7. Interactions of Atoms with EM Fields (Environ & Marshim)

INTERACTION WITH ELECTROMAGNETIC FIELDS
After having developed the "general formalism" for
time dependent phenomena in perturbation thesez
we now wout to apply it to the interaction of
ATOMS with tome-dependent EM Fields
let us start with a quick recap of CLASSICAL
ELECTRODYNAMICS È = electric field ; B-maguelic field
HAXWELL EQUATIONS
$\left(\overline{\nabla}, \overline{\mathbf{G}} = \mathbf{O} \right)$
$\vec{\nabla} \vec{E} = \frac{1}{\varepsilon_0} g(\vec{r}, t)$
$\vec{\nabla} \times \vec{B} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \mu \cdot \vec{J}(\vec{r}, t)$
$\left(\vec{\nabla}\times\vec{\vec{E}}+\frac{\vec{\partial}\vec{\vec{E}}}{\vec{\partial}\vec{E}}\right)=0$
$g(\vec{r},t) = charge deux-ty; \vec{j}(\vec{r},t) = current deux-ty$

$\Rightarrow \frac{\partial P(\vec{r},t)}{\partial t} + \vec{\nabla} \cdot \vec{j}(\vec{r},t)$	t) = 0
$\frac{d}{dt} \int d\vec{r} g(\vec{r}, t) = -$	$\int ds \hat{n} \cdot \hat{j}(\hat{r}, t)$
S S	"chorge Q Couservaltion"
A changed posticle of change q expe	eienes Lorentz foce
$m \frac{d\vec{r}}{dt^2} = 9 \left[\vec{E}(\vec{r},t) + 1 \right]$	velochy
electron has q = -e	

to desube	e quoutrm e	system us ne	ed the
Hourebourd	, built o	of of Potentia	
B = ⊽× E = -	\vec{A} $\vec{\Delta}$ $\vec{\nabla} \phi$	$\begin{cases} \vec{A}(\vec{r},t) \\ \phi(\vec{r},t) \end{cases}$	ie (to poleulist
in this of one IDENTIC	À, ¢ fin DRLLY SATI SFIED	st & lost Moxy , while other	vell Eqs two gre
- 7 ² + -	2 [₹Ā] =	p(r,t) Es	
$\begin{bmatrix} -\nabla^2 + \frac{1}{C} \end{bmatrix}$	$\begin{bmatrix} \frac{\partial^2}{\partial t^2} \end{bmatrix} \vec{A} +$	$\vec{\nabla} \left[\vec{\nabla} \vec{A} + \frac{1}{C} \vec{D} \right]$	$\left\{ \int_{a} = \mu_0 \int_{a} C r_1 t \right\}$
GAUGE In change f	WARIANCE =	> Maxuel Ea pater 45000	95 dou't

$ \begin{cases} \varphi' = \varphi + \frac{\partial q}{\partial t} & \text{with smooth function} \\ \bar{A}' = \bar{A} - \bar{\nabla} q & g(\bar{r}, t) \end{cases} $
we can pick g(i, t) to rimply public
OFTEN USE LORENZ GAUGE 1 note mot LORENTZ 7 enother person !!!
$\Rightarrow \overline{\nabla} \cdot \overline{A} + \frac{1}{c^2} \cdot \frac{\partial \phi}{\partial t} = 0$
then equations simplify a bit to
$ \begin{pmatrix} -\nabla^{2} + \frac{1}{c^{2}} & \frac{2}{2t^{2}} \end{pmatrix} \phi = \frac{P(\vec{r},t)}{\varepsilon_{0}} \\ \begin{pmatrix} -\nabla^{2} + \frac{1}{c^{2}} & \frac{2^{2}}{2t^{2}} \end{pmatrix} \tilde{A} = \mu_{0} \bar{J}(\vec{r},t) $

if p(r,t) = p(r) STATE CHARGE DISTRIBUTION then we choose often Coulous Couge
$\frac{\partial p(\vec{r})}{\partial t} = \circ i \vec{\nabla} \cdot \hat{A} = 0$
$\int_{-\infty}^{\infty} \nabla^2 \varphi = \frac{\rho(\vec{r})}{\varepsilon_0}$
$\left(\left(-\nabla^2 + \frac{1}{c^2} - \frac{\partial^2}{\partial t^2} \right) \hat{A} = \mu_0 \hat{J}(\hat{r}, t) \right)$
In terms of \vec{A} , ϕ , the Househouse for interaction with E.M. field is taken to be
$H = \frac{1}{2m} \left[\vec{p} - q \vec{A}(\vec{r}, t) \right]^2 + q \phi(\vec{r}, t)$
$(f_{n} electron q = -e)$
p = p = q A MINIMAL COUPLING

