Chapter 2

Representations of (Groups

When a group acts on a vector space by linear maps, one speaks of a representation. The
fundamental properties of representations are discussed in this chapter.

2.1 Definitions and Examples

Definition 2.1. A (real or complex) representation of a group G on an R- (resp. C-) vector
space V # 0 is a homomorphism

p:G— GL(V).
The vector space V is called the representation space of p.

Thus, a representation p assigns to each element g € G an invertible linear map p(g) :
V' — V such that, for all g, h € G,

p(gh) = p(g)p(h).

A representation p on V' is denoted (p, V). When there is no ambiguity, one often simply
refers to “the representation p” or “the representation V”. The dimension of (p, V') is the
dimension of the representation space V.

Example 2.2 (Trivial Representation). V = C and p(g) =1 for all g € G.

Example 2.3. Let G = S,,, V = C" with basis ey,...,e,, and define p(g)e; = e
g € Sh.

g(z) fOI'

Example 2.4. Let G = O(3), V = C°°(R3), and define (p(g)f)(z) = f(g ' x).

Example 2.5. Let G = Z,, V = C, and p(m) = e%m, where GL(C) is identified with
C\ {0}.

Lemma 2.6. Let p: G — GL(V) be a representation. Then p(1) = 1y, the identity map
V=V, and p(g)~" = plg™").

Proof. We have p(g) = p(g1) = p(g)p(1). Since p(g) is invertible, p(1) must be the identity.
Moreover,

1y = p(1) = p(99~") = p(9)p(g™ ),
hence p(g)~' = p(g~1). -
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Definition 2.7. A homomorphism of representations (p1,V1) — (p2,V2) is a linear map
o : Vi — V5 such that

ep1(g9) = p2(g9)p VgeG.

Two representations (p1, V1) and (pe, Vo) are equivalent (or isomorphic) if there exists a bijec-
tive homomorphism of representations ¢ : V; — V5. The vector space of all homomorphisms
(p1, V1) = (p2, Vo) is denoted Homg(V1, V52).

Definition 2.8. An invariant subspace of a representation (p, V') is a subspace W C V such
that p(g)W C W for all g € G. A representation (p,V) is called irreducible if it has no
invariant subspaces other than V' and {0}; otherwise it is reducible. If W # {0} is invariant,
then the restriction p|lyw : G — GL(W) defines a subrepresentation.

Definition 2.9. A representation (p,V) is completely reducible if there exist invariant
subspaces Vi, ..., V, such that
V=Vig---aV,

and each (p|y;,V;) is irreducible. Such a decomposition is called a decomposition into
irreducible representations.

Remark. Not every reducible representation is completely reducible. For example, the
representation of Z on C? given by
nr— 1 n
0 1

is reducible (with invariant subspace (C((l])) but not completely reducible, since the matrices
are not diagonalizable for n # 0.

Lemma 2.10. Let (p, V') be a finite-dimensional representation such that for every invariant
subspace W C V there exists an invariant subspace W' with V.= W @ W'. Then (p,V) is
completely reducible.

Proof. Proceed by induction on dim V. For dim V' = 1 there is nothing to prove. Suppose
dimV = d + 1. Either V is irreducible, or there exists an invariant subspace W with
1 <dimW < d. Let W’ be invariant with V.= W @ W’. Then 1 < dim W’ < d. By the
induction hypothesis, W and W’ are completely reducible, hence so is V. O
2.2 Unitary Representations

Definition 2.11. A representation p on an inner-product space V' is unitary if p(g) is unitary

for all g € G, i.e.

Theorem 2.12. Unitary representations are completely reducible.

Proof. Let W be an invariant subspace of a unitary representation (p, V') and let
Wt ={veV|(v,w)=0forallwe W}.

Then W is invariant because for v € W+ and ¢g € G,
(p(g)v,w) = (v, pg)*w) = (v, p(g)~'w) =0

for all w € W. Hence p(g)v € W. By the previous lemma, (p, V') is completely reducible. [
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Theorem 2.13. Let (p,V) be a representation of a finite group G. Then there exists an
inner product (-,-) on V such that (p, V') is unitary.

