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Lemma 3.12. The map
exp : Mat(n,K) æ GL(n,K)

is invertible in a neighborhood of 0. That is, there exists a neighborhood U of 0 such that
exp : U æ exp(U) is bijective, and the inverse is given by an absolutely convergent power
series.

Proof. The series

log X =
Œÿ

n=1
(≠1)n+1 (X ≠ 1)n

n

converges absolutely for ÎX ≠ 1Î < 1, since
Œÿ

n=1

...(≠1)n+1 (X ≠ 1)n

n

... Æ
Œÿ

n=1

ÎX ≠ 1În

n
= ≠ log

!
1 ≠ ÎX ≠ 1Î

"
< Œ.

Then exp(log X) = X for ÎX ≠ 1Î < 1, and log(exp X) = X whenever Î exp X ≠ 1Î < 1.

3.3 One-Parameter Groups
Definition 3.13. A map X : R æ GL(n,K), t ‘æ X(t), is called a one-parameter group if it
is continuously di�erentiable, X(0) = 1, and

X(s + t) = X(s)X(t) for all s, t œ R.

The image of such a map is a subgroup, with X(t)≠1 = X(≠t).

Theorem 3.14. (i) For any X œ Mat(n,K), the map t ‘æ exp(tX) is a one-parameter
group.

(ii) Every one-parameter group is of this form.

Definition 3.15. For the one-parameter group t ‘æ exp(tX), the matrix X is called its
infinitesimal generator.

Proof of Theorem 3.14. (i) Since tXsX = sXtX, Lemma 3.7(i) gives exp(tX) exp(sX) =
exp((t + s)X). Di�erentiability and d

dt exp(tX) = exp(tX)X are standard.
(ii) If X(t) is a one-parameter group, then

d

dt
X(t) = lim

hæ0
X(t + h) ≠ X(t)

h
= lim

hæ0
X(t)X(h) ≠ X(t)

h
= X(t) lim

hæ0
X(h) ≠ 1

h
= X(t)Ẋ(0),

with X(0) = 1. Uniqueness for first-order linear matrix ODEs yields X(t) = exp
!
tẊ(0)

"
.

3.4 Matrix Lie Groups
Let G µ GL(n,K) be a closed subgroup of GL(n,K) (closed means: if (gj) is a sequence in
G converging in GL(n,K), then limjæŒ gj œ G). Define

Lie(G) = { X œ Mat(n,K) | exp(tX) œ G for all t œ R }.

The space Lie(G) is called the Lie algebra of the Lie group G.

Theorem 3.16. Let G be a closed subgroup of GL(n,K), where K = R or C. Then Lie(G)
is a real vector space, and for all X, Y œ Lie(G) we have [X, Y ] = XY ≠ Y X œ Lie(G).
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We will prove this later using the Campbell–Baker–Hausdor� (CBH) formula. Since we
are only interested in these groups, we adopt:

Definition 3.17. A (matrix) Lie group is a closed subgroup of GL(n,K).

It turns out that closed subgroups of GL(n,K) are Lie groups in the sense of Section 1.2
(see Theorem 3.27 below). The Lie algebra of a Lie group G can then alternatively be defined
as the tangent space T1G at the identity 1 œ G:

Lemma 3.18. Lie(G) consists of all tangent vectors Ẋ(0) = d
dtX(t)

--
t=0 of smooth curves

X : (≠‘, ‘) æ G with X(0) = 1 (for some ‘ > 0).

Proof. One-parameter subgroups in G are smooth curves through 1, so their infinitesimal
generators are tangent vectors of the desired form. Conversely, let X : (≠‘, ‘) æ G be a
smooth curve with X(0) = 1. Fix t œ R and consider X(t/n)n œ G. For n large, X(t/n) is
defined and near 1 (so that log is defined). Then

X(t/n)n = exp
!
n log(X(t/n))

"
= exp

1
n log

1
1 + Ẋ(0) t

n
+ O

! 1
n2

"22

= exp
1
n

1
Ẋ(0) t

n
+ O

! 1
n2

"22
= exp

!
tẊ(0) + O( 1

n)
"

≠≠≠æ
næŒ

exp
!
tẊ(0)

"
.

Closedness of G implies exp
!
tẊ(0)

"
œ G for all t, hence Ẋ(0) œ Lie(G).

Typical examples are (S)U(n, m), (S)O(n, m), GL(n,K), SL(n,K), Sp(n), etc. Indeed,
they can be defined as common zero sets of continuous functions f : GL(n,K) æ K,
hence are closed. For instance, SL(n,K) = {A | det(A) ≠ 1 = 0}. A counterexample is
GL(n,Q) µ GL(n,R), which is not closed.

Define the commutator of X, Y œ Mat(n,K) by

[X, Y ] = XY ≠ Y X.

It satisfies:
(i) [⁄X + µY, Z] = ⁄[X, Z] + µ[Y, Z] for ⁄, µ œ K (bilinearity);

(ii) [X, Y ] = ≠[Y, X] (antisymmetry);

(iii) [[X, Y ], Z] + [[Z, X], Y ] + [[Y, Z], X] = 0 (Jacobi identity).

