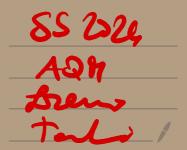
9. Scatting therey: General ties



Scottering theory is the second MAIN TOPIC of
this course.
Till now we have considered time-dependent
processes as emission locarbition of light by atoms
=> SPECTROSCOPY supportant to understand
Atoms & molecules
we concluded lost lecture with the decay of
2p-15 of a Hydrogen Alon, and elimeted
Q LIFETIME T~ 1.6.10-9 S
We could see this or some sort of scattering, some
projectile hits Atom, excites it, till it decays
=> IMPORTANT POINT interaction tome-scale MUCH
SHORTER thou " life-time" of Atom
$T_{chonectens} \sim \frac{a_{0}}{\partial C} \sim 2.10^{-17} \text{ time for } e^{-17}$ $T_{chonectens} \sim \frac{a_{0}}{\partial C} \sim 2.10^{-17} \text{ to revelve}$ $T_{chonectens} \sim \frac{a_{0}}{\partial C} \sim 2.10^{-17} \text{ s}$

So we can imagne to "separate" DECAY
four EXCITATION much that details of how
state decoys one independent four the actual
process that generated excited state
In SCATTERING [COLLISION] THEORY WE
dou't make this mumphou onymore
> We discuss the PROCESS at ONCE as a WHOLE
Chucial to understand NUCLEAR STRUCTURE,
high every scattering (CEEN LHC etc)
high - every scattering (CEEN LHC etc) IDEA: Just state [] EXPERIMENT
From Final State
initial state TARGET (mla details of
(KNOWN) (KNOWN) "scattering event"

In back of our minds, we imagine to work
with WATE PACKETS => [Longer than tonget Smoller than Lobastony
(Smoller Than Ideast suy
In proctice, we superfy our treatment working
with PLANE WAVES => solutions of FREE
SCHRO'DINCER EQUATION
let us recop some détoils
$i\hbar \frac{\partial \psi(\dot{x},t)}{\partial t} = H \psi(\dot{x},t)$ 3 Dim Schröd Eq.
$H = \frac{\vec{p}^2}{2m} + V(\vec{x}) V(\vec{x}) \in \mathbb{R}$
Remember that PROBADILITY DENSITY P= 24=24:
$\frac{1}{24}(\gamma^{*}\gamma) = \gamma^{*} \frac{1}{16} \left[-\frac{\hbar^{2}}{2m} \overline{\nabla}^{2}\gamma + V\gamma \right]$
$-\frac{1}{i\pi}\left[-\frac{\hbar^2}{2m}\overrightarrow{\nabla}^2\psi^2+V\psi^2\right]^2 = 3$

$=\frac{i\pi}{2m}\left[\psi^{*}\overrightarrow{\nabla}\psi^{-}-\overrightarrow{\nabla}(\psi^{*})\psi^{-}\right]$ $=\overrightarrow{\nabla}\cdot\left[\frac{i\pi}{2m}\left(\psi^{*}\overrightarrow{\nabla}\psi^{-}-\left(\overrightarrow{\nabla}\psi^{*}\right)\psi^{-}\right]\right]$		··· ···· ··· ··· ··· ···· ···· ··· ···· ··· ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····
$\vec{l} = -\frac{i\hbar}{2m} \left(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* \right) \Longrightarrow$ $CORRENT$ $\vec{l} PLANE WAVE = 1 = A C$	L'REPORT	- - - - - - - - - -
$\vec{1} = A ^2 - \frac{\vec{P}}{n}$ $= A ^2 - \frac{\pi \vec{R}}{r}$		velochy of wove!
	herme	

