Chapter 2

Representations of Groups

When a group acts on a vector space by linear maps, one speaks of a *representation*. The fundamental properties of representations are discussed in this chapter.

2.1 Definitions and Examples

Definition 2.1. A (real or complex) representation of a group G on an \mathbb{R} - (resp. \mathbb{C} -) vector space $V \neq 0$ is a homomorphism

$$\rho: G \to GL(V)$$
.

The vector space V is called the representation space of ρ .

Thus, a representation ρ assigns to each element $g \in G$ an invertible linear map $\rho(g)$: $V \to V$ such that, for all $g, h \in G$,

$$\rho(gh) = \rho(g)\rho(h).$$

A representation ρ on V is denoted (ρ, V) . When there is no ambiguity, one often simply refers to "the representation ρ " or "the representation V". The dimension of (ρ, V) is the dimension of the representation space V.

Example 2.2 (Trivial Representation). $V = \mathbb{C}$ and $\rho(g) = 1$ for all $g \in G$.

Example 2.3. Let $G = S_n$, $V = \mathbb{C}^n$ with basis e_1, \ldots, e_n , and define $\rho(g)e_i = e_{g(i)}$ for $g \in S_n$.

Example 2.4. Let G = O(3), $V = C^{\infty}(\mathbb{R}^3)$, and define $(\rho(g)f)(x) = f(g^{-1}x)$.

Example 2.5. Let $G = \mathbb{Z}_n$, $V = \mathbb{C}$, and $\rho(m) = e^{\frac{2\pi i}{n}m}$, where $GL(\mathbb{C})$ is identified with $\mathbb{C} \setminus \{0\}$.

Lemma 2.6. Let $\rho: G \to GL(V)$ be a representation. Then $\rho(1) = 1_V$, the identity map $V \to V$, and $\rho(g)^{-1} = \rho(g^{-1})$.

Proof. We have $\rho(g) = \rho(g1) = \rho(g)\rho(1)$. Since $\rho(g)$ is invertible, $\rho(1)$ must be the identity. Moreover,

$$1_V = \rho(1) = \rho(gg^{-1}) = \rho(g)\rho(g^{-1}),$$

hence
$$\rho(g)^{-1} = \rho(g^{-1})$$
.

Definition 2.7. A homomorphism of representations $(\rho_1, V_1) \to (\rho_2, V_2)$ is a linear map $\varphi: V_1 \to V_2$ such that

$$\varphi \rho_1(g) = \rho_2(g) \varphi \quad \forall g \in G.$$

Two representations (ρ_1, V_1) and (ρ_2, V_2) are equivalent (or isomorphic) if there exists a bijective homomorphism of representations $\varphi: V_1 \to V_2$. The vector space of all homomorphisms $(\rho_1, V_1) \to (\rho_2, V_2)$ is denoted $\text{Hom}_G(V_1, V_2)$.

Definition 2.8. An invariant subspace of a representation (ρ, V) is a subspace $W \subset V$ such that $\rho(g)W \subset W$ for all $g \in G$. A representation (ρ, V) is called *irreducible* if it has no invariant subspaces other than V and $\{0\}$; otherwise it is *reducible*. If $W \neq \{0\}$ is invariant, then the restriction $\rho|_W : G \to GL(W)$ defines a *subrepresentation*.

Definition 2.9. A representation (ρ, V) is *completely reducible* if there exist invariant subspaces V_1, \ldots, V_n such that

$$V = V_1 \oplus \cdots \oplus V_n$$

and each $(\rho|_{V_i}, V_i)$ is irreducible. Such a decomposition is called a decomposition into irreducible representations.

Remark. Not every reducible representation is completely reducible. For example, the representation of \mathbb{Z} on \mathbb{C}^2 given by

$$n \mapsto \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

is reducible (with invariant subspace $\mathbb{C}\binom{1}{0}$) but not completely reducible, since the matrices are not diagonalizable for $n \neq 0$.

Lemma 2.10. Let (ρ, V) be a finite-dimensional representation such that for every invariant subspace $W \subset V$ there exists an invariant subspace W' with $V = W \oplus W'$. Then (ρ, V) is completely reducible.

