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Chapter 1

Groups

An important starting point for studying Quantum Field theory are familiarity with the
notions of representation theory of the Poincaré group. We will therefore start by recalling
some key concepts from group and representation theory. We briefly list the definitions
and basic concepts of group theory. A special role for us is played by continuous groups,
or Lie groups, where we restrict ourselves to matrix Lie groups. These notes are based on
a translation of the notes of the course Mathematische Methoden der Physik II c©2018 by
Giovanni Felder. Further reference include [1, 2, 3, 4].

1.1 Basic concepts and examples

A group G is a set with a product (multiplication) G×G→ G, (g, h) 7→ gh, such that

1. (gh)k = g(hk) for all g, h, k ∈ G,

2. there exists a neutral element (identity element) 1 ∈ G with 1g = g1 = g for all g ∈ G,

3. for every g ∈ G there exists an inverse g−1 ∈ G with gg−1 = g−1g = 1.

The identity element is unique, because from 101 = 1 and 101 = 10 it follows that
1 = 10. The inverse of an element is also unique. Indeed, if g′, g′′ are both inverses of g, then
g′ = g′1 = g′(gg′′) = (g′g)g′′ = 1g′′ = g′′. The inverse of 1 is 1.

The order of a group G is the number of elements |G| of G. It may be infinite.
A group is called abelian if gh = hg for all g, h ∈ G. In this case one often writes G

additively: instead of gh write g + h, instead of 1 write 0, and instead of g−1 write −g. One
also writes g − h instead of g + (−h). Familiar examples are the groups Z,R,C.

A subgroup H of a group G is a nonempty subset of G such that h1, h2 ∈ H ⇒ h1h2 ∈ H
and h ∈ H ⇒ h−1 ∈ H. A subgroup of a group is itself a group.

The direct product G1 × G2 of two groups G1, G2 is the Cartesian product with mul-
tiplication (g1, g2)(h1, h2) = (g1h1, g2h2). It is a group with identity (1, 1) and inverse
(g1, g2)

−1 = (g−11 , g−12 ).

Example 1.1 (Cyclic group of order n). Zn = Z/nZ (with +) is an abelian group with n
elements.

Example 1.2 (Symmetric group). A permutation of n elements is a bijection π : {1, . . . , n} →
{1, . . . , n}. The permutations of n elements form a group with composition of maps as product:
(π1π2)(i) = (π1 ◦ π2)(i) = π1(π2(i)). The identity element is the identity map, and the inverse
of π is the inverse map π−1. This group is called the symmetric group Sn. It has order n!.
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2 CHAPTER 1. GROUPS

Example 1.3 (General linear groups).

GL(n,R) = {invertible real n× n matrices},
GL(n,C) = {invertible complex n× n matrices}.

The product is matrix multiplication, and the identity element is the identity matrix. More
abstractly, for any vector space V (over R or C) one defines

GL(V ) = {invertible linear maps V → V },

where the product is composition of maps. If dimV < ∞, then by choosing a basis V is
identified with Rn or Cn, and GL(V ) is then GL(n,R) or GL(n,C), respectively.

Example 1.4 (Orthogonal group O(n)). An n× n matrix A is called orthogonal if ATA = 1.
Every orthogonal matrix is invertible, since

1 = det(ATA) = det(AT ) det(A) = (detA)2,

hence detA 6= 0 and therefore A−1 = AT . If A,B are orthogonal, then (AB)T (AB) =
BTATAB = 1, so AB is orthogonal. If A is orthogonal, then (AT )TAT = AAT = 1, hence
A−1 = AT is orthogonal. Thus the orthogonal n × n matrices form a subgroup O(n) of
GL(n,R),

O(n) = {A ∈ GL(n,R) | ATA = 1}.

Of particular importance in physics is the group O(3) of orthogonal transformations of physical
space R3.

Example 1.5. O(n) is the group of linear maps Rn → Rn that leave the scalar product

(x, y) =

n∑
i=1

xiyi

invariant: O(n) = {A | (Ax,Ay) = (x, y) ∀x, y ∈ Rn}. More generally, consider the symmetric
bilinear form on Rp+q

(x, y)p,q =

p∑
i=1

xiyi −
p+q∑
i=p+1

xiyi,

and define
O(p, q) = {A ∈ GL(p+ q,R) | (Ax,Ay)p,q = (x, y)p,q}.

In particular, O(n, 0) = O(n) = O(0, n). The group O(1, 3) is the Lorentz group. It preserves
the Minkowski metric

(x, y)1,3 = x0y0 − x1y1 − x2y2 − x3y3

on spacetime R4.

Example 1.6 (Unitary group U(n)).

U(n) = {A ∈ GL(n,C) | A∗A = 1}
= {A ∈ GL(n,C) | (Az,Aw) = (z, w), ∀z, w ∈ Cn},

where (z, w) =
∑
ziwi is the scalar product on Cn.
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Example 1.7 (Subgroups of special linear groups). Let G be a subgroup of GL(n,R) or
GL(n,C). Define

SG = {A ∈ G | detA = 1}.

Then SG is nonempty (since 1 ∈ SG), and if A,B ∈ SG, then det(AB) = detA · detB = 1
and det(A−1) = (detA)−1 = 1. Thus SG is a group. Examples (K = R or C):

SL(n,K) = SGL(n,K) = {A ∈ GL(n,K) | detA = 1},
SO(n) = {A ∈ SL(n,R) | ATA = 1},
SU(n) = {A ∈ SL(n,C) | A∗A = 1}.