$ = \sum_{v} \int_{v} \frac{\partial f}{\partial t} d^{3} f = -\int_{v} \int_{v} \frac{\partial f}{\partial t} d\vec{r} $ $ = \frac{\partial}{\partial t} [P] = -\int_{v} \int_{v} \frac{\partial f}{\partial t} d\vec{r} $ $ = \sum_{v} P d\vec{r} $	$7.1 d^{3}r$ g(r) g(r) v v v v v v v v
Courder following set	-up r AREA dA = r'dR
$ \begin{array}{c} 1 \\ -\infty \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Tonget could recoil in general -> ICNORE RECOIL (USE REDUCED MONS M
POLRE ANGLE Le AZIMUTHAL ANGLE	y determine direction of scattered porticle

if the dector measures &n ponticles / second, then
$Sn = \int \left[\frac{d\sigma(\theta, e)}{dS} \right] dS$ $\int AREA IS r^{2} dS = dA$ $\int \int Cnotice no dA here!)$ RATE IN COMING DIFFERENTIAL $VICOMING = VICOMING (ROSS-SECTION Cpen solid ougle dZ)$
$\frac{\delta n}{j dA} \int \frac{meosurable}{quantities} \Rightarrow \frac{d\sigma}{ds2} \qquad \begin{array}{c} con be \\ computed \\ u Q.M. \end{array}$ DEPENDS ON
POTENTIAL V
We can then tim problem ground and
use meanied do to INFER POTENTIAL V!
Stort frou Schrödinger Equation
$\left[-\frac{\hbar^2}{2\mu}\nabla_{\vec{x}}^2 + V(\vec{x})\right]\mathcal{L} = \mathcal{E}\mathcal{L}$

. if E20 bound state in VCX) => Hydrogen Atom, no Scattering !
I E > D continuoum = f shuttous for E Define $E = \frac{\hbar^2}{2\mu} k^2$; $V(x) = \frac{\hbar^2}{2\mu} U(x)$
so Schrödinger Equation becomes $(\overline{\nabla}^2 + k^2) \overline{4} - \mathcal{U}(x) \overline{4} = 0$ SCATTERINC EQUATION
Now omniming interaction hoppers in SMALL REGION where $V \neq 0$, we start losteng of frim of cultion Asymptotically FAR AWAY where $V = 0$!

Start with INCIDENT PLANE WAVE slong Z
$E = \frac{t^2}{2\mu} k^2 \qquad 2t_{imc} = \frac{1}{7} e^{ikZ}$
normolization
$= \overline{\nabla^2 + k^2} \overline{\gamma_{imc}} = 0 \text{fourse}$
[rome of this zime continues unscattered!]
After interaction if scar -> posticles come out
"In ony direction", slution should somehow
stel solve free scattering equation
Let's write it in spherical coordinates
$\left(\overline{\nabla}^{2} + k^{2}\right) \psi = \left[\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} \left(r\psi \right) + k^{2} \psi \right]$
$+\frac{1}{r^2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(ka\theta\frac{\partial \psi}{\partial\theta}\right)+\frac{1}{\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2}\right]$
$= 0 \qquad -\frac{L^2}{\hbar^2} \qquad 8$

os we one interested in osymptotic solution (r-300) we try the following Ausatz $\gamma_{\text{scorr}} = e^{ikr} \left[\sum_{4=1}^{90} f_k^{(i)} \left(\vartheta_1 \varphi \right) \begin{pmatrix} 1 \\ r \end{pmatrix} \right] \Rightarrow \left(kr = |\vec{k}||\vec{r}| \right)$ $=\frac{e^{ikr}}{r}\left[f_{k}(\partial,\varphi)+O(r^{+})\right]$ $\frac{1}{r}\frac{\partial^2}{\partial r^2}\left[r\frac{e^{ikr}}{r}f_k(\theta_i\varphi)\right] = -k^2\frac{e^{ikr}}{r}f_k(\theta_i\varphi)$ $k^{2} \frac{e^{ikr}}{r} \frac{g(\partial_{i}e)}{r}$ $\frac{1}{r} \frac{\partial^2}{\partial r^2} \left[\frac{e^{Akr}}{r} \frac{g(\theta_1, \varphi)}{\rho_1 r} \right] \propto \frac{1}{r} \frac{\partial^2}{\rho_1 r} \left[\frac{e^{Akr}}{r} \frac{g(\theta_1, \varphi)}{\rho_1 r} \right] \propto \frac{1}{r} \frac{1}$ + $\partial(_{\Gamma^3}^{\perp})$ $\frac{4}{r^{2}}\left[-\frac{L^{2}(\theta, \varrho)}{\pi^{2}}\right]\left(\frac{e^{ikr}}{r}\int_{r}^{l}f_{r}(\theta, \varrho)+O\left(\frac{1}{r}\right)\right) \prec O\left(\frac{1}{r^{2}}\right)$ => 2fsort solves sotteing equation orguyothically ! 9