this form of the Howiltonian reproduces the equations of motion (Lorentz Force!)
Now let's focus ou phenomenon of KADIATION & its interaction with QUANTUM SYSTEMS
We will use a so called Semi-clancol opposition where the E.M. field is not "frely quarkzet".
Stort from
$H = \frac{1}{2m} \left[\vec{p} - q \vec{A}(\vec{r}, t) \right]^2 + q \phi(\vec{r}, t)$
with $p(\vec{r},t) = p(\vec{r})$ <u>STATIC</u> $\Rightarrow \nabla^2 \phi = -\frac{P}{E_0} \phi(\vec{r})$ <u>STATIC</u> in Conclouily GAUGE
All radiation phenomena $\overrightarrow{\nabla} \overrightarrow{A} = 3$ related to $\overrightarrow{A}(\overrightarrow{r}, t)$

nts port of Howilts nion lecomes
$\frac{1}{2m}\left[\vec{p}-q\vec{A}(\vec{r},t)\right]^{2} = +\frac{1}{2m}\left[-it\vec{v}-q\vec{A}(\vec{r},t)\right]^{2}$
$= \int_{2M} \left[\vec{p}^2 + q^2 \vec{A} ^2 + 2i\hbar q \vec{\nabla} \cdot \vec{A} \right]$
$\vec{\nabla} \cdot \vec{A} = (\vec{\nabla} \cdot \vec{A}) + \vec{A} \cdot \vec{\nabla}$
$= \frac{1}{2m} \left(\vec{p}^2 + q^2 \vec{A} ^2 - 2q \vec{A} \cdot \vec{p} \right)$ $\frac{1}{2m} \left(\vec{p}^2 + q^2 \vec{A} ^2 - 2q \vec{A} \cdot \vec{p} \right)$
usual temetric ~ (Å), neglect
-> ochelly, we will see
to 2 8 interactions

for free field (owny from source that generated A
Noxuell Equation becomes [some for As]
$-\nabla^{2}\vec{A}_{o}(\vec{r}) - \frac{\omega^{2}}{c^{2}}\vec{A}_{o}(\vec{r}) = 0 \left(\vec{1}(\vec{r}_{1}+)=0\right)$
bluhous one trivial $\vec{A}_s(\vec{r}) = \vec{A}_s \vec{e}$
where $\vec{k}^2 = \frac{\omega^2}{c^2}$ $\vec{A}_{\sigma}(\vec{r}) = \vec{A}_{\sigma} + \vec{e}$
Clearly we are free to pick ± k in Ão(r) our choice is ARGITMARY => then we get
$\vec{A}_{s}(\vec{r},t) = \vec{A}_{o} \cdot e \qquad + $
$\vec{E} = -\frac{\partial \vec{A}}{\partial t} \hat{\mathcal{R}} = \vec{\nabla} \times \vec{A} \qquad \qquad$

and from them we can get the energy density. of the E.M. freed $\mathcal{E} = \frac{\varepsilon_0}{2} \stackrel{2}{\Xi} + \frac{1}{2\mu_0} \stackrel{2}{B}^2$
Explicitly we get $ \begin{bmatrix} \vec{E} = -i\omega \begin{bmatrix} \vec{A}_{0} e^{i(\vec{k}\cdot\vec{r}-\omega t)} & \vec{A}_{0} e^{i(\vec{k}\cdot\vec{r}-\omega t)} \end{bmatrix} = \vec{A}_{0} e^{i(\vec{k}\cdot\vec{r}-\omega t)} \\ \vec{B} = -i[\vec{k}\times\vec{A}_{0} e^{i(\vec{k}\cdot\vec{r}-\omega t)} & \vec{k}\times\vec{A}_{0} e^{-i(\vec{k}\cdot\vec{r}-\omega t)} \end{bmatrix} $
notice $\overline{\nabla} \cdot \overline{E} = 0$ supplies $\overline{E} \cdot \overline{A}_0 = \overline{E} \cdot \overline{A}_0 = 0$ "transverselity condition"
$\mathcal{E} = \frac{\varepsilon_{\circ}}{2} \left[\omega^{*} \left(\vec{A}_{\circ} \cdot \vec{A}_{\circ}^{\dagger} + \vec{A}_{\circ} \cdot \vec{A}_{\circ} \right) \right] \\ + L \left[\left(\vec{k} \times \vec{A}_{\circ} \right) \cdot \left(\vec{k} \times \vec{A}_{\circ}^{\dagger} \right) + \left(\vec{k} \times \vec{A}_{\circ}^{\dagger} \right) \cdot \left(\vec{k} \times \vec{A}_{\circ} \right) \right] $
+ terms ~ e ^{±iwt} , i.e. oscillahmg! 10