Proof. Proceed by induction on dim V. For dim V=1 there is nothing to prove. Suppose dim V=d+1. Either V is irreducible, or there exists an invariant subspace W with $1 \le \dim W \le d$. Let W' be invariant with $V=W\oplus W'$. Then $1 \le \dim W' \le d$. By the induction hypothesis, W and W' are completely reducible, hence so is V.

2.2 Unitary Representations

Definition 2.11. A representation ρ on an inner-product space V is unitary if $\rho(g)$ is unitary for all $g \in G$, i.e.

$$\rho(g)^* = \rho(g)^{-1}.$$

Theorem 2.12. Unitary representations are completely reducible.

Proof. Let W be an invariant subspace of a unitary representation (ρ, V) and let

$$W^{\perp} = \{v \in V \mid (v, w) = 0 \text{ for all } w \in W\}.$$

Then W^{\perp} is invariant because for $v \in W^{\perp}$ and $g \in G$,

$$(\rho(g)v, w) = (v, \rho(g)^*w) = (v, \rho(g)^{-1}w) = 0$$

for all $w \in W$. Hence $\rho(g)v \in W^{\perp}$. By the previous lemma, (ρ, V) is completely reducible. \square

Theorem 2.13. Let (ρ, V) be a representation of a finite group G. Then there exists an inner product (\cdot, \cdot) on V such that (ρ, V) is unitary.

Proof. Let $(\cdot,\cdot)_0$ be any inner product on V and define

$$(v,w) = \sum_{g \in G} (\rho(g)v, \rho(g)w)_0.$$

This defines an inner product since it is sesquilinear, Hermitian, and positive definite. Moreover,

$$(\rho(g)v,\rho(g)w)=\sum_{h\in G}(\rho(hg)v,\rho(hg)w)_0=\sum_{h\in G}(\rho(h)v,\rho(h)w)_0=(v,w).$$

Hence $\rho(g)$ is unitary for all $g \in G$.

Corollary 2.14. Every representation of a finite group is completely reducible.

Chapter 3

Lie Groups and Lie Algebras

3.1 Lie groups

A Lie group is a group that is at the same time a C^{∞} -manifold such that multiplication and inversion are C^{∞} -maps. Examples of Lie groups are $GL(n,\mathbb{R})$, $GL(n,\mathbb{C})$, O(p,q), U(p,q), SO(p,q), SU(p,q), $SL(n,\mathbb{R})$, $SL(n,\mathbb{C})$. We view $G \subset GL(n,\mathbb{R})$ or $GL(n,\mathbb{C})$ as a subset of \mathbb{K}^{n^2} (where $\mathbb{K} = \mathbb{R}$ or \mathbb{C}) by writing the matrix entries of a matrix $A \in G$ as a point $(A_{11}, A_{12}, \ldots, A_{nn})$ in \mathbb{K}^{n^2} . This identification defines the structure of a metric space on G. The distance d(A, B) between two matrices in G is

$$d(A,B)^{2} = \sum_{i,j=1}^{n} |A_{ij} - B_{ij}|^{2} = \operatorname{tr}(A - B)^{*}(A - B).$$

Theorem 3.1. Let G be a subgroup of $GL(n, \mathbb{K})$, $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Then multiplication $G \times G \to G$, $(A, B) \mapsto AB$ and inversion $G \to G$, $A \mapsto A^{-1}$ are continuous maps.

Proof. The matrix entries of AB are polynomials in the matrix entries of A and B and thus continuous. The matrix entries of A^{-1} are, by Cramer's rule, rational functions of the matrix entries of A. The denominator is the polynomial det A, which never vanishes in $GL(n, \mathbb{K})$. Hence $A \mapsto A^{-1}$ is continuous.

