8. Atoms i EM fields Selection Rules

let us now opply this formolises to study the interaction of atoms with on E.M. field he found general formula
$d\Gamma_{f=i}^{\lambda} = \frac{\pi e^2}{m^2 \epsilon_{s} \omega V} \langle f e^{-i\vec{k}\cdot\vec{r}} \vec{\epsilon}_1 \cdot \hat{\vec{p}} i\rangle ^2 p(E) dE$
<ple e,="" pli=""> Non - imw <fle, pli=""></fle,></ple>
In porticulor, we cousider ou HYDEDGEN ATOM (hydrogen-like with general Z)
$ i\rangle = n_i, e_i, m_i\rangle;$ $ f\rangle = n_f, e_f, m_f\rangle$
$\langle f \vec{\epsilon}_{i} \vec{r} \rangle = \int r^{2} dr R_{nfef}^{*}(r) R_{niei}(r)$
× JdJZ Yeymy (O, e) Yeimi (O, e) E. r

where $\vec{\xi}_{1} \cdot \vec{r} = r(\vec{\xi}_{1} \cdot \vec{r})$ $\vec{r} = \frac{\vec{r}}{\vec{r}} = \frac{\vec{r}}{r}$
$\vec{E}_{A} \cdot \vec{\vec{r}} = \mathcal{E}_{X} \operatorname{and} \operatorname{cop} + \mathcal{E}_{Y} \operatorname{Fm} \operatorname{dsm} \varphi + \mathcal{E}_{Z} \operatorname{cn} \operatorname{ds}$
we migrens subscript "1" for simplicity
now, remember that
$Y_{10}(\partial_{1}\varphi) = \sqrt{\frac{3}{4\pi}} \cos \theta$
$Y_{1,\pm 1}(\theta,\varphi) = \mp \sqrt{\frac{3}{8\pi}} \operatorname{Sim} \theta e^{\pm i\varphi}$
$= \mp \sqrt{\frac{3}{8\pi}} \operatorname{and} \left[\cos \varphi \pm i \sin \varphi \right]$
$\Rightarrow \qquad \qquad$
$\omega \vartheta = \sqrt{\frac{24}{3}} \frac{1}{10}$ $\delta u \vartheta F u \vartheta = -\sqrt{\frac{8}{3}} \left(\frac{Y_{1,1} \in Y_{1,-1}}{2n} \right) 2$

which gres
$\vec{E}_{A} \cdot \vec{\Gamma} = \sqrt{\frac{4\pi}{3}} \left[\frac{\epsilon_{2} Y_{10}}{10} + \frac{-\epsilon_{x+1} \epsilon_{y}}{\sqrt{2}} Y_{1,1} + \frac{\epsilon_{x+1} \epsilon_{y}}{\sqrt{2}} Y_{1,-1} \right]$
=> THREE POLARIZATIONS OF PHOTON $M = 0, 1, -1$ LPIN 1 $M = 0, 1, -1$
this is converient because now angular interstion
cou le performed using properties of spherical homonics
with $\gamma_{1m}(\theta, \varphi)$ with $m = \{-1, 0, 1\}$
$U_{ne} \int d\Omega = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\vartheta \epsilon_{nn} \vartheta$
Focus first au Sdp, remembering dependence
of spherical hormonics ou q
$Y_{eml}(\theta, q) \propto e^{im q} P_e^m(\omega, \theta)$
sel dependence on p 13 here 3

$\langle f \vec{\epsilon}_{i}, \vec{r} \rangle = \int \vec{r} dr R_{hfef}^{*}(r) R_{niei}(r)$
$\int_{-1}^{1} d\alpha \theta \left[\dots \right] \int_{-1}^{0} d\varphi e^{-imp\theta} e^{-im\theta\theta} e^{-im$
$\int_{a}^{2\pi} \frac{-i[m_{f}-m_{i}-m]\varphi}{\int_{a}^{2\pi} e^{-i[m_{f}-m_{i}-m]\varphi}} = \frac{(1-e^{-2\pi i(m_{f}-m_{i}-m)})}{i[m_{f}-m_{i}-m]}$
recol $m_{f_{1}}m_{1}m_{1} \in \mathbb{Z}$, if $m_{f_{2}}m_{1}-m_{1} = 0$ then $e^{-2\pi i Cm_{f_{2}}-m_{1}-m_{1}} = 1$
result is zon -
Only exception if $m_f - m_i - m = 0 \implies m_f - m_i = m_i$ = (-1, 0, 1)
<i>2°22 - 2</i> ^{<i>n</i>}