We can separate the ascillating post from the rest, marco if we avorage in time, it will
We can muphify second term using
$(\vec{k} \times \vec{A}_{0}) \cdot (\vec{k} \times \vec{A}_{0}^{+}) = \vec{k}^{2} \vec{A}_{0} \cdot \vec{A}_{0}^{+} - (\vec{k} \cdot \vec{A}_{0}^{+}) (\vec{A}_{0} \cdot \vec{k})$ $(\vec{k} \times \vec{A}_{0}^{+}) \cdot (\vec{k} \times \vec{A}_{0}) = joure \vec{A}_{0} \leftarrow \vec{A}_{0}^{+} \text{with that}$
$SOM = \frac{1}{2\mu_0} \left[\vec{k}^2 \left(\vec{A}_0 \cdot \vec{A}_0^{\dagger} + \vec{A}_0^{\dagger} \cdot \vec{A}_0 \right) \right]$
where we used $\vec{k} \cdot \vec{A}_{o} = \vec{k} \cdot \vec{A}_{o} = 0$
remember finally $\frac{\vec{k}^2}{\epsilon_{\mu \sigma}} = c^2 \vec{k}^2 = \omega^2$

so fuelly two non-oscillating contributions one the nonce and we get
$\mathcal{E} = \varepsilon_{\circ} \omega^{2} \left(\vec{A}_{\circ} \cdot \vec{A}_{\circ}^{\dagger} + \vec{A}_{\circ}^{\dagger} \cdot \vec{A}_{\circ} \right) + \frac{1}{4 \epsilon_{1} m_{s}} + \frac{1}{4 \epsilon_$
Clanscelly $\mathcal{E} = 2\varepsilon_0 \omega^2 \vec{A}_0 ^2$
WISTERD, for a full QUANTOM MECHANICAL treatment of the E.M. field, one needs to beat to the operators and impose commitation rules is be TUTORIALS
Here we take a rhortcut, SEMICLASSICAL APPROXMANON
$\int_{V} \mathcal{E} d^{3} \vec{r} = 2 \mathcal{E}_{0} \omega^{2} A_{0} ^{2} V$ $In volume V$ $CLASSICALLY$ 12

now we omme that this radiation is comfed
by N "photons" with energy N two
which allows us to fix the magin hole of IÃo)
$2\varepsilon_{o}\omega^{2} \vec{A}_{o} ^{2}V = N\hbar\omega$
$ \vec{A}_{o} = \sqrt{N} \frac{\hbar}{2\epsilon_{o}\omega V}$
We specify the "drection" of $\overline{A_0}$ by a POLARIZATION vector $\overline{E_1}$ with
$\vec{\varepsilon}_{j} \cdot \vec{\varepsilon}_{j} = 1$; $\vec{\varepsilon}_{j} \cdot \vec{k} = 0$ trouwersolly could how
which admits "two solutions" to show place
orthogonal to $\vec{k} \rightarrow \epsilon_1$ with $l=1,2$
$\vec{A}_{\circ} = \vec{E}_{1} \sqrt{\frac{\lambda_{1} t t}{2 \epsilon_{\circ} \omega \sqrt{2}}} \equiv \vec{E}_{1}(\vec{k}) \sqrt{\frac{\lambda_{1}(\vec{k})}{2 \epsilon_{\circ} \omega \sqrt{2}}}$ 13

For full field we need to sum over 2 d R
$\vec{A}(\vec{r},t) = \sqrt{\frac{\pi}{2\epsilon \cdot V}} \stackrel{2}{\xrightarrow{j=1}} \frac{1}{\sqrt{\omega_{k}}} \sum_{\lambda=1}^{j} \left[\sqrt{\lambda_{j}(\vec{k})} e^{i(\vec{k}\cdot\vec{r}-\omega_{k}+1)} e^{i($
$+ \sqrt{\lambda_{1}(\vec{k})} e^{-i(\vec{k} \cdot \vec{r} - \omega_{1}^{t})}$
this expression is " almost correct"
it indeed looks like a Fourter Decomposition
$\vec{A}(\vec{r},t) = \frac{1}{\sqrt{V}} \sum_{A_{i}\vec{k}} \sqrt{\frac{\pi}{2\epsilon_{s}\omega_{\vec{k}}}} \vec{\epsilon}_{A_{i}} \left[A_{A}(\vec{k}) \cdot e^{-i(\vec{k}\cdot\vec{r}-\omega_{u}t)} + A_{A}^{\dagger}(\vec{k}) \cdot e^{-i(\vec{k}\cdot\vec{r}-\omega_{u}t)} \right]$
where a semiclonical approximation $A_1 = A_2 = VN(1\vec{k})$
-> Quartient treatment starts from this Fornier
Decomposition, promoting A, At to OPERATORS 14