Continuity properties are important in the theory of Lie groups. Let $G \subset \operatorname{GL}(n, \mathbb{K})$, $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . A path in G is a continuous map $w : [0,1] \to G$. Two matrices A_1, A_2 in G are said to be path-connected $(A_1 \sim A_2)$ if there exists a path w in G with $w(0) = A_1$ and $w(1) = A_2$. Every $A \in G$ is connected to itself (with the path w(t) = A, $t \in [0,1]$). Moreover, from $A_1 \sim A_2$ via a path w, it follows that $A_2 \sim A_1$ via the path $\bar{w}(t) = w(1-t)$. If A_1 is connected to A_2 by a path w_1 and A_2 to A_3 by a path w_2 , then the concatenated path

$$(w_1 * w_2)(t) = \begin{cases} w_1(2t), & 0 \le t \le \frac{1}{2}, \\ w_2(2t-1), & \frac{1}{2} \le t \le 1, \end{cases}$$

connects A_1 to A_3 . Thus \sim is an equivalence relation.

Definition 3.2. Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . The (path) connected components of $G \subset GL(n,\mathbb{K})$ are the equivalence classes with respect to \sim . If G consists of a single connected component, then G is said to be (path) connected.

Theorem 3.3. Let $G \subset GL(n, \mathbb{K})$ be a subgroup, and let G^0 be the connected component containing 1. Then G^0 is a normal subgroup of G and $G/G^0 = \{connected components of <math>G\}$.

Proof. Exercise. \Box

As an example we examine the connectedness properties of unitary and orthogonal groups.

Theorem 3.4. 1. SO(n), SU(n), and U(n) are connected.

2. O(n) consists of two connected components: $\{A \in O(n) \mid \det A = 1\}$ and $\{A \in O(n) \mid \det A = 1\}$.

Proof. Unitary case: the normal form theorem for unitary matrices from linear algebra states that for every matrix $A \in U(n)$ there exists a matrix $U \in U(n)$ with $A = UDU^{-1}$, where $D = \operatorname{diag}(e^{i\varphi_1}, \ldots, e^{i\varphi_n}), \ \varphi_j \in \mathbb{R}$. The map $w: [0,1] \to U(n), \ t \mapsto U\operatorname{diag}(e^{it\varphi_1}, \ldots, e^{it\varphi_n})U^{-1}$ is continuous, since multiplication by U and U^{-1} is continuous (by the previous theorem) and $t \mapsto e^{it\varphi}$ is continuous. The path w connects 1 to the arbitrary matrix $A \in U(n)$. If A has determinant 1, then $\det D = 1$ and $\sum_i \varphi_i \in 2\pi\mathbb{Z}$; without loss of generality $\sum_i \varphi_i = 0$. It follows that $\det(w(t)) = 1$, and w is a path in $\mathrm{SU}(n)$. Hence U(n) and $\mathrm{SU}(n)$ are connected. SO(n) and O(n), exercise.

3.2 Exponential Map

Let $\operatorname{Mat}(n, \mathbb{K})$, with $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , be the vector space of all $n \times n$ matrices with entries in \mathbb{K} . Identifying $\operatorname{Mat}(n, \mathbb{K})$ with \mathbb{K}^{n^2} via $X = (x_{ij}) \mapsto (x_{11}, x_{12}, \dots, x_{nn})$, we endow it with the norm

$$||X|| = \left(\sum_{i,j=1}^{n} |x_{ij}|^2\right)^{1/2} = \left(\operatorname{tr}(X^*X)\right)^{1/2}.$$

Lemma 3.5. For all $X, Y \in Mat(n, \mathbb{K})$,

$$||XY|| \le ||X|| \, ||Y||.$$

Proof.

$$||XY||^2 = \sum_{i,j=1}^n \left| \sum_{k=1}^n X_{ik} Y_{kj} \right|^2 \le \sum_{i,j=1}^n \left(\sum_{l=1}^n |\overline{X}_{il}|^2 \right) \left(\sum_{m=1}^n |Y_{mj}|^2 \right) = ||X||^2 ||Y||^2,$$

where we used the Cauchy-Schwarz inequality with $u_k = \overline{X}_{ik}$ and $v_k = Y_{kj}$ for fixed i, j.

Lemma 3.6. The series

$$\exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$$

converges absolutely for every $X \in \text{Mat}(n, \mathbb{K})$.

