
Chapter 2

Representations of Groups

When a group acts on a vector space by linear maps, one speaks of a representation. The
fundamental properties of representations are discussed in this chapter.

2.1 Definitions and Examples

Definition 2.1. A (real or complex) representation of a group G on an R- (resp. C-) vector
space V ”= 0 is a homomorphism

fl : G æ GL(V ).

The vector space V is called the representation space of fl.

Thus, a representation fl assigns to each element g œ G an invertible linear map fl(g) :
V æ V such that, for all g, h œ G,

fl(gh) = fl(g)fl(h).

A representation fl on V is denoted (fl, V ). When there is no ambiguity, one often simply
refers to “the representation fl” or “the representation V ”. The dimension of (fl, V ) is the
dimension of the representation space V .

Example 2.2 (Trivial Representation). V = C and fl(g) = 1 for all g œ G.

Example 2.3. Let G = Sn, V = Cn with basis e1, . . . , en, and define fl(g)ei = eg(i) for
g œ Sn.

Example 2.4. Let G = O(3), V = CŒ(R3), and define (fl(g)f)(x) = f(g≠1x).

Example 2.5. Let G = Zn, V = C, and fl(m) = e
2fii
n m, where GL(C) is identified with

C \ {0}.

Lemma 2.6. Let fl : G æ GL(V ) be a representation. Then fl(1) = 1V , the identity map
V æ V , and fl(g)≠1 = fl(g≠1).

Proof. We have fl(g) = fl(g1) = fl(g)fl(1). Since fl(g) is invertible, fl(1) must be the identity.
Moreover,

1V = fl(1) = fl(gg≠1) = fl(g)fl(g≠1),

hence fl(g)≠1 = fl(g≠1).
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Definition 2.7. A homomorphism of representations (fl1, V1) æ (fl2, V2) is a linear map
Ï : V1 æ V2 such that

Ïfl1(g) = fl2(g)Ï ’ g œ G.

Two representations (fl1, V1) and (fl2, V2) are equivalent (or isomorphic) if there exists a bijec-
tive homomorphism of representations Ï : V1 æ V2. The vector space of all homomorphisms
(fl1, V1) æ (fl2, V2) is denoted HomG(V1, V2).

Definition 2.8. An invariant subspace of a representation (fl, V ) is a subspace W µ V such
that fl(g)W µ W for all g œ G. A representation (fl, V ) is called irreducible if it has no
invariant subspaces other than V and {0}; otherwise it is reducible. If W ”= {0} is invariant,
then the restriction fl|W : G æ GL(W ) defines a subrepresentation.

Definition 2.9. A representation (fl, V ) is completely reducible if there exist invariant
subspaces V1, . . . , Vn such that

V = V1 ü · · · ü Vn

and each (fl|Vi , Vi) is irreducible. Such a decomposition is called a decomposition into
irreducible representations.

Remark. Not every reducible representation is completely reducible. For example, the
representation of Z on C2 given by

n ‘æ
A

1 n
0 1

B

is reducible (with invariant subspace C
!1

0
"
) but not completely reducible, since the matrices

are not diagonalizable for n ”= 0.

Lemma 2.10. Let (fl, V ) be a finite-dimensional representation such that for every invariant
subspace W µ V there exists an invariant subspace W Õ with V = W ü W Õ. Then (fl, V ) is
completely reducible.

Proof. Proceed by induction on dim V . For dim V = 1 there is nothing to prove. Suppose
dim V = d + 1. Either V is irreducible, or there exists an invariant subspace W with
1 Æ dim W Æ d. Let W Õ be invariant with V = W ü W Õ. Then 1 Æ dim W Õ Æ d. By the
induction hypothesis, W and W Õ are completely reducible, hence so is V .

2.2 Unitary Representations
Definition 2.11. A representation fl on an inner-product space V is unitary if fl(g) is unitary
for all g œ G, i.e.

fl(g)ú = fl(g)≠1.