Proof. Let (-,-)o be any inner product on V' and define

(v,w) = > (p(g)v, p(g)w)o.

geG

This defines an inner product since it is sesquilinear, Hermitian, and positive definite.
Moreover,

(p(g)v, plg)w) = > (p(hg)v, p(hg)w)o = > (p(h)v, p(h)w)o = (v, w).

heG heG
Hence p(g) is unitary for all g € G. O

Corollary 2.14. FEvery representation of a finite group is completely reducible.
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Chapter 3

Lie Groups and Lie Algebras

3.1 Lie groups

A Lie group is a group that is at the same time a C'°°-manifold such that multiplication and
inversion are C*°-maps. Examples of Lie groups are GL(n,R), GL(n,C), O(p,q), U(p, q),
SO(p,q), SU(p,q), SL(n,R), SL(n,C). We view G C GL(n,R) or GL(n,C) as a subset
of K" (where K = R or C) by writing the matrix entries of a matrix A € G as a point
(A11,Ar2, ..., App) in K", This identification defines the structure of a metric space on G.
The distance d(A, B) between two matrices in G is

d(A, B)2 = zn: ‘AU - Bij|2 =tr (A - B)*(A — B)

ij=1

Theorem 3.1. Let G be a subgroup of GL(n,K), K =R or C. Then multiplication GxG — G,
(A, B) — AB and inversion G — G, A A~ are continuous maps.

Proof. The matrix entries of AB are polynomials in the matrix entries of A and B and thus
continuous. The matrix entries of A~! are, by Cramer’s rule, rational functions of the matrix
entries of A. The denominator is the polynomial det A, which never vanishes in GL(n,K).
Hence A — A~! is continuous. O

Continuity properties are important in the theory of Lie groups. Let G C GL(n,K),
K =R or C. A path in G is a continuous map w : [0,1] — G. Two matrices A, Ay in G
are said to be path-connected (A1 ~ Asg) if there exists a path w in G with w(0) = A; and
w(l) = Ag. Every A € G is connected to itself (with the path w(t) = A, ¢t € [0,1]). Moreover,
from Ay ~ Ay via a path w, it follows that Ay ~ A; via the path w(t) = w(l —t). If 4; is
connected to As by a path w; and As to A3 by a path ws, then the concatenated path

w1 (2t),
wo (2t — 1),

IN
—_ N

)

(w1 ES wg)(t) = {

= O
IN

t
<t<

connects A1 to A3. Thus ~ is an equivalence relation.

Definition 3.2. Let K =R or C. The (path) connected components of G C GL(n,K) are
the equivalence classes with respect to ~. If G consists of a single connected component,
then G is said to be (path) connected.

Theorem 3.3. Let G C GL(n,K) be a subgroup, and let G° be the connected component
containing 1. Then G° is a normal subgroup of G and G/G° = {connected components of G}.

9
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Proof. Exercise. O
As an example we examine the connectedness properties of unitary and orthogonal groups.
Theorem 3.4. 1. SO(n), SU(n), and U(n) are connected.

2. O(n) consists of two connected components: {A € O(n) | det A =1} and {A € O(n) |
det A = —1}.

Proof. Unitary case: the normal form theorem for unitary matrices from linear algebra states
that for every matrix A € U(n) there exists a matrix U € U(n) with A = UDU~!, where
D = diag(e®1,...,e""), p; € R. The map w: [0,1] — U(n), t = Udiag(e™1,. .. eten)U~!
is continuous, since multiplication by U and U~! is continuous (by the previous theorem)
and t — €% is continuous. The path w connects 1 to the arbitrary matrix A € U(n). If A
has determinant 1, then det D =1 and >, ¢; € 2nZ; without loss of generality >, p; = 0. It
follows that det(w(t)) = 1, and w is a path in SU(n). Hence U(n) and SU(n) are connected.
SO(n) and O(n), exercise.
O]

3.2 Exponential Map

Let Mat(n,K), with K =R or C, be the vector space of all n x n matrices with entries in K.
Identifying Mat(n,K) with K™ via X = (xij) = (11,212, . .., Tnn), we endow it with the
norm

X1 = (3 fel?) " = (nxex) 2,

i,j=1

Lemma 3.5. For all X,Y € Mat(n,K),
[ XY < | XY
Proof.
XY= |3 Xavig| < 3 (SI1Xal?) (X Wal?) = IXI21V I,
ij=1 k=1 Q=1 1=1 m=1
where we used the Cauchy-Schwarz inequality with u, = X, and vy = Yy; for fixed 4,5. O
Lemma 3.6. The series -
L ok
exp(X) = Z EX
k=0
converges absolutely for every X € Mat(n, K).