$\int_{0}^{Lit} \frac{-i(m_{f} - m_{i} - m_{i})\varphi}{2\pi} = 2\pi \int_{0}^{Lit} \frac{1}{2\pi} \int_{0}^{Lit} \frac{1}{2\pi} \frac{1}{2\pi} \int_{0}^{$
this provides a first selection rule.
=> in Dipole oppose traisition can hoppen
only if $m_1 - m_2 = \frac{1}{2} - \frac{1}{2}$, $0, 1\frac{1}{2}$ which where $\frac{1}{2}$ PHOTOM SPIN 1.
Nous smagne we votate reference system such that
$\vec{k} = (0, 0, k_z) \Rightarrow \vec{\epsilon} = (\epsilon_x, \epsilon_y, 0)$ for $\vec{\epsilon} \cdot \vec{k} = 0$ photon momentum
in this are 110 is missing in original frunca
$30 \text{ mf} - \text{ma} = \{-1, 1\}$
SPECIAL CASE { $l_f = 0$ } (decoy to ground state)
\implies $M = -mi$ where mistin pointable of the photon ! 5

$n + m_i = 1$	atom pel	Ented lovery portive
zaxis then ph	iotan hop	M = -1
$\vec{\varepsilon}_1 \cdot \vec{r} \rightarrow \frac{\varepsilon_{x+1}\varepsilon_{y}}{\sqrt{2}}$	<u>» </u>	$(\vartheta_i \varphi)$
ATOM in $M_i = 1$	decoys	to $m_f = 0$
envitting 2 photon momenteur cloug Z	u ushida Sice	comies ougulor
z_{p}	Ex ti Ey VZ	is left-circulorly polorized photon with spim Azon G its direction of motion
	· · · · · · · ·	> POSITNE HELICITY
	6

What about & integration?
Let's consider for simplecty decays to grow and
state 15, such that Yey, mp = Yo, o = 1
then ougulor integration reads
$\int_{4\pi\pi}^{2\pi} \int_{0}^{2\pi} d\cos \theta Y_{1,m}(\theta,\varphi) Y_{e_{i},m_{i}}(\theta,\varphi) =$
$= \frac{1}{\sqrt{4\pi}} \frac{\delta e_{,1} \ \delta m_{i,-m}}{\pi}$
this port we screedy
Le hal alto Must as Red
(HPLIES IMING STOL RUSI DE Z-I
In DIRLE Allary only np -> 15 trand have
ore clowed => DOMINANT TRANSITIONS 7

[HBRTANT: there are no ns > ms trainitions (zero - zero)
=> if la = lf = 0 we are left with
JdZ Yim Yeime Yeimi ~ JdSI Yim = 0 T All zero!
HORE W GENERAL if lito & left o one has to account for total angular momentum
$l_i = initial$; $L_f = SUM(P_f, l)$ 7 photon
Addition of oregular momentum ques
$L_{f} = \{l_{f+1}, l_{f}, l_{f-1}\} \text{rm}(e l = 1$ $\text{most be equal to l_{i} \mid \\ \qquad \qquad$

=> conservation of ongular momentum becomes-
$l_{f} - l_{x} = \Delta l = \{-1, 0, +1\}$
let us courder $\Delta e = 0$ in porticulor. This would
mean that some transtran like 3p > 2p should be allowed.
PARITY ques extra constraint in fact
2fl È, Fli> ~ J Yerme Yermi È, F
PARITY TRANSFORMATION sends $\vec{\Gamma} \rightarrow -\vec{\Gamma}$ letter Verme Yeimi $-(-1)$ Y Y
Ponty invoidure repaires there for that lf+li=ODD
PARITY OF STATE HUST CHANGE, 3p->2p Not
ollowed

