ
=

2πα

Nd
,
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and the equilibrium position of a given particle can be written as xj = j d. With these notations, our
normal mode solutions and corresponding normal coordinates can now be written as

ajk =
1√
N
e−ikxj , q(xj, t) ≡ qj(t) =

1√
N

N∑
k=1

Qk(t) e
ikxj , Qk(t) =

1√
N

N∑
j=1

q(xj, t) e
−ikxj , (15)

where we have traded the index α for an index k denoting the wave number corresponding to the
particular value of α under consideration. The continuum limit can be taken when kd ≪ 1 . Keeping
the length L = Nd of the chain fixed, q(xj, t) and q(xj+1, t) become nearly equal as xj and xj+1 get
closer and closer to each other. This allows us to view the displacements as a continuous function of
the position x on the line, namely

q(xj, t) → √
mϕ(x, t) ,

where the factor
√
m is needed to account for the normalization we have chosen to define the qj in

eq. (3).

11. Using the formal replacement
N∑
j=1

(...) → N

L

∫ L

0

dx (...) ,

show that the Lagrangian in eq. (3) can be written as

L =

∫ L

0

dxL , with L =
ρ

2

(
∂ϕ

∂t

)2

− ρc2

2

(
∂ϕ

∂x

)2

(16)

where we introduced the mass density ρ = m/d and the constant c = ν d.

12. Write down the Euler-Lagrange equation for the field ϕ that follows from the Lagrangian in eq. (16)
and use it to give a physical interpretation of the constant c.

13. Suppose you want to quantize the continuous system described by the Lagrangian eq. (16). Given
the relation between the field ϕ(x) and the original discrete coordinate qj, as well as the com-
mutation relation in eq. (14), can you guess the commutation relation for the field ϕ(x) and its
conjugate momentum π(x) that needs to be applied in the continuum limit?
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