Theorem 2.12. Unitary representations are completely reducible.

Proof. Let W be an invariant subspace of a unitary representation (fl, V ) and let

W ‹ = {v œ V | (v, w) = 0 for all w œ W}.

Then W ‹ is invariant because for v œ W ‹ and g œ G,

(fl(g)v, w) = (v, fl(g)úw) = (v, fl(g)≠1w) = 0

for all w œ W . Hence fl(g)v œ W ‹. By the previous lemma, (fl, V ) is completely reducible.



2.2. UNITARY REPRESENTATIONS 7

Theorem 2.13. Let (fl, V ) be a representation of a finite group G. Then there exists an
inner product (·, ·) on V such that (fl, V ) is unitary.

Proof. Let (·, ·)0 be any inner product on V and define

(v, w) =
ÿ

gœG

(fl(g)v, fl(g)w)0.

This defines an inner product since it is sesquilinear, Hermitian, and positive definite.
Moreover,

(fl(g)v, fl(g)w) =
ÿ

hœG

(fl(hg)v, fl(hg)w)0 =
ÿ

hœG

(fl(h)v, fl(h)w)0 = (v, w).

Hence fl(g) is unitary for all g œ G.

Corollary 2.14. Every representation of a finite group is completely reducible.
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Chapter 3

Lie Groups and Lie Algebras

3.1 Lie groups

A Lie group is a group that is at the same time a CŒ-manifold such that multiplication and
inversion are CŒ-maps. Examples of Lie groups are GL(n,R), GL(n,C), O(p, q), U(p, q),
SO(p, q), SU(p, q), SL(n,R), SL(n,C). We view G µ GL(n,R) or GL(n,C) as a subset
of Kn2 (where K = R or C) by writing the matrix entries of a matrix A œ G as a point
(A11, A12, . . . , Ann) in Kn2 . This identification defines the structure of a metric space on G.
The distance d(A, B) between two matrices in G is

d(A, B)2 =
nÿ

i,j=1
|Aij ≠ Bij |2 = tr (A ≠ B)ú(A ≠ B).

Theorem 3.1. Let G be a subgroup of GL(n,K), K = R or C. Then multiplication G◊G æ G,
(A, B) ‘æ AB and inversion G æ G, A ‘æ A≠1 are continuous maps.

Proof. The matrix entries of AB are polynomials in the matrix entries of A and B and thus
continuous. The matrix entries of A≠1 are, by Cramer’s rule, rational functions of the matrix
entries of A. The denominator is the polynomial det A, which never vanishes in GL(n,K).
Hence A ‘æ A≠1 is continuous.

Continuity properties are important in the theory of Lie groups. Let G µ GL(n,K),
K = R or C. A path in G is a continuous map w : [0, 1] æ G. Two matrices A1, A2 in G
are said to be path-connected (A1 ≥ A2) if there exists a path w in G with w(0) = A1 and
w(1) = A2. Every A œ G is connected to itself (with the path w(t) = A, t œ [0, 1]). Moreover,
from A1 ≥ A2 via a path w, it follows that A2 ≥ A1 via the path w̄(t) = w(1 ≠ t). If A1 is
connected to A2 by a path w1 and A2 to A3 by a path w2, then the concatenated path

(w1 ú w2)(t) =

Y
]

[
w1(2t), 0 Æ t Æ 1

2 ,

w2(2t ≠ 1), 1
2 Æ t Æ 1,

connects A1 to A3. Thus ≥ is an equivalence relation.

Definition 3.2. Let K = R or C. The (path) connected components of G µ GL(n,K) are
the equivalence classes with respect to ≥. If G consists of a single connected component,
then G is said to be (path) connected.

Theorem 3.3. Let G µ GL(n,K) be a subgroup, and let G0 be the connected component
containing 1. Then G0 is a normal subgroup of G and G/G0 = {connected components of G}.
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Proof. Exercise.