$\Rightarrow \boxed{\Delta \ell} = \pm 1 \boxed{\text{IN DIPOSE APPROXITATION}}$
On top of this, if $V(t) = \frac{e}{m} \vec{A} \cdot \vec{p}$
this has no spin dependence so it CONNOT FLIP SPIN
$\Rightarrow \Delta S = 0 \qquad \text{Spin plechoes} \\ \text{vule} \qquad \qquad$
Notice that while origiely momentum MUST
BE CONSERVED, $\Delta R = \pm 1$ or a conseptence
IS ONLY TRUE IN DIPOLE APPROXIMATION
=> expanding <ple &="" f="" ik="" pli=""> to</ple>
higher ordens (MULTIPOLE EXPANSION) ollows
from thoms with $L\Delta el > 1$
QUADRUPOLE Allows $\Delta l = 2$ etc. 10

At higher or	ders, or if we add a magnetic fall,
we can do	generate $\Delta S \neq 0$ transhows
	(see exercised)
IMPORTANT	the selection role that violales
· · · · · · · · · · · ·	hs -> ms transhows 10
· · · · · · · · · · ·	ABSOLUTE (not only in DIROLE)
EXPLICIT CAS	SE: 2p -> 15 TRANSITION
After hoving	studied the Dipole motix element
in general	and discussed voious selection rules,
let us now	consider on explicit colculation in
orden to ge	et a feeling of the numerical
rupset of	these decoups _> decoy probability
and life-tw	re of excited states.

$\langle f \vec{E}_{1}(\vec{r} i) = \int_{0}^{\infty} r dr R_{10}^{*}(r) R_{21}(r)$
$\int dSZ Y_{00}^{*} \left[\vartheta, \varphi \right] Y_{1,m} \left(\vartheta, \varphi \right) \vec{\mathcal{E}}_{1} \vec{\vec{r}}$
where I used
$ i\rangle = 2p\rangle = 21m\rangle$; $ f\rangle = 1s\rangle = 100\rangle$
let's evoluate radial and angula port explicitly. We get
$\int_{3}^{\infty} dr r^{3} \left[2 \left(\frac{z}{a_{0}} \right)^{3/2} e^{-\frac{z}{a_{0}}/a_{0}} \right] \left[\frac{1}{\sqrt{24}} \left(\frac{z}{a_{0}} \right)^{5/2} r e^{-\frac{2r}{2a_{0}}} \right]$
$= \left(\frac{2}{a_{0}}\right)^{4} \frac{1}{\sqrt{6}} \int_{0}^{\infty} dr \ r^{4} \ e^{-\frac{32r}{2a_{0}}} = \frac{24}{\sqrt{6}} \left(\frac{2}{3}\right)^{5} \frac{a_{0}}{2}$
12

Luques port ques instead
$\frac{1}{\sqrt{4\pi}} \int d\Omega \dot{\epsilon}_{1} \hat{r} Y_{1,m}(\vartheta, \varphi) = $ $T \qquad T \qquad L rewarke this in terms of spherical horm$
$= \frac{1}{\sqrt{3}} \int d\Omega Y_{1,m} \left(\epsilon_{\overline{z}} Y_{10} + \frac{-\epsilon_{x+i}\epsilon_{y}}{\sqrt{z}} Y_{1,1} + \frac{\epsilon_{x+i}\epsilon_{y}}{\sqrt{z}} Y_{1,-i} \right)$
$= \frac{1}{\sqrt{3}} \left[\frac{\varepsilon_z \delta_{m,0} + \frac{-\varepsilon_{x+i}\varepsilon_y}{\sqrt{z}} \delta_{m,1} + \frac{\varepsilon_{x+i}\varepsilon_y}{\sqrt{z}} \delta_{m,-1} \right]$
Product of the two intendo gres
$\langle f \vec{\epsilon}_{i} \vec{r} i \rangle = \frac{24}{\sqrt{6}\sqrt{3}} \left(\frac{2}{3} \right) \left(\frac{90}{2} \right) \left[\frac{1}{2} \right]$
now we need to compute 1 <fl 1i="">12</fl>