Proof. By Lemma 3.5, inductively $||X^k|| \leq ||X||^k$. Hence

$$\left\| \frac{1}{k!} X^k \right\| \le \frac{\|X\|^k}{k!}$$
 and $\sum_{k=0}^{\infty} \left\| \frac{1}{k!} X^k \right\| \le e^{\|X\|} < \infty$.

It follows that the matrix entries of $\exp(X)$ are absolutely convergent power series in the entries x_{ij} of X, hence analytic in the x_{ij} .

Lemma 3.7. Let $X, Y \in \text{Mat}(n, \mathbb{K}), \mathbb{K} = \mathbb{R}$ or \mathbb{C} . Then:

- (i) If XY = YX, then $\exp(X) \exp(Y) = \exp(X + Y)$.
- (ii) $\exp(X)$ is invertible and $\exp(X)^{-1} = \exp(-X)$.
- (iii) For $A \in GL(n, \mathbb{K})$, one has $A \exp(X) A^{-1} = \exp(AXA^{-1})$.
- (iv) det(exp(X)) = exp(tr X).
- $(v) \exp(X^*) = (\exp X)^* \text{ and } \exp(X^T) = (\exp X)^T.$

Proof. (i) Using absolute convergence,

$$\exp(X)\exp(Y) = \sum_{j=0}^{\infty} \frac{1}{j!} X^j \sum_{k=0}^{\infty} \frac{1}{k!} Y^k = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{j=0}^n \binom{n}{j} X^j Y^{n-j} = \sum_{n=0}^{\infty} \frac{(X+Y)^n}{n!} = \exp(X+Y),$$

where commutativity ensures $(X+Y)^n = \sum_j \binom{n}{j} X^j Y^{n-j}$.

- (ii) Apply (i) with Y = -X.
- (iii) Conjugation moves inside the series:

$$A\Big(\sum_{j=0}^{\infty}\frac{X^{j}}{j!}\Big)A^{-1} = \sum_{j=0}^{\infty}\frac{AX^{j}A^{-1}}{j!} = \sum_{j=0}^{\infty}\frac{(AXA^{-1})^{j}}{j!}.$$

(iv) Put $X = AYA^{-1}$ with Y upper triangular (Schur decomposition over \mathbb{C}). If y_1, \ldots, y_n are the diagonal entries of Y, then Y^k is upper triangular with diagonal entries y_1^k, \ldots, y_n^k . Hence $\exp(Y)$ is upper triangular with diagonal e^{y_1}, \ldots, e^{y_n} , so

$$\det(\exp Y) = e^{y_1} \cdots e^{y_n} = e^{y_1 + \cdots + y_n} = e^{\operatorname{tr} Y}.$$

Use (iii) and invariance of determinant and trace under conjugation.

(v)
$$(X^k)^* = (X^*)^k$$
 and likewise for T; continuity of $X \mapsto X^*$ (resp. T) yields the claim. \square

Definition 3.8. The map $\exp: \operatorname{Mat}(n, \mathbb{K}) \to GL(n, \mathbb{K}), X \mapsto \exp(X)$, is called the *exponential map*.

Example 3.9.

$$\exp\begin{pmatrix}0 & a\\0 & 0\end{pmatrix} = \mathbf{1} + \begin{pmatrix}0 & a\\0 & 0\end{pmatrix} = \begin{pmatrix}1 & a\\0 & 1\end{pmatrix}.$$

More generally, if N is nilpotent then

$$\exp(N) = 1 + N + \frac{N^2}{2!} + \dots + \frac{N^k}{k!}$$

is a polynomial in N (for k large enough so that $N^{k+1} = 0$).