As an example we examine the connectedness properties of unitary and orthogonal groups.

Theorem 3.4. 1. SO(n), SU(n), and U(n) are connected.

2. O(n) consists of two connected components: {A œ O(n) | det A = 1} and {A œ O(n) |
det A = ≠1}.

Proof. Unitary case: the normal form theorem for unitary matrices from linear algebra states
that for every matrix A œ U(n) there exists a matrix U œ U(n) with A = UDU≠1, where
D = diag(eiÏ1 , . . . , eiÏn), Ïj œ R. The map w : [0, 1] æ U(n), t ‘æ Udiag(eitÏ1 , . . . , eitÏn)U≠1

is continuous, since multiplication by U and U≠1 is continuous (by the previous theorem)
and t ‘æ eitÏ is continuous. The path w connects 1 to the arbitrary matrix A œ U(n). If A
has determinant 1, then det D = 1 and

q
i Ïi œ 2fiZ; without loss of generality

q
i Ïi = 0. It

follows that det(w(t)) = 1, and w is a path in SU(n). Hence U(n) and SU(n) are connected.
SO(n) and O(n), exercise.

3.2 Exponential Map
Let Mat(n,K), with K = R or C, be the vector space of all n ◊ n matrices with entries in K.
Identifying Mat(n,K) with Kn2 via X = (xij) ‘æ (x11, x12, . . . , xnn), we endow it with the
norm

ÎXÎ =
1 nÿ

i,j=1
|xij |2

21/2
=

!
tr(XúX)

"1/2
.

Lemma 3.5. For all X, Y œ Mat(n,K),

ÎXY Î Æ ÎXÎ ÎY Î.

Proof.

ÎXY Î2 =
nÿ

i,j=1

---
nÿ

k=1
XikYkj

---
2

Æ
nÿ

i,j=1

1 nÿ

l=1
| Xil |2

21 nÿ

m=1
|Ymj |2

2
= ÎXÎ2ÎY Î2,

where we used the Cauchy–Schwarz inequality with uk = Xik and vk = Ykj for fixed i, j.

Lemma 3.6. The series
exp(X) =

Œÿ

k=0

1
k!X

k

converges absolutely for every X œ Mat(n,K).

Proof. By Lemma 3.5, inductively ÎXkÎ Æ ÎXÎk. Hence

... 1
k!X

k
... Æ ÎXÎk

k! and
Œÿ

k=0

... 1
k!X

k
... Æ eÎXÎ < Œ.

It follows that the matrix entries of exp(X) are absolutely convergent power series in the
entries xij of X, hence analytic in the xij .

Lemma 3.7. Let X, Y œ Mat(n,K), K = R or C. Then:
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(i) If XY = Y X, then exp(X) exp(Y ) = exp(X + Y ).

(ii) exp(X) is invertible and exp(X)≠1 = exp(≠X).

(iii) For A œ GL(n,K), one has A exp(X) A≠1 = exp
!
AXA≠1"

.

(iv) det(exp(X)) = exp(tr X).

(v) exp(Xú) = (exp X)ú and exp(XT ) = (exp X)T .

Proof. (i) Using absolute convergence,

exp(X) exp(Y ) =
Œÿ

j=0

1
j!X

j
Œÿ

k=0

1
k!Y

k =
Œÿ

n=0

1
n!

nÿ

j=0

A
n

j

B

XjY n≠j =
Œÿ

n=0

(X + Y )n

n! = exp(X+Y ),

where commutativity ensures (X + Y )n =
q

j

!n
j

"
XjY n≠j .

(ii) Apply (i) with Y = ≠X.
(iii) Conjugation moves inside the series:

A
1 Œÿ

j=0

Xj

j!
2
A≠1 =

Œÿ

j=0

AXjA≠1

j! =
Œÿ

j=0

(AXA≠1)j

j! .