One then finds [see TUTORIALS]
$H = \sum_{k,1} \frac{\hbar \omega}{2} \left[A_1(\vec{k}) A_1^{\dagger}(\vec{k}) + A_1^{\dagger}(\vec{k}) A_1(\vec{k}) \right]$
Quoutre it as HARMONIC OSCILLATOR
$\left[A_{\lambda}(\vec{k}), A_{\lambda'}(\vec{q})\right] = \delta_{\lambda\lambda'} \delta_{\vec{k}\vec{q}}$
$H = \sum_{k,l} \hbar \omega \left[\frac{1}{2} + A_{l}^{\dagger}(\vec{k}) A_{l}(\vec{k}) \right]$
INFINITE "Zers point" ENERGY Concels out in Energy Differences!
$H = \sum_{k,\lambda} t_{k} \omega A_{1}^{\dagger}(\vec{k}) A_{\lambda}(\vec{k})$ define k,λ
A ₁ (\vec{k}) DESTROYS } photon of frequency trutic A ₁ (\vec{k}) CREATES J momentum Trik 15

$A_{\lambda}(\vec{k}) 0 \rangle = 0$ $ n\rangle = \frac{1}{\sqrt{n!}} \left[A_{\lambda}(\vec{k}) \right]^{n} 0 \rangle \qquad \text{state with } n$ $ n\rangle = \frac{1}{\sqrt{n!}} \left[A_{\lambda}(\vec{k}) \right]^{n} 0 \rangle \qquad \text{photons of momentum}$ $\text{tr} \vec{k}$
Action of these spenators on state with N photons is like those for hormonic oscillator:
$A_{1}(\vec{e}) N_{1}(\vec{e}) \rangle = \sqrt{N_{1}(\vec{u})} N_{1}(\vec{u}) - 1 \rangle$
$A_{\lambda}^{+}(\vec{k}) N_{\lambda}(\vec{k}) \rangle = \langle N_{\lambda}(\vec{k}) + 1 N_{\lambda}(\vec{k}) + 1 \rangle$ $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$
In semiclonical appoch we uses +1 =>
provolably to produce [EMITT] 1 photon when N are present is FNHANCED ~ NI+1

Enolly we compute the momentum :
$\vec{P} = \varepsilon \cdot \left[\vec{E}(\vec{r},t) \times \vec{B}(\vec{r},t) \right]$
$= \dots = \underbrace{}_{I,\vec{k}} t_{\vec{k}} \left[A_{I}^{\dagger}(\vec{k}) A_{I}(\vec{k}) \right]$
total momentum conied by all photons
$\Rightarrow A_1^{\dagger}(\vec{k}) A_1(\vec{k}) = \hat{N}_1(k)$ "number spector" + $\Rightarrow L$
Counts # photons with [pol -1; momentum lik]
14> = some excited state of on Hydrogen Atom
+ 2.000 photons (N1(12) = 0)
troughtion to lower state with emission of 1 photon

f	"operator" A(r,t) octs on this state
· · · · · · · · · · · · · · · · · · ·	$124 > \otimes 10 > = 1i > 1mitial states1 zero photons$
	$A_{1}(\vec{k}) 0 \rangle = 0 \qquad A_{1}^{\dagger} \vec{k} \rangle 0 \rangle = \frac{11}{1}$ $fhouks to + 1$
	to the field we need to consider is
· · · · · · · · · · · · · · · · · · ·	$\vec{A}(\vec{r},t) = \sqrt{\frac{\pi}{2\epsilon_0 \omega V}} \vec{E}_A(\vec{u}) e^{-i(\vec{u}\cdot\vec{r}-\omega t)}$
· · ·	$V(t) = \frac{e}{m} \sqrt{\frac{\pi}{2\epsilon_{\omega} W}} e^{-i(\vec{u}\cdot\vec{r}-\omega t)} \vec{\epsilon}_{\perp}(\vec{u}) \cdot \vec{p}$
N	Sow we can use FERMI GOLDEN EOLE Witch Homonic Psteußer

