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Lemma 3.12. The map
exp : Mat(n,K) — GL(n,K)

is invertible in a neighborhood of 0. That is, there exists a neighborhood U of O such that
exp : U — exp(U) is bijective, and the inverse is given by an absolutely convergent power
series.
Proof. The series

1)

logX Z n+1T

converges absolutely for || X — 1] < 1, since

i:: H n+1 H < Z ||X

Then exp(log X) = X for || X — 1| < 1, and log(exp X) = X whenever ||exp X —1|| < 1. O

-1
" g1 - ix - 1)) < oo

3.3 One-Parameter Groups

Definition 3.13. A map X : R —» GL(n,K), t = X (t), is called a one-parameter group if it
is continuously differentiable, X (0) = 1, and

X(s+t)=X(s)X(t) foralls,teR.
The image of such a map is a subgroup, with X (¢)~! = X (—t).
Theorem 3.14. (i) For any X € Mat(n,K), the map t — exp(tX) is a one-parameter
group.
(ii) Every one-parameter group is of this form.

Definition 3.15. For the one-parameter group ¢ — exp(tX), the matrix X is called its
infinitesimal generator.

Proof of Theorem 3.14. (i) Since tXsX = sXtX, Lemma 3.7(i) gives exp(tX)exp(sX) =
exp((t + s)X). Differentiability and 4 exp(tX) = exp(tX)X are standard.

(ii) If X(¢) is a one-parameter group, then
d X(t+h)—X(t) X)X (h)—X(t) X(h)—1

a s (@) = Jimy h = i h = X () g —=— = X(®X(0),

with X (0) = 1. Uniqueness for first-order linear matrix ODEs yields X (t) = exp (tX(0)). O

3.4 Matrix Lie Groups

Let G C GL(n,K) be a closed subgroup of GL(n,K) (closed means: if (g;) is a sequence in
G converging in GL(n,K), then lim;_,, g; € G). Define

Lie(G) = { X € Mat(n,K) | exp(tX) € G for all t € R }.
The space Lie(G) is called the Lie algebra of the Lie group G.

Theorem 3.16. Let G be a closed subgroup of GL(n,K), where K =R or C. Then Lie(G)
is a real vector space, and for all XY € Lie(G) we have [X,Y] = XY — Y X € Lie(G).
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We will prove this later using the Campbell-Baker—Hausdorff (CBH) formula. Since we
are only interested in these groups, we adopt:

Definition 3.17. A (matrix) Lie group is a closed subgroup of GL(n,K).

It turns out that closed subgroups of GL(n,K) are Lie groups in the sense of Section 1.2
(see Theorem 3.27 below). The Lie algebra of a Lie group G can then alternatively be defined
as the tangent space T1G at the identity 1 € G:

Lemma 3.18. Lie(G) consists of all tangent vectors X (0) = %X(tﬂt:O of smooth curves
X : (—€,¢) > G with X(0) =1 (for some e > 0).

Proof. One-parameter subgroups in GG are smooth curves through 1, so their infinitesimal
generators are tangent vectors of the desired form. Conversely, let X : (—e,e) — G be a
smooth curve with X (0) = 1. Fix ¢ € R and consider X (¢t/n)" € G. For n large, X (t/n) is
defined and near 1 (so that log is defined). Then

X (t/n)" = exp(nlog(X (t/n))) = exp(n log (1 + X(0) % + O(#)))

= exp(n(X(O) % + 0(#))) = exp (tX(0) + O(2)) ——exp (tX(0)).

Closedness of G implies exp (tX(0)) € G for all ¢, hence X (0) € Lie(G). O

Typical examples are (S)U(n,m), (5)O(n,m), GL(n,K), SL(n,K), Sp(n), etc. Indeed,
they can be defined as common zero sets of continuous functions f : GL(n,K) — K,
hence are closed. For instance, SL(n,K) = {A | det(A) — 1 = 0}. A counterexample is
GL(n,Q) C GL(n,R), which is not closed.

Define the commutator of X, Y € Mat(n,K) by

[X,Y] = XY - YX.
It satisfies:
(i) AX +pY, Z] = NX, Z] 4 plY, Z] for A\, u € K (bilinearity);
(i) [X,Y] = —[Y, X] (antisymmetry);
(iii) [[X,Y], Z] +[[Z,X], Y] +[[Y, Z], X] = 0 (Jacobi identity).