from the vorious knowlecken Sij we get
$ \langle \rho \vec{\epsilon}_1 \cdot \hat{r} \cdot \rangle ^2 = q_6 \left(\frac{l}{3}\right)^{10} \left(\frac{q_0}{2}\right)^2 \cdot \frac{l}{3} \times$
$\times \left[\delta_{m,o} \varepsilon_{2}^{2} + \frac{1}{2} \left(\delta_{m,a} + \delta_{m,-i} \right) \left(\varepsilon_{x}^{1} \varepsilon_{y}^{2} \right) \right]$
As 22 non-products are zero Smo Sm1 = 0 etc
$d\Gamma_{2p>1s}^{\lambda} = \frac{\pi e^2}{m^2 \epsilon_0} \frac{m^2 \omega^2}{\omega^2} \langle f \vec{\epsilon}_1 \cdot \vec{r} i\rangle ^2 f(\vec{\epsilon}) dE$ from Dirole Armox !
you computed PCE) for photons a exercises 7
if we work a volume V, we have J
$d^{3}n = \frac{V}{(2\pi t_{i})^{3}} dp_{x} dp_{y} dp_{z}$ using $P_{i} = \frac{2\pi t_{i}}{L} n_{i}$
$= \frac{\sqrt{d^3 p}}{(2\pi \pi)^3} \qquad \text{photon has } \tilde{p} = \tilde{k} \qquad 14$

NOW $d^{3}k = d\Omega_{k} k^{2} dk = d\Omega_{k} \left(\frac{k^{2} dk}{dE}\right) dE$	
$\int_{T} photons K = \frac{E}{C} \implies \frac{k^2 d\kappa}{dE} = \frac{\kappa^2}{C} = \frac{E^2}{C^2} = \frac{\hbar^2 \omega^2}{C^2}$ $(E = \hbar \omega)$	
10 $\int CE dE = \frac{\sqrt{1+1}}{(2\pi \hbar)^3} \frac{1}{C^3} dR_k dE \int CE - Ei + \hbar \omega$ Fixes photon energy $E = \hbar \omega = \frac{1}{2} mc^2 (2)^2 \left[1 - \frac{1}{4} \right] = \frac{E_i - E_f}{\frac{1}{2}}$	
$\omega = \frac{3}{8} \frac{mc^2}{\pi} (2a)^2 \text{ photon frequency } 1$ oud putting everytering together we get	
$d\Gamma_{2p>1s}^{\lambda} = \frac{\pi e^2}{m\epsilon_{\circ}} \frac{\hbar^2 v^2}{(2\pi)^3 \hbar^3} \langle \rho \vec{\epsilon}_i \cdot \vec{r} i\rangle ^2 \frac{V}{(2\pi)^3 \hbar^3} \frac{\hbar^2 w^2}{c^2} dR_{e}$	5

$=\frac{e^2}{4\pi\epsilon_0\hbar c}\left(\frac{\omega^3}{2\pi}\right)\left(\frac{\omega^3}{2^2}\right)\left(\frac{\alpha_0}{2}\right)^2\frac{2^{15}}{3^{10}}\left(5_{10}\epsilon_2^2+\frac{\delta_{11}-\delta_{11}-\delta_{11}-\delta_{12}}{2}\right)dR_k$
$= \left(\frac{a}{2\pi}\right) \left[\frac{\omega^{3}}{c^{2}}\right] \left(\frac{q_{0}}{z}\right)^{2} \frac{2^{15}}{3^{10}} \left[\delta_{m_{0}} \varepsilon_{2}^{2} + \frac{\delta_{m_{1}} + \delta_{m-1}}{2} \left(\varepsilon_{x}^{2} \varepsilon_{y}^{2}\right)\right] dR$
with w field lefter ! we slill need to integrate over directions of photon momenta dSi
recol initial state $2p$ can have $m = \{-1, 0, 1\}$ Depending on exact milial state, we need to integrate dwar rameus server that $\vec{E}:\vec{k} = 0$ (trous versality)
the expression becomes simpler if we omume that ALL in values are EQUALLY PROBACLE => we dTm
$\frac{3}{m_{-5}-1} \frac{m_{-5}-1}{2} \frac{9}{10} \frac{1}{10} \frac{1}{10$