$d\Gamma_{i\to f} = \frac{2\pi}{\pi} \langle f H i \rangle ^2 P(E) dE$ $\int_{density} f states for$ $entted photon E < E < E + e$
$= \frac{\pi e^{2}}{m^{2} \epsilon_{s} \omega V} \langle \xi e^{i \vec{k} \cdot \vec{r}} \vec{\epsilon}_{1} \cdot \hat{p} i \rangle ^{2} p(E) dE$ $m_{s} t_{s} \omega V T$ $m_{s} t_{s} \omega V T$ $m_{s} t_{s} \omega V t_{s} e e u e ut t_{s} t_{s} ce u e a t_{s} t_{s} qet$ $\underline{1 \ photon \ transbian}$
Notice that this Justifies having neglected term proportional to IAI ² in Hourldonian) if generates transitions with 2 photons which we do not consider here _

Let's see how we can collevel	ste this matrix element
$\langle \mathbf{p} \mathbf{e}^{\mathbf{i}\mathbf{\vec{k}}\cdot\mathbf{\vec{r}}} \mathbf{\vec{\epsilon}}_{\mathbf{j}} \cdot \mathbf{\hat{p}} \mathbf{i} \rangle$	$\hat{\vec{p}} = operator$
we cou estimate mapritude a	voious pieces
Imagine solure Atom with Z	millos charge
Ē.p ~ Ipl ~ Zmca	typical momentum
$\begin{cases} because E = \frac{p^2}{2m} = -\\ \frac{10}{2m} = \frac{p^2}{2} \sim [mc Za]^2 \end{cases}$	$\frac{1}{2} mc^{2} \left(\frac{Zd}{n^{2}}\right)^{2}$ $\frac{1}{n^{2}}$ $\frac{1}{state} n$
what about $e^{-i\vec{k}\cdot\vec{r}}$?	$ \vec{r} \sim \frac{t}{mc Zd} \frac{B_{bbr}}{PADIUS}$ open with $n = 1$ 20

note H	hat IPI t	jp col momeu	time of electron
	opical momen	tom of phot	ton $p_{g} = \hbar k$
FOR P	HOTON EN	$\frac{\pi}{k} \sim \frac{\pi\omega}{\pi c}$	$\sim \frac{mc^2(z_d)^2}{2\pi c}$
10 [k	$rl \sim \frac{Z}{2}$	<u>5</u>	· ·
10 if	2 d << 1	(suolo nu	clear churge)
		1 04	herwise we expoud
e		$\frac{(-i)^{2}}{1!}$	¢(5-
· · · · · ·		0 C	seh new lenn
· · · · · ·	· · · · · · · · · · ·	Pulpu	ened, so long of
			Zd < 1 2

if we keep only "leading order": $e^{-i\vec{E}\cdot\vec{r}} = 1$
$\langle f \epsilon_{\lambda}, \tilde{p} i\rangle = \tilde{\epsilon}_{\lambda}, \langle f m \frac{d\tilde{r}}{dt} i\rangle$
$= m \vec{\epsilon}_{j} \cdot \langle f \frac{i}{\pi} [H_{o}, \vec{r}] i \rangle$ $/ 1 equation of motion$
unperturbed Houndtonian (f> & li> are its eigenstates!
$= im \left(\frac{E_{f} - E_{i}}{\hbar} \right) \vec{\varepsilon}_{i} \cdot \zeta f(\vec{r} i)$
$= -im\omega < \xi \vec{\epsilon}_{1} \vec{r} i > \int DIPOLE \\ APPROXIMATION$
$E_{f} - E_{n} = -t_{tw}$ (final state has emitted photon, has lower ever geg !)

the reason why this is called "DIPOLE" is
because in this core
$V = \frac{e}{m} \vec{A} \cdot \vec{p}$ $\mathcal{L} = -\frac{\partial \vec{A}}{\partial t} = -i\omega \vec{A}$ in this cose
$\Rightarrow V = \frac{e}{m} \overline{A} \cdot \overrightarrow{p} = \frac{e}{m} \frac{i}{\omega} \overrightarrow{E} \cdot \overrightarrow{p}$
following some steps as before in <fl(.)]i=""></fl(.)>
$\vec{\epsilon}_{J} \cdot \vec{p} \implies -im\omega \vec{\epsilon}_{J} \cdot \vec{r}$
$V = \frac{e}{m} \frac{i}{\omega} \left(-im\omega \right) \vec{E} \cdot \vec{r} = e \vec{E} \cdot \vec{r}$
this is the potential of a dipole with momentum $\vec{d} = -e\vec{r}$ in electric field \vec{E}