Definition 3.19. A real or complex vector space g equipped with a bilinear map (the Lie
bracket) [-,-] : g x g — g satisfying (i)—(iii) is called a (real or complex) Lie algebra. A
homomorphism of Lie algebras ¢ : g1 — g2 is linear and satisfies [p(X), p(Y)] = ¢([X,Y]).
Bijective homomorphisms are isomorphisms.

Thus Theorem 3.16 asserts that Lie(G) carries the structure of a real Lie algebra.

Example 3.20. Lie(GL(n,K)) = Mat(n,K) viewed as a real vector space, denoted gl(n, K).
A basis of gl(n,R) is given by the matrices Ej;, i,j = 1,...,n, with entries (Ej;)i = dirdji.
The Lie bracket reads

(Eij, Eri) = Ey 05 — Eji 6a1,

and dimgl(n,R) = n% As a real Lie algebra, gl(n,C) has basis {E;j,v/—1E;;};; and
dim gl(n, C) = 2n2.

Example 3.21. u(n) := Lie(U(n)), su(n) := Lie(SU(n)).



14 CHAPTER 3. LIE GROUPS AND LIE ALGEBRAS

Lemma 3.22.

u(n) ={X € Mat(n,C) | X* = -X}, su(n) = {X € Mat(n,C) | X* = —-X, tr X = 0}.

Proof. If X € u(n), then (exp(tX))*exp(tX) =1 for all ¢t € R. Since (exp(tX))* = exp(tX™),
differentiating at ¢ = 0 gives X + X* = 0. If X € su(n), additionally 1 = det(exp(tX)) =
exp(t tr X) for all ¢, hence tr X = 0. Conversely, X* = —X implies (exp(tX))* exp(tX) =
exp(—tX)exp(tX) = 1 and if tr X = 0 then det(exp(tX)) = 1. O
The real dimensions are dimg u(n) = n? and dimg su(n) = n? — 1.

Example 3.23. o(n) := Lie(O(n)), so(n):= Lie(SO(n)).

Lemma 3.24.
o(n) = so(n) = {X € Mat(n,R) | XT = —X}.

Proof. Analogous to Lemma 3.22. Note that X7 = —X forces zero diagonal, hence tr X = 0
automatically. Thus dimso(n) = 3(n* — n). O

Example 3.25. su(2) = {X € Mat(2,C) | X + X* =0, tr X = 0}. A basis is given by the
Pauli matrices:

. 0 9 . 0 1 . 1 0
tlzzglz E t2:za'2: 1 0/ t3:7,0'3: 0 —il’

with commutation relations
[tj, tr] = QZQM 22

where €123 = 1 and ¢, is totally antisymmetric.

3.4.1 The Campbell-Baker—Hausdorff Formula
We will prove Theorem 3.16 using CBH.

Theorem 3.26 (CBH). Let X,Y € Mat(n,K). Fort sufficiently small,
exp(X) exp(tY) = exp(£X + 1Y B [X Y]+ 0(t).

Proof. For small t, ||exp(tX)exp(tY) — 1| < 1. By Lemma 3.12, there is Z(t) = > 02 t"Z,
with exp(tX)exp(tY) = exp Z(t). Comparing coefficients:

t2
exp(tX) exp(tY) = 1+ H(X +Y) + 5 (X2 4+2XY +Y?) +-- -,

GXpZ(t):1+tZ1+(%Z12+Z2)t2+,
so Z1=X+Y and

Zy=3(X?+2XY +Y?) - (X +Y)* = i[X,Y]
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Remark. One can show (full CBH) that for small ¢,
exp(tX)exp(tY) = exp( Z thk),
k=1

where Zj, is a linear combination of k-fold commutators (i.e. expressions obtained from X,Y
by (k — 1) applications of [X, -] and [Y;]). For example,

Zs = H (X XY+ VY X)), Za=—4[X, [V, [X, Y]]

Thus the Lie algebra determines the group multiplication near the identity.

Proof of Theorem 8.16. (1) Lie(G) is a real vector space. If X € Lie(G), then AX € Lie(G)
for all A € R by definition. If X,Y € Lie(G), we show X +Y € Lie(G). As n — oo,

exp(%X) exp(%Y) = exp(%(X +Y)+ O(n—lz))
Hence
A, = {exp(%X) exp(%Yﬂn = exp(t(X +Y)+ O(%)) ——rexp (HX +Y)).