Definition 3.19. A real or complex vector space g equipped with a bilinear map (the Lie
bracket) [·, ·] : g ◊ g æ g satisfying (i)–(iii) is called a (real or complex) Lie algebra. A
homomorphism of Lie algebras Ï : g1 æ g2 is linear and satisfies [Ï(X), Ï(Y )] = Ï([X, Y ]).
Bijective homomorphisms are isomorphisms.

Thus Theorem 3.16 asserts that Lie(G) carries the structure of a real Lie algebra.

Example 3.20. Lie(GL(n,K)) = Mat(n,K) viewed as a real vector space, denoted gl(n,K).
A basis of gl(n,R) is given by the matrices Eij , i, j = 1, . . . , n, with entries (Eij)kl = ”ik”jl.
The Lie bracket reads

[Eij , Ekl] = Eil ”jk ≠ Ejk ”il,

and dim gl(n,R) = n2. As a real Lie algebra, gl(n,C) has basis {Eij ,
Ô

≠1 Eij}i,j and
dim gl(n,C) = 2n2.

Example 3.21. u(n) := Lie(U(n)), su(n) := Lie(SU(n)).
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Lemma 3.22.

u(n) = {X œ Mat(n,C) | Xú = ≠X}, su(n) = {X œ Mat(n,C) | Xú = ≠X, tr X = 0}.

Proof. If X œ u(n), then (exp(tX))ú exp(tX) = 1 for all t œ R. Since (exp(tX))ú = exp(tXú),
di�erentiating at t = 0 gives X + Xú = 0. If X œ su(n), additionally 1 = det(exp(tX)) =
exp(t tr X) for all t, hence tr X = 0. Conversely, Xú = ≠X implies (exp(tX))ú exp(tX) =
exp(≠tX) exp(tX) = 1 and if tr X = 0 then det(exp(tX)) = 1.

The real dimensions are dimR u(n) = n2 and dimR su(n) = n2 ≠ 1.

Example 3.23. o(n) := Lie(O(n)), so(n) := Lie(SO(n)).

Lemma 3.24.
o(n) = so(n) = {X œ Mat(n,R) | XT = ≠X}.

Proof. Analogous to Lemma 3.22. Note that XT = ≠X forces zero diagonal, hence tr X = 0
automatically. Thus dim so(n) = 1

2(n2 ≠ n).

Example 3.25. su(2) = {X œ Mat(2,C) | X + Xú = 0, tr X = 0}. A basis is given by the
Pauli matrices:

t1 = i‡1 =
A

0 i
i 0

B

, t2 = i‡2 =
A

0 1
≠1 0

B

, t3 = i‡3 =
A

i 0
0 ≠i

B

,

with commutation relations

[tj , tk] = ≠2
3ÿ

l=1
‘jkl tl,

where ‘123 = 1 and ‘ijk is totally antisymmetric.

3.4.1 The Campbell–Baker–Hausdor� Formula

We will prove Theorem 3.16 using CBH.

Theorem 3.26 (CBH). Let X, Y œ Mat(n,K). For t su�ciently small,

exp(tX) exp(tY ) = exp
1
tX + tY + t2

2 [X, Y ] + O(t3)
2
.

Proof. For small t, Î exp(tX) exp(tY ) ≠ 1Î < 1. By Lemma 3.12, there is Z(t) =
qŒ

n=1 tnZn

with exp(tX) exp(tY ) = exp Z(t). Comparing coe�cients:

exp(tX) exp(tY ) = 1 + t(X + Y ) + t2

2
!
X2 + 2XY + Y 2"

+ · · · ,

exp Z(t) = 1 + tZ1 +
1

1
2Z2

1 + Z2
2
t2 + · · · ,

so Z1 = X + Y and

Z2 = 1
2
!
X2 + 2XY + Y 2"

≠ 1
2(X + Y )2 = 1

2 [X, Y ].
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Remark. One can show (full CBH) that for small t,

exp(tX) exp(tY ) = exp
1 Œÿ

k=1
tkZk

2
,

where Zk is a linear combination of k-fold commutators (i.e. expressions obtained from X, Y
by (k ≠ 1) applications of [X, ·] and [Y, ·]). For example,

Z3 = 1
12

!
[X, [X, Y ]] + [Y, [Y, X]]

"
, Z4 = ≠ 1

24 [X, [Y, [X, Y ]]].

Thus the Lie algebra determines the group multiplication near the identity.

Proof of Theorem 3.16. (1) Lie(G) is a real vector space. If X œ Lie(G), then ⁄X œ Lie(G)
for all ⁄ œ R by definition. If X, Y œ Lie(G), we show X + Y œ Lie(G). As n æ Œ,

exp
1

t
nX

2
exp

1
t
nY

2
= exp

1
t
n(X + Y ) + O

! 1
n2

"2
.

Hence

An =
Ë

exp
1

t
nX

2
exp

1
t
nY

2Èn
= exp

1
t(X + Y ) + O

! 1
n

"2
≠≠≠æ
næŒ

exp
!
t(X + Y )

"
.

Since An œ G and G is closed, exp
!
t(X + Y )

"
œ G.