Proof. By Lemma 3.5, inductively || X*|| < ||X||*. Hence

A E

k o]
A g x| <l < oo
k=0

O]

It follows that the matrix entries of exp(X) are absolutely convergent power series in the
entries z;; of X, hence analytic in the x;;.

Lemma 3.7. Let X,Y € Mat(n,K), K=R or C. Then:
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(i) If XY =Y X, then exp(X)exp(Y) =exp(X +Y).
(ii) exp(X) is invertible and exp(X) ™! = exp(—X).
(iii) For A € GL(n,K), one has A exp(X) A7l = exp(AXA~Y).
(iv) det(exp(X)) = exp(tr X).
(v) exp(X*) = (exp X)* and exp(XT) = (exp X)T.
Proof. (i) Using absolute convergence,

exp(X)exp(Y il' Z k'Yk Z Z( )ijn - ZM:eXp(X—i—Y),

|
7—0 n:

where commutativity ensures (X +Y)" = 3~ (?)XjY”_j.
(ii) Apply (i) with ¥ = —X.
(iii) Conjugation moves inside the series:

XTI KAXTATE 2 (AX AT
— 4l ; 4! ; 4!
7=0 7=0 7=0
(iv) Put X = AY A~! with Y upper triangular (Schur decomposition over C). If y1,. .., yn
are the diagonal entries of Y, then Y* is upper triangular with diagonal entries y¥, ..., y~.
Hence exp(Y) is upper triangular with diagonal e¥!, ... e¥"  so

det(expY) = e¥1 ... e¥n = U1 Fun — 1Y

Use (iii) and invariance of determinant and trace under conjugation.
(v) (XF)* = (X*)* and likewise for T'; continuity of X + X* (resp. T') yields the claim. [

Definition 3.8. The map exp : Mat(n,K) — GL(n,K), X — exp(X), is called the exponen-

tial map.
eOa_1+0a_1a
lo o)~ 0o/ lo 1)

More generally, if N is nilpotent then

Example 3.9.

N2 Nk
exp(N)—l—l-N—i-?—F +?

is a polynomial in N (for k large enough so that N¥*! = 0).

Example 3.10. Let X = (w 0 ) Since X? = ¢?(—1), one finds

0 -1 cos —sin
exp(X) =cospl+siny (1 0 > = (sinz cosgf) € SO(2).

Example 3.11. Let X = iZ;’:l n;o; with |n| = 1 (Pauli matrices). Then X? = —1 and

exp(¥X) = cos?¥ 1 + sin ) X.
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Lemma 3.12. The map
exp : Mat(n,K) - GL(n,K)

is tnvertible in a neighborhood of 0. That is, there exists a neighborhood U of 0 such that
exp : U — exp(U) is bijective, and the inverse is given by an absolutely convergent power
series.

Proof. The series

n
log X = Z n+1an)
converges absolutely for || X — 1| < 1, since
X-1
ZH "+1 H < Z | ” = —log (1 — || X —1])) < .

Then exp(log X) = X for || X — 1|| < 1, and log(exp X) = X whenever |[exp X —1]| < 1. O

3.3 One-Parameter Groups

Definition 3.13. A map X : R — GL(n,K), t — X (¢), is called a one-parameter group if it
is continuously differentiable, X (0) = 1, and

X(s+1t)=X(s)X(t) foralls,teR.
The image of such a map is a subgroup, with X (¢)~! = X (—t).

Theorem 3.14. (i) For any X € Mat(n,K), the map t — exp(tX) is a one-parameter
group.

(i) Every one-parameter group is of this form.

Definition 3.15. For the one-parameter group ¢ — exp(tX), the matrix X is called its
infinitesimal generator.