(iv) Put X = AY A≠1 with Y upper triangular (Schur decomposition over C). If y1, . . . , yn

are the diagonal entries of Y , then Y k is upper triangular with diagonal entries yk
1 , . . . , yk

n.
Hence exp(Y ) is upper triangular with diagonal ey1 , . . . , eyn , so

det(exp Y ) = ey1 · · · eyn = ey1+···+yn = etr Y .

Use (iii) and invariance of determinant and trace under conjugation.
(v) (Xk)ú = (Xú)k and likewise for T ; continuity of X ‘æ Xú (resp. T ) yields the claim.

Definition 3.8. The map exp : Mat(n,K) æ GL(n,K), X ‘æ exp(X), is called the exponen-
tial map.

Example 3.9.

exp
A

0 a

0 0

B

= 1 +
A

0 a
0 0

B

=
A

1 a
0 1

B

.

More generally, if N is nilpotent then

exp(N) = 1 + N + N2

2! + · · · + Nk

k!

is a polynomial in N (for k large enough so that Nk+1 = 0).

Example 3.10. Let X =
1

0 ≠Ï
Ï 0

2
. Since X2 = Ï2(≠1), one finds

exp(X) = cos Ï 1 + sin Ï

A
0 ≠1
1 0

B

=
A

cos Ï ≠ sin Ï

sin Ï cos Ï

B

œ SO(2).

Example 3.11. Let X = i
q3

j=1 nj‡j with |n| = 1 (Pauli matrices). Then X2 = ≠1 and

exp(ËX) = cos Ë 1 + sin Ë X.
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Lemma 3.12. The map
exp : Mat(n,K) æ GL(n,K)

is invertible in a neighborhood of 0. That is, there exists a neighborhood U of 0 such that
exp : U æ exp(U) is bijective, and the inverse is given by an absolutely convergent power
series.

Proof. The series

log X =
Œÿ

n=1
(≠1)n+1 (X ≠ 1)n

n

converges absolutely for ÎX ≠ 1Î < 1, since
Œÿ

n=1

...(≠1)n+1 (X ≠ 1)n

n

... Æ
Œÿ

n=1

ÎX ≠ 1În

n
= ≠ log

!
1 ≠ ÎX ≠ 1Î

"
< Œ.

Then exp(log X) = X for ÎX ≠ 1Î < 1, and log(exp X) = X whenever Î exp X ≠ 1Î < 1.

3.3 One-Parameter Groups
Definition 3.13. A map X : R æ GL(n,K), t ‘æ X(t), is called a one-parameter group if it
is continuously di�erentiable, X(0) = 1, and

X(s + t) = X(s)X(t) for all s, t œ R.

The image of such a map is a subgroup, with X(t)≠1 = X(≠t).

Theorem 3.14. (i) For any X œ Mat(n,K), the map t ‘æ exp(tX) is a one-parameter
group.

(ii) Every one-parameter group is of this form.

Definition 3.15. For the one-parameter group t ‘æ exp(tX), the matrix X is called its
infinitesimal generator.

Proof of Theorem 3.14. (i) Since tXsX = sXtX, Lemma 3.7(i) gives exp(tX) exp(sX) =
exp((t + s)X). Di�erentiability and d

dt exp(tX) = exp(tX)X are standard.
(ii) If X(t) is a one-parameter group, then

d

dt
X(t) = lim

hæ0
X(t + h) ≠ X(t)

h
= lim

hæ0
X(t)X(h) ≠ X(t)

h
= X(t) lim

hæ0
X(h) ≠ 1

h
= X(t)Ẋ(0),

with X(0) = 1. Uniqueness for first-order linear matrix ODEs yields X(t) = exp
!
tẊ(0)

"
.

3.4 Matrix Lie Groups
Let G µ GL(n,K) be a closed subgroup of GL(n,K) (closed means: if (gj) is a sequence in
G converging in GL(n,K), then limjæŒ gj œ G). Define

Lie(G) = { X œ Mat(n,K) | exp(tX) œ G for all t œ R }.