(2) If X, Y œ Lie(G), then [X, Y ] œ Lie(G). First, show exp([X, Y ]) œ G. For large n,

exp(± 1
nX) exp(± 1

nY ) = exp
1

± 1
n(X + Y ) + 1

2n2 [X, Y ] + O
! 1

n3
"2

,

hence

Bn =
Ë

exp( 1
nX) exp( 1

nY ) exp(≠ 1
nX) exp(≠ 1

nY )
Èn2

=
Ë

exp
1

1
n(X + Y ) + 1

2n2 [X, Y ] ≠ 1
n(X + Y ) + 1

2n2 [X, Y ] + O
! 1

n3
"2Èn2

= exp
1
[X, Y ] + O

! 1
n

"2
≠≠≠æ
næŒ

exp([X, Y ]).

As Bn œ G for all n, closedness gives exp([X, Y ]) œ G. Replacing X by tX shows
exp

!
t[X, Y ]

"
œ G for all t, hence [X, Y ] œ Lie(G).

Theorem 3.27. (Without proof) Let G µ GL(n,K) be a matrix Lie group with Lie algebra g
and exponential map exp : g æ G. There exist open neighborhoods 0 œ U µ g and 1 œ V µ G
such that exp : U æ G is a smooth embedding with exp(U) = V .

A smooth embedding is an injective smooth map whose di�erential is injective at every
point. For each g œ G, the map Ïg : U æ G, X ‘æ g exp(X), is a homeomorphism U æ gV .
The inverse maps Ï≠1

g serve as charts, endowing G with a manifold structure.

Theorem 3.28. Let G µ GL(n,K) be a Lie group with Lie algebra g µ gl(n,K). The
subgroup generated by finite products

exp(X1) · · · exp(Xk), X1, . . . , Xk œ g, k Ø 1,

is precisely the identity component of G.
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Proof. Such a product lies on the curve t ‘æ exp(tX1) · · · exp(tXk), which passes through 1
at t = 0, hence is in the identity component. Conversely, let g be in the identity component,
and choose U, V as in Theorem 3.27. There is a continuous path g : [0, 1] æ G with g(0) = 1
and g(1) = g. For each t œ [0, 1], pick an open interval Ut µ [0, 1] around t so small that
g(Ut) µ g(t)V . Compactness yields a finite subcover Ut0 fi · · · fi Utk ∏ [0, 1]. Refining if
needed, assume 0 = t0 < t1 < · · · < tk = 1 with ti œ Uti+1 . Then g = g(1) œ g(tk≠1)V , i.e.
g = g(tk≠1) exp(Xk) for some Xk œ g. Similarly, g(ti) = g(ti≠1) exp(Xi) for i = 1, . . . , k, with
g(t0) = 1. Hence g = exp(X1) · · · exp(Xk).

Example 3.29. G = U(n). Every unitary matrix is unitarily diagonalizable:

U = A diag(eiÏ1 , . . . , eiÏn) A≠1, A œ U(n).

Thus U = exp(X) with X = A diag(iÏ1, . . . , iÏn) A≠1, and t ‘æ exp(tX) is a one-parameter
subgroup in U(n). Therefore exp : u(n) æ U(n) is surjective.

Remark. We have discussed matrix Lie groups, but the results hold for general Lie groups
as well. The Lie algebra g of a Lie group G is, as a vector space, the tangent space T1G
at the identity. To define the Lie algebra structure, identify T1G with the Lie algebra of
left-invariant vector fields, as follows.

To a vector field X on G associate its directional derivative operator X : CŒ(G) æ CŒ(G)
(denoted by the same letter). If X(g) = “̇(0) œ TgG is the tangent vector of a curve “(t) with
“(0) = g, then Xf(g) = d

dtf(“(t))
--
t=0. The Lie bracket of vector fields X1, X2 is defined via

their derivations by [X1, X2]f = X1X2f ≠ X2X1f , and one verifies that [X1, X2] is again a
vector field.

For g œ G, let Lg : G æ G be left multiplication, Lg(h) = gh. A vector field X is left-
invariant if (Lg)úX(h) = X(gh) for all g, h œ G (here (Lg)ú : ThG æ TghG is the di�erential).
Left-invariant vector fields form a Lie algebra g; the map g æ T1G, X ‘æ X(1) is a linear
isomorphism with inverse a ‘æ

!
g ‘æ (Lg)úa

"
.

Given a vector field X on a manifold M , its flow ÏX
t : M æ M is defined by d

dtÏ
X
t (x) =

X(ÏX
t (x)) with ÏX

0 (x) = x, when defined. The exponential map exp : g æ G is given by
exp(tX) = ÏX

t (1); it is a di�eomorphism from a neighborhood of 0 onto a neighborhood of
1 œ G and satisfies CBH.

Every compact Lie group is isomorphic to a matrix Lie group (the isomorphism is both a
di�eomorphism and a group homomorphism). In general, any Lie group is at least locally
isomorphic to a matrix Lie group: there exists a smooth surjective group homomorphism
G æ G0 µ GL(n,K) which is a local di�eomorphism.