Example 3.10. Let $X = \begin{pmatrix} 0 & -\varphi \\ \varphi & 0 \end{pmatrix}$. Since $X^2 = \varphi^2(-1)$, one finds

$$\exp(X) = \cos \varphi \, \mathbf{1} + \sin \varphi \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \in SO(2).$$

Example 3.11. Let $X = i \sum_{j=1}^{3} n_j \sigma_j$ with |n| = 1 (Pauli matrices). Then $X^2 = -1$ and

$$\exp(\vartheta X) = \cos \vartheta \mathbf{1} + \sin \vartheta X.$$

Lemma 3.12. The map

$$\exp: \operatorname{Mat}(n, \mathbb{K}) \to GL(n, \mathbb{K})$$

is invertible in a neighborhood of 0. That is, there exists a neighborhood U of 0 such that $\exp: U \to \exp(U)$ is bijective, and the inverse is given by an absolutely convergent power series.

Proof. The series

$$\log X = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(X-1)^n}{n}$$

converges absolutely for $||X - \mathbf{1}|| < 1$, since

$$\sum_{n=1}^{\infty} \left\| (-1)^{n+1} \frac{(X-\mathbf{1})^n}{n} \right\| \le \sum_{n=1}^{\infty} \frac{\|X-\mathbf{1}\|^n}{n} = -\log\left(1 - \|X-\mathbf{1}\|\right) < \infty.$$

Then $\exp(\log X) = X$ for $||X - \mathbf{1}|| < 1$, and $\log(\exp X) = X$ whenever $||\exp X - \mathbf{1}|| < 1$. \square

3.3 One-Parameter Groups

Definition 3.13. A map $X : \mathbb{R} \to GL(n, \mathbb{K})$, $t \mapsto X(t)$, is called a *one-parameter group* if it is continuously differentiable, $X(0) = \mathbf{1}$, and

$$X(s+t) = X(s)X(t)$$
 for all $s, t \in \mathbb{R}$.

The image of such a map is a subgroup, with $X(t)^{-1} = X(-t)$.

Theorem 3.14. (i) For any $X \in \text{Mat}(n, \mathbb{K})$, the map $t \mapsto \exp(tX)$ is a one-parameter group.

(ii) Every one-parameter group is of this form.

Definition 3.15. For the one-parameter group $t \mapsto \exp(tX)$, the matrix X is called its infinitesimal generator.

Proof of Theorem 3.14. (i) Since tXsX = sXtX, Lemma 3.7(i) gives $\exp(tX)\exp(sX) = \exp((t+s)X)$. Differentiability and $\frac{d}{dt}\exp(tX) = \exp(tX)X$ are standard.

(ii) If X(t) is a one-parameter group, then

$$\frac{d}{dt}X(t) = \lim_{h \to 0} \frac{X(t+h) - X(t)}{h} = \lim_{h \to 0} \frac{X(t)X(h) - X(t)}{h} = X(t)\lim_{h \to 0} \frac{X(h) - \mathbf{1}}{h} = X(t)\dot{X}(0),$$

with X(0) = 1. Uniqueness for first-order linear matrix ODEs yields $X(t) = \exp(t\dot{X}(0))$. \square

3.4 Matrix Lie Groups

Let $G \subset GL(n, \mathbb{K})$ be a closed subgroup of $GL(n, \mathbb{K})$ (closed means: if (g_j) is a sequence in G converging in $GL(n, \mathbb{K})$, then $\lim_{j\to\infty} g_j \in G$). Define

$$\operatorname{Lie}(G) = \{ X \in \operatorname{Mat}(n, \mathbb{K}) \mid \exp(tX) \in G \text{ for all } t \in \mathbb{R} \}.$$

The space Lie(G) is called the *Lie algebra* of the Lie group G.

Theorem 3.16. Let G be a closed subgroup of $GL(n, \mathbb{K})$, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Then Lie(G) is a real vector space, and for all $X, Y \in Lie(G)$ we have $[X, Y] = XY - YX \in Lie(G)$.

We will prove this later using the Campbell–Baker–Hausdorff (CBH) formula. Since we are only interested in these groups, we adopt:

Definition 3.17. A (matrix) Lie group is a closed subgroup of $GL(n, \mathbb{K})$.

It turns out that closed subgroups of $GL(n, \mathbb{K})$ are Lie groups in the sense of Section 1.2 (see Theorem 3.28 below). The Lie algebra of a Lie group G can then alternatively be defined as the tangent space T_1G at the identity $1 \in G$:

Lemma 3.18. Lie(G) consists of all tangent vectors $\dot{X}(0) = \frac{d}{dt}X(t)\big|_{t=0}$ of smooth curves $X: (-\epsilon, \epsilon) \to G$ with X(0) = 1 (for some $\epsilon > 0$).

