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Exercise 1 - One-dimensional chain of particles connected by springs

In this problem, we will see how the formalism of quantum field theory naturally emerges from a known,
discrete system, once the continuum limit is taken. To this end, we will consider the case of a one-
dimensional chain of N particles connected to each other by springs, see fig. 1. We will quantize this
system for finite values of N and then consider the continuum limit N — oo.
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Figure 1: One-dimensional array of springs

Let us begin by reviewing a very well-known system, the one-dimensional harmonic oscillator. Its
Lagrangian L is given by
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1. Derive the expressions for the momentum p conjugate to = and for the Hamiltonian H.

2. Show that the system can be quantized by introducing creation and annihilation operators af, a

defined as
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To do so, give the commutation relation between a,a' and check that it leads to the correct
canonical commutation relation for x and p. Subsequently, express the Hamiltonian H in terms
of a,a’ and show that all its (physically relevant) eigenvalues are quantized.

Let us consider now the system in fig. 1. We assume that all N particles have the same mass m and
that the displacement of particle j from its equilibrium position is denoted as ¢;/+/m. Furthermore,
we take the chain to be closed (forming a ring) and impose that each particle can only move along the
chain, i.e. transverse displacements are not allowed. Moreover, we take a harmonic approximation and
assume that every particle interacts only with its two neighbors and that the displacements are small
compared to their equilibrium separation. The Lagrangian of the system can then be written as
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with v > 0 denoting the stiffness of the springs and we identify gn1(t) = q1(%).

3. Show that the classical equations of motion are given by
Gi(t) = v*[gjea(t) = 2¢;(t) + g2 ()], Vi=1,...,N. (4)

The so-called normal mode solutions to eq. (4), i.e. solutions that are harmonic functions of time can
be written as

g;(t) = R{A e’i(Kth)} , (5)
where A is a normalization constant. The frequency w does not depend on j, and K is a boundary
constant.

4. Imposing periodic boundary conditions, ¢;(t) = ¢;+n(t), show that K can take only a discrete set

of values which can be chosen as
2o

K—T, Wlth &:0,1,...,]\[—1.

5. Derive the dispersion relation, i.e. show that for every given value of o, the corresponding frequency

W, 18 given by
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We now write the normal mode solutions for a given value of a € {0,1,..., N — 1} as
¢ (t) = R{a§ e}, with af = Aemi2mai/N (7)

6. Show that the coefficients af satisfy the orthogonality relation

N
> agtal = |AP Ny, (8)
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as well as the completeness relation
N-1
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To render the coefficients af properly orthonormal, we, from now on, fix A =1 /VN.

7. Show that by introducing the normal coordinates

N
Qa(t) = >_afa;(t) (10)
j=1
the Lagrangian (3) becomes similar to the Lagrangian of N independent harmonic oscillators,
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While the original coordinates g; were real, the normal coordinates (), are complex. In principle, N
complex degrees of freedom correspond to 2NN real degrees of freedom. However, as we started from N
real degrees of freedom, only half of them can be linearly independent.

8. Use that Quin = Qo as well as Q) = ()_, to show that it is possible to write the Lagrangian
in terms of a single set of N real coordinates that is now equivalent to the Lagrangian of N
independent harmonic oscillators. Concretely, show that it can be written in the form
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where all the Q, are real coordinates.
Hint 1: Distinguish the cases of N odd and even.
Hint 2: Split the @), into their real and imaginary part according to
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and examine the special cases @ = 0 and a = N/2 explicitly.

We can now quantize each of the N harmonic oscillators individually in the same fashion as reviewed
at the beginning of this exercise.

9. Give the commutation relation between the coordinates Q, and their conjugate momenta ﬁg.

10. Show that the commutation relation of the original coordinates and their conjugate momenta are
given by
[qj, Pl =i hmdjy . (14)

Finally, let us consider now the continuum limit N — oo for this system. Given a particular normal
mode of motion (value of «), the phase difference between adjacent particles is 2ra/N. If we denote
the equilibrium separation between two neighboring particles as d, particles separated along the chain
by a multiple of the distance Nd/a oscillate with the same phase. This lets us introduce the notion of
a wavelength

A= Nd/a

to the motion of the particles along the entire chain. One wavelength contains N/« particles, and in
the limit when the wavelength A is much larger than the relative spacing d (corresponding to each
wavelength consisting of many particles), one can imagine to describe the system as a continuum. To
this end, we introduce the wave number



and the equilibrium position of a given particle can be written as z; = jd. With these notations, our
normal mode solutions and corresponding normal coordinates can now be written as
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where we have traded the index a for an index k£ denoting the wave number corresponding to the
particular value of o under consideration. The continuum limit can be taken when kd < 1. Keeping
the length L = Nd of the chain fixed, ¢(x;,t) and ¢(x;41,t) become nearly equal as z; and ;4 get
closer and closer to each other. This allows us to view the displacements as a continuous function of
the position = on the line, namely

q(xj7t) — \/E¢(x7t)7
where the factor y/m is needed to account for the normalization we have chosen to define the ¢; in
eq. (3).

11. Using the formal replacement
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show that the Lagrangian in eq. (3) can be written as
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where we introduced the mass density p = m/d and the constant ¢ = v d.

12. Write down the Euler-Lagrange equation for the field ¢ that follows from the Lagrangian in eq. (16)
and use it to give a physical interpretation of the constant c.

13. Suppose you want to quantize the continuous system described by the Lagrangian eq. (16). Given
the relation between the field ¢(x) and the original discrete coordinate ¢;, as well as the com-
mutation relation in eq. (14), can you guess the commutation relation for the field ¢(x) and its
conjugate momentum m(z) that needs to be applied in the continuum limit?