Since A,, € G and G is closed, exp (¢(X +Y)) € G.
(2) If X,Y € Lie(G), then [X,Y] € Lie(G). First, show exp([X,Y]) € G. For large n,

exp(£1X)exp(+lY) = exp( X +Y)+ 52X, Y]+ O(nl—s)),

hence

B, = [exp(%X) exp(%Y) exp(—%X) exp(—%Y)} !

= [exp(L(X +Y) + 55X Y] - L(X +Y) + L[X. Y]+ O(}))]"

= exp([X, Y]+ 0(2)) —— exp([X, Y]).

As B, € G for all n, closedness gives exp([X,Y]) € G. Replacing X by tX shows
exp (t{X,Y]) € G for all ¢, hence [X,Y] € Lie(G). O

Theorem 3.27. (Without proof) Let G C GL(n,K) be a matriz Lie group with Lie algebra g
and exponential map exp : g — G. There exist open neighborhoods 0 € U C g and1 €V C G
such that exp : U — G is a smooth embedding with exp(U) = V.

A smooth embedding is an injective smooth map whose differential is injective at every
point. For each g € G, the map ¢, : U — G, X — gexp(X), is a homeomorphism U — gV'.
The inverse maps w;l serve as charts, endowing G with a manifold structure.

Theorem 3.28. Let G C GL(n,K) be a Lie group with Lie algebra g C gl(n,K). The
subgroup generated by finite products

exp(X1) - - exp(Xy), Xq,...,Xreg, k>1,

is precisely the identity component of G.
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Proof. Such a product lies on the curve ¢ — exp(tX7) - - - exp(tX}), which passes through 1
at t = 0, hence is in the identity component. Conversely, let g be in the identity component,
and choose U,V as in Theorem 3.27. There is a continuous path ¢ : [0, 1] — G with ¢g(0) =1
and g(1) = g. For each t € [0,1], pick an open interval U; C [0, 1] around ¢ so small that
g(U) C g(t)V. Compactness yields a finite subcover U, U --- U Uy, D [0,1]. Refining if
needed, assume 0 = tg < t; < --- <t = 1 with t; € Uy,,,. Then g = g(1) € g(tp—1)V, ie.
g = g(tg—1) exp(X}) for some Xy, € g. Similarly, g(¢;) = g(ti—1) exp(X;) for i =1,..., k, with
g(to) = 1. Hence g = exp(X}) - - - exp(Xy). O

Example 3.29. G = U(n). Every unitary matrix is unitarily diagonalizable:
U = Adiag(e™,...,e"") A7 AcU(n).

Thus U = exp(X) with X = Adiag(ips,...,ip,) A7, and t +— exp(tX) is a one-parameter
subgroup in U(n). Therefore exp : u(n) — U(n) is surjective.

Remark. We have discussed matrix Lie groups, but the results hold for general Lie groups
as well. The Lie algebra g of a Lie group G is, as a vector space, the tangent space TG
at the identity. To define the Lie algebra structure, identify 771G with the Lie algebra of
left-invariant vector fields, as follows.

To a vector field X on G associate its directional derivative operator X : C*°(G) — C*°(G)
(denoted by the same letter). If X (g) = 4(0) € T, G is the tangent vector of a curve () with
~(0) = g, then X f(g) = %f(V(tMt:o' The Lie bracket of vector fields X1, X is defined via
their derivations by [Xi, Xo]f = X1 Xof — X2 X1 f, and one verifies that [X;, Xs] is again a
vector field.

For g € G, let Ly : G — G be left multiplication, L,(h) = gh. A vector field X is left-
invariant if (Lg)«X (h) = X (gh) for all g,h € G (here (Ly)s : TG — Ty,G is the differential).
Left-invariant vector fields form a Lie algebra g; the map g — Th'G, X — X (1) is a linear
isomorphism with inverse a — (g +— (Lg).a).

Given a vector field X on a manifold M, its flow ;X : M — M is defined by %gpix (z) =
X (¢ (x)) with ¢ (z) = =, when defined. The exponential map exp : g — G is given by
exp(tX) = i (1); it is a diffeomorphism from a neighborhood of 0 onto a neighborhood of
1 € G and satisfies CBH.

Every compact Lie group is isomorphic to a matrix Lie group (the isomorphism is both a
diffeomorphism and a group homomorphism). In general, any Lie group is at least locally
isomorphic to a matrix Lie group: there exists a smooth surjective group homomorphism
G — Gy C GL(n,K) which is a local diffeomorphism.