These are called the special linear, special orthogonal, and special unitary groups, respectively.

We now introduce some further important concepts. A group G acts on a set M if there
is a map G×M →M , (g, x) 7→ gx, satisfying g1(g2x) = (g1g2)x for all g1, g2 ∈ G, x ∈M .

Every group acts on itself by group multiplication; GL(n,R) acts on Rn by applying
matrices to vectors; O(n) acts on Sn−1 = {x ∈ Rn | |x| = 1} since for A ∈ O(n) we have
|Ax| = |x|.

A homomorphism ϕ : G→ H of a group G to a group H is a map with ϕ(gh) = ϕ(g)ϕ(h).
If ϕ is also bijective, then it is called an isomorphism. If ϕ : G → H, ψ : H → K are
homomorphisms, then ψ◦ϕ : G→ K is a homomorphism. The inverse map of an isomorphism
is also an isomorphism, since

ϕ−1(gh) = ϕ−1(ϕ(ϕ−1(g))ϕ(ϕ−1(h))) = ϕ−1ϕ(ϕ−1(g)ϕ−1(h)) = ϕ−1(g)ϕ−1(h).

Isomorphisms G → G thus form a group Aut(G), the group of automorphisms of G. The
kernel of ϕ is the set

kerϕ = {g ∈ G | ϕ(g) = 1} ⊆ G,

and the image of ϕ is the set

Imϕ = {ϕ(g) | g ∈ G} ⊆ H.

Theorem 1.8. Let ϕ : G→ H be a homomorphism.
1. ϕ(1) = 1, and ϕ(g)−1 = ϕ(g−1).

2. kerϕ is a subgroup of G, and Imϕ is a subgroup of H.

3. ϕ is injective if and only if kerϕ = {1}.

Proof. Exercise

Corollary 1.9. A homomorphism ϕ : G→ H is an isomorphism if and only if kerϕ = {1}
and Imϕ = H.

Definition 1.10. Two groups G,H are called isomorphic (G ' H) if there exists an isomor-
phism G→ H.

Definition 1.11. Let H be a subgroup of a group G. The set G/H of (left) cosets of H in
G is the set of equivalence classes with respect to the equivalence relation

g1 ∼ g2 ⇐⇒ ∃h ∈ H with g2 = g1h.

Definition 1.12. A normal subgroup of G is a subgroup H with the property that ghg−1 ∈ H
for all g ∈ G, h ∈ H.
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For general subgroups H, G/H has no natural group structure.

Example 1.13. Zn = Z/nZ (every subgroup of an abelian group is normal).

Example 1.14. Let I denote the identity matrix. The subset {±I} ⊂ SL(2,C) is a subgroup.
For all A ∈ SL(2,C) we have A(±I)A−1 = ±I, thus {±I} is normal. The group SL(2,C)/{±I}
is isomorphic to the group of Möbius transformations of the Riemann sphere. The isomorphism

maps the class ±
(
a b
c d

)
to the Möbius transformation z 7→ az + b

cz + d
.

For any homomorphism ϕ : G → H, kerϕ is a normal subgroup of G, because from
ϕ(h) = 1 it follows that ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)ϕ(g)−1 = 1. We have the
isomorphism theorem:

Theorem 1.15 (Isomorphism Theorem). Let ϕ : G → H be a homomorphism of groups.
Then

G/ kerϕ ' Imϕ.

The isomorphism is [g] 7→ ϕ(g) for any choice of representative g.

The notion of the semidirect product of groups is first motivated by two examples.

Example 1.16 (Group of motions of R3). This is the group of affine transformations of R3

of the form
x 7→ Ax+ b, A ∈ O(3), b ∈ R3.

As a set this group is O(3)× R3. The product is composition of maps:

(A1, b1)(A2, b2) = (A1A2, A1b2 + b1), (A, b)−1 = (A−1,−A−1b), e = (1, 0).

This group has O(3) ∼= O(3)× {0} as a subgroup and R3 ∼= {1} × R3 as a normal subgroup.
It is called the inhomogeneous orthogonal group IO(3).

Example 1.17 (Poincaré group). The Poincaré group IO(1, 3) is the group of affine trans-
formations of R4 of the form

x 7→ Ax+ b, A ∈ O(1, 3), b ∈ R4.

As above, this group is O(1, 3)×R4 with multiplication (A1, b1)(A2, b2) = (A1A2, A1b2 + b1).
It arises in special relativity as the group of transformations that preserve the form of the
wave equation: a function u satisfies the wave equation ux0x0 − ux1x1 − ux2x2 − ux3x3 = 0 if
and only if U(x) = u(Ax+ b) satisfies the wave equation.

The general formulation of this notion is as follows: let Aut(H) be the group of iso-
morphisms H → H (“automorphisms of H”), where the multiplication is composition of
isomorphisms.

Theorem 1.18. Let G and H be groups and let ρ : G→ Aut(H), g 7→ ρg, be a homomorphism.
Then G×H with multiplication

(g1, h1)(g2, h2) = (g1g2, h1 ρg1(h2))

is a group, the semidirect product Gnρ H.

Proof. Exercise

1.2 Lie groups

A Lie group is a group that is at the same time a C∞-manifold such that multiplication and
inversion are C∞-maps. Examples of Lie groups are GL(n,R), GL(n,C), O(p, q), U(p, q),
SO(p, q), SU(p, q), SL(n,R), SL(n,C).
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