in fact, num becomes
$\frac{1}{3} \sum_{m=1}^{1} \left[\delta_{m0} \varepsilon_{2}^{2} + \frac{\delta_{m1} + \delta_{m-1}}{2} (\varepsilon_{x}^{2} \varepsilon_{y}^{2}) \right] = \frac{\varepsilon_{x}^{2} + \varepsilon_{y}^{2} + \varepsilon_{z}^{2}}{3}$
$= \frac{1}{3}$
normaltation condition of poloritation vector!
remember that photon has 2 polorizations \vec{E}_1 !
As setually $\frac{1}{3} \stackrel{2}{=} \frac{1}{m_{z-1}} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = \begin{pmatrix} 2 \\ -3 \\ -3 \end{bmatrix}$
Now integration over $d\mathcal{R}_{k} = 4eTT$ (nothing depends on \hat{k} onymore)
oud we get
$\langle T(2p \rightarrow 4s) \rangle = \left(\frac{a}{2\pi}\right) \left[\frac{\omega^3}{c^2}\right] \left(\frac{a_0}{z}\right)^2 \frac{2^{15}}{3^{10}} 4\pi \frac{2}{3}$
• • • • • • • • • • • • • • • • • • •

$= 2 d \left(\frac{a_{0}}{z}\right)^{2} \frac{2^{46}}{3^{44}} \frac{1}{c^{2}} \left[\frac{3}{2^{3}} \frac{Mc^{2}}{\pi} (z_{d})^{2}\right]^{3}$
photon frequency_
$= a^{\frac{7}{2}} \frac{4}{\theta_{10}} \left(\frac{2^{\frac{11}{2}}}{3^{\frac{11}{2}}}\right) \frac{3^{\frac{3}{2}}}{2^{\frac{9}{2}}} \frac{m^{\frac{3}{2}}c^{6}}{\pi^{\frac{3}{2}}}; a_{0} = \frac{\pi}{mc^{\frac{3}{2}}}$
$= \sqrt{\frac{5}{2}} \frac{4}{m^{2}} \frac{4}{m^{2}} \frac{m^{3}}{m^{2}} \left(\frac{2}{3}\right)^{8} \frac{c^{4}}{4} \frac{4}{\pi^{3}} \frac{1}{\pi^{2}} \frac{1}{\pi^{2}}$
$\langle \Gamma_{2p-31s}^{1} \rangle = \left(\frac{2}{3}\right)^{8} a^{5} \frac{mc^{2}}{\hbar} \geq 4 = 0.62 \cdot 10^{9} \frac{z^{4}}{s}$
DECAY RATE ~ EMISSION RATE FOR PHOTONS!
$T = \frac{1}{\Gamma} = 1.61 \cdot 10^{-9} \text{ s lifetime}$
remember $P_i(t) = C_i(t) ^2 = e^{-Tt}$
esparential decay 1, see Lecture 6

fue we have	the rate,	we cou	compte	the
RADIATION INT	ENSITY	03-	· · · · · · ·	· · · · · · · · · · ·
d.Γ(ω) =	thω. photon _euergy	d T Î ra	k fr em f photo	N2 182, ON
$= \hbar \omega \frac{T e^2}{m^2 \epsilon_s \omega V}$	$n^2 W^2 \underbrace{\overset{2}{\underset{\substack{j=1\\ j=1}}{\overset{2}{\overset{j=1}{\overset{j}{\overset{j=1}{\overset{j}{\overset{j=1}{\overset{j=1}{\overset{j=1}{\overset{j}}{\overset{j}}{\overset{j}}{\overset{j}{\overset{j}}{\overset{j}}{\overset{j}}{\overset{j}}}\overset{j}{\overset{j}}{\overset{j}}{\overset{j}}{\overset{j}}}}{\overset{j}}{\overset{j}}}}}}}}$	\< ٩ قَ		$\frac{V}{(2\pi)^3} \frac{\omega^2}{c^2} d\Omega_{\mu}$
$=\frac{1}{24}\frac{e^2}{4\pi\epsilon_0}$	$\frac{\omega^4}{c^3} \stackrel{2}{=} 1$	<615	$\vec{r} \vec{a}\rangle ^2$	
~ clonical for	mula fo	meurry	of light	F
emfled by	on oscil	Johng DI	POLE of	
dectic dipole	moment	d = e	< 8 r i	-iwt >e