Proof. One-parameter subgroups in G are smooth curves through 1, so their infinitesimal generators are tangent vectors of the desired form. Conversely, let $X: (-\epsilon, \epsilon) \to G$ be a smooth curve with $X(0) = \mathbf{1}$. Fix $t \in \mathbb{R}$ and consider $X(t/n)^n \in G$. For n large, X(t/n) is defined and near $\mathbf{1}$ (so that log is defined). Then

$$X(t/n)^n = \exp(n\log(X(t/n))) = \exp\left(n\log\left(\mathbf{1} + \dot{X}(0)\frac{t}{n} + O\left(\frac{1}{n^2}\right)\right)\right)$$
$$= \exp\left(n\left(\dot{X}(0)\frac{t}{n} + O\left(\frac{1}{n^2}\right)\right)\right) = \exp\left(t\dot{X}(0) + O\left(\frac{1}{n}\right)\right) \xrightarrow[n \to \infty]{} \exp\left(t\dot{X}(0)\right).$$

Closedness of G implies $\exp(t\dot{X}(0)) \in G$ for all t, hence $\dot{X}(0) \in \text{Lie}(G)$.

Typical examples are (S)U(n,m), (S)O(n,m), $GL(n,\mathbb{K})$, $SL(n,\mathbb{K})$, Sp(n), etc. Indeed, they can be defined as common zero sets of continuous functions $f:GL(n,\mathbb{K})\to\mathbb{K}$, hence are closed. For instance, $SL(n,\mathbb{K})=\{A\mid \det(A)-1=0\}$. A counterexample is $GL(n,\mathbb{Q})\subset GL(n,\mathbb{R})$, which is not closed.

Define the *commutator* of $X, Y \in Mat(n, \mathbb{K})$ by

$$[X,Y] = XY - YX.$$

It satisfies:

- (i) $[\lambda X + \mu Y, Z] = \lambda [X, Z] + \mu [Y, Z]$ for $\lambda, \mu \in \mathbb{K}$ (bilinearity);
- (ii) [X,Y] = -[Y,X] (antisymmetry);
- (iii) [[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0 (Jacobi identity).

Definition 3.19. A real or complex vector space \mathfrak{g} equipped with a bilinear map (the *Lie bracket*) $[\cdot,\cdot]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying (i)–(iii) is called a (real or complex) *Lie algebra*. A homomorphism of Lie algebras $\varphi: \mathfrak{g}_1 \to \mathfrak{g}_2$ is linear and satisfies $[\varphi(X), \varphi(Y)] = \varphi([X, Y])$. Bijective homomorphisms are *isomorphisms*.

Thus Theorem 3.16 asserts that Lie(G) carries the structure of a real Lie algebra.

Example 3.20. Lie($GL(n, \mathbb{K})$) = Mat (n, \mathbb{K}) viewed as a real vector space, denoted $\mathfrak{gl}(n, \mathbb{K})$. A basis of $\mathfrak{gl}(n, \mathbb{R})$ is given by the matrices E_{ij} , $i, j = 1, \ldots, n$, with entries $(E_{ij})_{kl} = \delta_{ik}\delta_{jl}$. The Lie bracket reads

$$[E_{ij}, E_{kl}] = E_{il} \,\delta_{jk} - E_{jk} \,\delta_{il},$$

and dim $\mathfrak{gl}(n,\mathbb{R})=n^2$. As a real Lie algebra, $\mathfrak{gl}(n,\mathbb{C})$ has basis $\{E_{ij},\sqrt{-1}\,E_{ij}\}_{i,j}$ and dim $\mathfrak{gl}(n,\mathbb{C})=2n^2$.

Example 3.21. $\mathfrak{u}(n) := \operatorname{Lie}(U(n)), \quad \mathfrak{su}(n) := \operatorname{Lie}(SU(n)).$