fre(0, q) is a function of the ougles only and of the moment is unconstrained
full, e) colled SCATTERING AMPLITUDE
h full solution osymptolially [V(x) = 0] is
$2f = e^{ikz} + \frac{e^{ikr}}{r} f_k(\partial_i \psi) \left[1 + O(\frac{1}{r}) \right]$
Now let's compute the current j $\begin{pmatrix} ikz & i\vec{k} \cdot \vec{r} \\ e & e \end{pmatrix}$
$\vec{1} = -\frac{i\hbar}{2\mu} \left(\psi^* \overline{\nabla} \psi - \psi \overline{\nabla} \psi^* \right)$
$= \frac{\pi}{2\pi\mu} \left\{ \left[e^{-ik\frac{2}{r}} + \int_{\mu}^{*}(\partial_{r}\varphi) e^{-ikr} \right] \times \right\}$
$\times \left[\frac{ik^2}{ik\ell} + \left(\frac{ikr}{r} - \frac{ikr}{r} \right) \frac{ikr}{r} + \frac{1}{r} \frac{\partial f_k}{\partial \theta} + \frac{1}{r} \frac{\partial f_k}{\partial \theta} + \frac{1}{r} \frac{\partial f_k}{\partial \phi} \frac{\partial f_k}{\partial \phi} \right]$
- complex conjugated }

evoluating the products we get
$\vec{j} = \frac{\hbar \kappa}{\mu} \hat{z} + \frac{\hbar \kappa}{\mu} \frac{\hat{r}}{r^2} f_{\kappa}(\theta, e) ^2 + O(\frac{1}{r^3})$
+ interference terms with entry & eikz !
· O(+3) doorly supressed et lage durance!
. What dout INTERFERENCE TERMS ? they contain both types of exponentially
Juir & A e e + c.c.
~ $Ae^{ikr(1-\cos\theta)}$ + c.c. (uring $Z=r\cos\theta$)
NOTICE ; we dways cave don't $0 \neq 0$ (there is no way to distinguish scattered
from unscottered porticles in FORWARD DIRECTION!) 11

Now a c REALISTIC EXPERIMENT ve must intervate
j over some small dSZ
$\sim \int d \cos \theta d \varphi g(\theta, \varphi) e^{ikr(n-\cos \theta)} A$
unspecified moster "saceptonce" function Br the DETECTOR
when r>00, integral of some smooth function times a RAPIDLY OSCILLATING ONE eikr(1-cn)
times a RAPIDLY OSCILLATING ONE CIER (1-CD)
Riemann - Lebesque lemma soys this
Internal VANISHES FASTER THAN ANY In ! (SEE EXERCISES!)
to we can neglect all interference terms and
$\vec{j} = \frac{\hbar k}{\mu} \hat{z} + \frac{\hbar k}{\mu} \hat{r}^{2} f_{k}(\theta, \varphi) ^{2} \qquad \text{TOTAL} $ $\vec{j} = \frac{\hbar k}{\mu} \hat{z} + \frac{\hbar k}{\mu} \hat{r}^{2} f_{k}(\theta, \varphi) ^{2} \qquad \text{FAR AWAY} $ $\vec{j} = \frac{\hbar k}{\mu} \hat{z} + \frac{\hbar k}{\mu} \hat{r}^{2} f_{k}(\theta, \varphi) ^{2} \qquad \text{TOTAL} $ $\vec{j} = \frac{\hbar k}{\mu} \hat{z} + \frac{\hbar k}{\mu} \hat{r}^{2} f_{k}(\theta, \varphi) ^{2} \qquad \text{TOTAL} $