The space Lie(G) is called the Lie algebra of the Lie group G.

Theorem 3.16. Let G be a closed subgroup of GL(n,K), where K = R or C. Then Lie(G)
is a real vector space, and for all X, Y œ Lie(G) we have [X, Y ] = XY ≠ Y X œ Lie(G).
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We will prove this later using the Campbell–Baker–Hausdor� (CBH) formula. Since we
are only interested in these groups, we adopt:

Definition 3.17. A (matrix) Lie group is a closed subgroup of GL(n,K).

It turns out that closed subgroups of GL(n,K) are Lie groups in the sense of Section 1.2
(see Theorem 3.28 below). The Lie algebra of a Lie group G can then alternatively be defined
as the tangent space T1G at the identity 1 œ G:

Lemma 3.18. Lie(G) consists of all tangent vectors Ẋ(0) = d
dtX(t)

--
t=0 of smooth curves

X : (≠‘, ‘) æ G with X(0) = 1 (for some ‘ > 0).

Proof. One-parameter subgroups in G are smooth curves through 1, so their infinitesimal
generators are tangent vectors of the desired form. Conversely, let X : (≠‘, ‘) æ G be a
smooth curve with X(0) = 1. Fix t œ R and consider X(t/n)n œ G. For n large, X(t/n) is
defined and near 1 (so that log is defined). Then

X(t/n)n = exp
!
n log(X(t/n))

"
= exp

1
n log

1
1 + Ẋ(0) t

n
+ O

! 1
n2

"22

= exp
1
n

1
Ẋ(0) t

n
+ O

! 1
n2

"22
= exp

!
tẊ(0) + O( 1

n)
"

≠≠≠æ
næŒ

exp
!
tẊ(0)

"
.

Closedness of G implies exp
!
tẊ(0)

"
œ G for all t, hence Ẋ(0) œ Lie(G).

Typical examples are (S)U(n, m), (S)O(n, m), GL(n,K), SL(n,K), Sp(n), etc. Indeed,
they can be defined as common zero sets of continuous functions f : GL(n,K) æ K,
hence are closed. For instance, SL(n,K) = {A | det(A) ≠ 1 = 0}. A counterexample is
GL(n,Q) µ GL(n,R), which is not closed.

Define the commutator of X, Y œ Mat(n,K) by

[X, Y ] = XY ≠ Y X.

It satisfies:
(i) [⁄X + µY, Z] = ⁄[X, Z] + µ[Y, Z] for ⁄, µ œ K (bilinearity);

(ii) [X, Y ] = ≠[Y, X] (antisymmetry);

(iii) [[X, Y ], Z] + [[Z, X], Y ] + [[Y, Z], X] = 0 (Jacobi identity).

Definition 3.19. A real or complex vector space g equipped with a bilinear map (the Lie
bracket) [·, ·] : g ◊ g æ g satisfying (i)–(iii) is called a (real or complex) Lie algebra. A
homomorphism of Lie algebras Ï : g1 æ g2 is linear and satisfies [Ï(X), Ï(Y )] = Ï([X, Y ]).
Bijective homomorphisms are isomorphisms.

Thus Theorem 3.16 asserts that Lie(G) carries the structure of a real Lie algebra.

Example 3.20. Lie(GL(n,K)) = Mat(n,K) viewed as a real vector space, denoted gl(n,K).
A basis of gl(n,R) is given by the matrices Eij , i, j = 1, . . . , n, with entries (Eij)kl = ”ik”jl.
The Lie bracket reads

[Eij , Ekl] = Eil ”jk ≠ Ejk ”il,

and dim gl(n,R) = n2. As a real Lie algebra, gl(n,C) has basis {Eij ,
Ô

≠1 Eij}i,j and
dim gl(n,C) = 2n2.

Example 3.21. u(n) := Lie(U(n)), su(n) := Lie(SU(n)).