Proof of Theorem 3.14. (i) Since tXsX = sXtX, Lemma 3.7(i) gives exp(tX)exp(sX) =
exp((t 4+ s)X). Differentiability and % exp(tX) = exp(tX)X are standard.
(ii) If X (¢) is a one-parameter group, then

J i XEHD) =X XOXM) = XW) _

dt h—0 h h—0 h h—0

XMW =1 _ i x(0),

with X (0) = 1. Uniqueness for first-order linear matrix ODEs yields X (t) = exp (tX(0)). O

3.4 Matrix Lie Groups

Let G C GL(n,K) be a closed subgroup of GL(n,K) (closed means: if (g;) is a sequence in
G converging in GL(n,K), then lim; . g; € G). Define

Lie(G) = { X € Mat(n,K) | exp(tX) € G for all t € R }.
The space Lie(G) is called the Lie algebra of the Lie group G.

Theorem 3.16. Let G be a closed subgroup of GL(n,K), where K =R or C. Then Lie(G)
is a real vector space, and for all X,Y € Lie(G) we have [X,Y] = XY — Y X € Lie(G).
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We will prove this later using the Campbell-Baker—Hausdorff (CBH) formula. Since we
are only interested in these groups, we adopt:

Definition 3.17. A (matrix) Lie group is a closed subgroup of GL(n,K).

It turns out that closed subgroups of GL(n,K) are Lie groups in the sense of Section 1.2
(see Theorem 3.28 below). The Lie algebra of a Lie group G can then alternatively be defined
as the tangent space T1G at the identity 1 € G:

Lemma 3.18. Lie(G) consists of all tangent vectors X (0) = %X(tﬂt:o of smooth curves
X :(—€,¢6) > G with X(0) =1 (for some e >0).

Proof. One-parameter subgroups in G are smooth curves through 1, so their infinitesimal
generators are tangent vectors of the desired form. Conversely, let X : (—¢,¢) — G be a
smooth curve with X (0) = 1. Fix ¢ € R and consider X (¢t/n)" € G. For n large, X (t/n) is
defined and near 1 (so that log is defined). Then

X (t/n)" = exp(nlog(X(t/n))) = exp(nlog (1 + X(0) % + O(#)))

= exp(n(X(O) % + O(#))) = exp (tX(0) + O(1)) ——rexp (tX(0)).

Closedness of G' implies exp (tX(0)) € G for all ¢, hence X (0) € Lie(G). O

Typical examples are (S)U(n,m), (S)O(n,m), GL(n,K), SL(n,K), Sp(n), etc. Indeed,
they can be defined as common zero sets of continuous functions f : GL(n,K) — K,
hence are closed. For instance, SL(n,K) = {A | det(A) — 1 = 0}. A counterexample is
GL(n,Q) C GL(n,R), which is not closed.

Define the commutator of X,Y € Mat(n,K) by

[X,Y] = XY — YX.
It satisfies:
(i) AX +pY, Z] = XX, Z] + plY, Z] for A\, p € K (bilinearity);
(i) [X,Y] = —[Y, X] (antisymmetry);
(iii) [[X,Y],Z]+[[Z, X], Y]+ []Y, Z], X] = 0 (Jacobi identity).

Definition 3.19. A real or complex vector space g equipped with a bilinear map (the Lie
bracket) [-,-] : g x g — g satisfying (i)—(iii) is called a (real or complex) Lie algebra. A
homomorphism of Lie algebras ¢ : g1 — g2 is linear and satisfies [p(X), o(Y)] = o([X,Y]).
Bijective homomorphisms are isomorphisms.

Thus Theorem 3.16 asserts that Lie(G) carries the structure of a real Lie algebra.

Example 3.20. Lie(GL(n,K)) = Mat(n, K) viewed as a real vector space, denoted gl(n, K).
A basis of gl(n,R) is given by the matrices E;;, i,j = 1,...,n, with entries (Fij)i = dirdji.
The Lie bracket reads

[Eij, Ex] = Eiy 65k — Eji, 041,

and dimgl(n,R) = n%. As a real Lie algebra, gl(n,C) has basis {FE;;,v/—1E;;};; and
dim gl(n, C) = 2n>.

Example 3.21. u(n) := Lie(U(n)), su(n):= Lie(SU(n)).