Ving this current in our formula for the cross-section grees
$d\sigma(\vartheta, \varphi) = \int_{I}^{-1} \int_{SGAT} dA = \frac{\mu}{\pi k} \left[\frac{1}{k} \frac{\pi k}{k} \left[\frac{1}{k} \frac{\pi k}{k} \left[\frac{1}{k} \frac{\pi k}{k} \right] \right]_{I}^{2} d\eta$
AREA SUBTENDS INCIDENT JI FLUX ~ 2 tik M SCATTERING RATE => FLUX SCATTERED!
$\sim \frac{\hat{r}}{r^2} \frac{\hbar k}{\mu} \left[f_{\mu}(\vartheta, \varphi) \right]^2$
$\Rightarrow \left d\sigma(\vartheta, \varphi) = \left f_{k}(\vartheta, \varphi) \right ^{2} dS \right \text{GROSS}$
Notice that terms ~ O(+3) in J would
Contribute to non-section with $\sim O(\frac{1}{r})$ due
to the r ² at the numerator of interation measures => confirms it is oke to neglect them! B

more explicitly: our starting fromola was
$\delta n = j_{I}\left(\frac{d\sigma(\theta, e)}{d\Sigma}\right) d\Sigma$ which rangelies
$\frac{d\sigma}{dr} = \int_{\Sigma}^{-1} \frac{Sn}{dr}$ now Sn is rate measured by detector
=> $\delta h = \int cont \times dA$ $dA = r^2 dR$ onea sustended by dR at detects!
$\Rightarrow \frac{d\Gamma}{d\Omega} = \int_{I}^{-1} \frac{\int_{I} x_{ATT} \cdot r^{2} d\Omega}{d\Omega}$
$= \frac{\mu}{\hbar k} \frac{1}{\pi} \frac{\hbar u}{\hbar} f_u(\theta, e) ^2 \frac{\pi^2 dS^2}{dS^2}$
$= f_{u}(\vartheta, \varphi) ^{2}$ 14

=> in order to compute cron-section, we need the scottering ourplande
To compute nt, we need to solve Schrödinger Eq. and see what information is brought in by the
polenilise V(x). To do that, we use the <u>CREEN'S FUNCTION method</u> , that you should know from Electro dynomics.
Stent from $(\vec{\nabla}^2 + k^2) = 0$ Free Schrödinger Operator
Green's function $G(x)$ is defined or $(\overline{\nabla}^2 + u^2) G(\overline{x}) = \delta^{(3)}(\overline{x}) = \int_{1}^{(3)} (\overline{x}) dx$
$\delta^{(3)}_{(x_{2})} = \delta(x_{1}) \delta(x_{2}) \delta(x_{3}) \qquad \vec{x} = (x_{1}, x_{2}, x_{3}) \\ \sim (x_{1}, y_{2}, z_{3}) \qquad 15$

indeed, if we have G(x), then we can write
$2(\vec{x}) = 2(\vec{x}) + \left[d^{3}\vec{y} - G(\vec{x} - \vec{y}) - U(\vec{y}) + (\vec{y}) \right]$
with $(\overrightarrow{\nabla} + k^{2}) = 0$
there being on $\gamma(\vec{x})$ with $\vec{\nabla} + k^2$ we get
$(\vec{\nabla}_{x}^{2} + k^{2})\psi = 0 + \int d^{3}\vec{g} (\vec{\nabla}_{x}^{2} + k^{2})G(\vec{x} - \vec{g}) U(\vec{g})\psi(\vec{g})$
$= \int d^{3}\vec{y} \delta(\vec{x}-\vec{q}) U(\vec{y}) \mathcal{U}(\vec{y}) \end{pmatrix}$
$= \mathcal{U}(\vec{x}) \psi(\vec{x})$
to boxed equation dove is a alution of the
Schrödnjer Equation => we shill need to make me
WE FIX BOUNDARY CONDITION to get physical relation!
$\psi_{\alpha}(\mathbf{x})$ & $\mathcal{L}(\mathbf{x}-\mathbf{x}')$ 16

Before thinking dout how to compute G(X),
Notice that this equation is sporn on integol
Equation, very similar to the one we wrote
when shidying time-dependent perturbation theory.
It becomes USEFUL if we assume that Ulig) is
"small" and we can then ITERATE the
equation to get a Series Exponsion in U
=> "BORN" EXPANSION (SERIES)
$\eta(x) = \eta_0(x) + \int d^3 \vec{g} G(\vec{x} - \vec{g}) u(\vec{g}) \eta_0(\vec{g})$
+ $\int d^{3}\vec{y} G(\vec{x}-\vec{y}) U(\vec{y}) \int d^{3}\vec{z} G(\vec{y}-\vec{z}) U(\vec{z}) \psi_{0}(\vec{z})$
$+ O(u(x)^3)$ etc
=> useful becoure 240(x) is known !
24.(x) = e mcoming (unscattered) wave 17

the first order is collect
(first) BORN APPROXIMATION
$2f_{sam}^{(4)}(\vec{x}) = \frac{2\mu}{\hbar^2} \int d^3\vec{y} \ G(\vec{x} - \vec{y}) \ V(\vec{y}) \ e^{iky_3}$
bock to Standard Botential
$\left\{ \vec{k} = (0, 0, k); \vec{y} = (y_1, y_2, y_3) \right\}$
To make use of this formula, we need $G(\vec{x}-\vec{y})$!
We will prove more properly in next lectore that
$G(\vec{x}) = G(\vec{x}) = -\frac{e}{4\pi \vec{x} }$
is right solution for our GOING SPHERICAL WAVE

To prove it, we should see that :
$(\overline{\nabla}^{2} + k^{1})G(1\overline{X}1) = (\overline{\nabla} + k^{1})G(r) = S(\overline{X})$ \uparrow
spheicol coordinates
os long os r = 0 we can just differentinte:
$=\frac{1}{r}\frac{3^{2}}{3r^{2}}\left(rG(r)\right)+k^{2}G(k)$
$= -\frac{1}{r} \frac{\partial^2}{\partial r^2} \left[r \frac{e^{+ikr}}{4\pi r} \right] - k^2 \frac{e^{+ikr}}{4\pi r}$
$= + \frac{K^2}{\Gamma L \pi} e^{+ikr} - k^2 \frac{e^{+ikr}}{G \pi r} = 0$
$\Rightarrow @ r = \Rightarrow \frac{2}{2r}$ etc ell rel defined
We should find $\delta^{(3)}(\vec{x}) = $ Distribution
makes seuse only you integation ou some
regon of space => Some sphele contrep @ \$=0

∫dV ₹G(r) = SE	SE sphere of rodius E
$= \frac{\text{DIVERGENCE}}{\text{THEOREM}} = \int (\overline{\nabla} \cdot G)$ $= \frac{\sum_{\epsilon}}{\sum_{\epsilon}}$	r do
how $\vec{\nabla} \cdot G(r) = \hat{r} \frac{\partial G}{\partial r}$ = $\hat{r} \left[\frac{1}{r^2} - \frac{1}{r^2} \right]$	$\frac{ik}{r}$] e^{ikr}
$= \int \frac{1}{a\pi} \left[\frac{4}{r^2} - \frac{ik}{r} \right] e^{ikr} d\sigma$ $= \int \frac{1}{a\pi} \left[\frac{4}{r^2} - \frac{ik}{r} \right] e^{ikr} d\sigma$ \uparrow $= \int \frac{1}{a\pi} \left[\frac{4}{r^2} - \frac{ik}{r} \right] e^{ikr} d\sigma$ \uparrow $= \int \frac{1}{a\pi} \left[\frac{4}{r^2} - \frac{ik}{r} \right] e^{ikr} d\sigma$ \uparrow $= \int \frac{1}{a\pi} \left[\frac{4}{r^2} - \frac{ik}{r} \right] e^{ikr} d\sigma$ \uparrow $= \int \frac{1}{a\pi} \left[\frac{4}{r^2} - \frac{ik}{r} \right] e^{ikr} d\sigma$ \uparrow $= \int \frac{1}{a\pi} \left[\frac{4}{r^2} - \frac{ik}{r} \right] e^{ikr} d\sigma$ \uparrow	$= GTE^{2} \perp \begin{bmatrix} 1 - ik \\ 4T \end{bmatrix} e^{ikE}$ $= 1 + 0(E^{2})$ 20

Ja We	fud	that	စာ ၉	→ 0	$\int \nabla \hat{g} dV = 1$
which	· · · ·	excelly	whet	we expect	$+ \operatorname{prover} S^{(8)}(\vec{x})$
->	for	other	Smooth	fun cliou	where would
· · · · · · ·		to zero	when	volume	shanks
Now, c)smg	- <i>G</i> C	x)= _	$\frac{e^{+ k \hat{x} }}{G\pi \hat{x} }$	im formula fr
FIRST	010	er bor	n Apri	eximation	· · · · · · · · · · · · · · · · · · ·
24 (1) 5 carr	₹) -	$= \frac{2\mu}{t^2}$	$\int d^3 \vec{y} C$	(x-J)	V(z) e
		= _ <u>H</u> 2171	$\frac{1}{2}\int d\vec{y}$	+ikl×-ÿ] e I×-ÿ]	V(y) e ^{1ky} 3
· · · · · · · ·	(re	menser	y 3	= 2.ÿ;	etc) 21

Typicolly region 1	V(x) =0 x < R => F	IN Some	
· · · · · · · · · ·			
		* 17	1>>R!
		u this reg or	N
then we	con cuplify	the intepol	newe
1×-31=	$\sqrt{\vec{x}^2 + \vec{y}^2 - 2\vec{x} \cdot \vec{y}}$	$=$ $ \vec{x} \sqrt{4}$	$\frac{2 \hat{x} \cdot \hat{y}}{ \vec{x} } + \frac{ \vec{y} ^2}{ \vec{x} ^2}$
	$ \vec{x} = \hat{x} \cdot \vec{y}$	$+ O\left(\frac{ \vec{y} }{ \vec{x} ^2}\right)$	end
Ψ _{sat} (^x) =	$\frac{\mu e}{2\pi \hbar^2 \vec{x} }$	dÿe	j e Vij)
· · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · ·	22

$= -\frac{\mu}{2\pi t_{i}^{2}} \frac{e}{ \vec{x} } \int d^{3}\vec{g} e^{-i(\vec{k}_{i}-\vec{k}_{e})\cdot\vec{g}} V(\vec{g})$
where $\int \vec{k}_i = (0, 0, k)$ wore vector of incident porticle $\int \vec{k}_f = k \hat{x}$ wore rector of scattered porticle
notra that this is exactly in form
$2f = e^{ikz} + \frac{e^{ikr}}{r} f_k(\partial_i e) \left[1 + O(\frac{1}{r}) \right]$
with $f(\theta_{i} \varphi) = -\frac{\mu}{2\pi\hbar^{2}} \int d^{3} \vec{y} e^{i(\vec{k}\cdot -\vec{k}\cdot\vec{y})\cdot\vec{y}} \sqrt{l\vec{y}}$
=> the SCATTERING AMPLITUDE 14 BORN APPROX
IS given by the Fourier TRANSFORM of the SCATTERING POTENTIAL (23