6. Unstalle States

let's go boch to Harmonic polewhol V = Metiwb
Amuming Qt=0 14>=1i>, we derved
$\prod_{i=q}^{n} \frac{ C_{f}^{(n)}(t) ^{2}}{t} = \frac{ K_{f}^{(n)}(t) ^{2}}{t^{2}} \frac{ K_{f}^{(n)}(t) ^{2}}{t^{2}} \left[\frac{im\left(\frac{\omega_{f1} \pm \omega}{2} t\right)}{\omega_{f1} \pm \omega} \right]^{2}}{\omega_{f1} \pm \omega}$
which is but to no become F.G.R.
$\prod_{i=1}^{n} = \frac{2\pi}{\pi} \langle f(n(i) ^2 \delta CE_f - E_i \pm t_i \omega \rangle$
Very some steps can be repeated for a CONSTANT
POTENTIAL V
Ň
$V = H t \ge 0$
lo t < o
$\Rightarrow \text{ source result with} \\ \omega = 0 1$

$\frac{ Cf(t) ^2}{t} = \frac{4}{t} \frac{ Kf(H i) ^2}{h^2 \omega_{fi}^2} \left[sm(\frac{\omega_{fi}}{2}t) \right]^2$
so before, when $t \rightarrow \infty$ F.G.R.
$\Gamma_{i} - f \sim \frac{2\Gamma}{\pi} \langle F M _{i} \rangle ^{2} S(E_{f} - E_{i})$
Buergy courservation
5 function might oppear problematic
5 function might oppear problematic physically, we are usually interested in tranships
5 function might opper problematic physically, we are usually interested in traishows to a "gravp" of final states with energy

indeed, the Every done involling DDES NOT SPECIFY UNIQUELY THE STATE
For example:
(i) = some atom in fome excited state
li > -> 1f> + 8 1 lower state photon y-momentum not fixed f we wout to sum over all possible. Here!
In general, we define a DENSITY OF STATES Pre- mich that $P(E)dE = \#$ states with $(E, E+dE)$ to we write
$\sum_{f} C_{f}(t) ^{2} \longrightarrow \int dE_{f} P(E_{f}) C_{f}^{(m)}(t) ^{2}$ $E_{f} \sim E_{i}$

Uting	0U1	formula	(stay	with	V = M	constout)
⇒ 4	Jem	$2\left(\frac{E_{f}-E_{i}}{2\pi}\right)$	$= \frac{1}{1} $	14/12/2 2-Er 12	PCEt) q t
	211 k	SILFINI	i> ² p((E _f) +	S (Ef	-Ei) dEf
puch	thet .	we fometic	mes w	rte f	r Lt-s	$i = \frac{ C_{p(f)} ^2}{t}$
T _p ->	Â. P.	211, ICP to /	MlaZV ⁷	PCE.	E) Emi Go Rule	LDEN
see exercised		oy stentio with time 'close" in obs simen	u here or every Courtian => CA	y gener y f mm, f se ay	ol fr they cen 1< CASE	states ore >1 ² ore

Before looking of explicit opplications of the F.G.R, we will get book to the question
Clearly if $ c_{f}(+) ^{2} \sim \Gamma +$
then by conservation of probability
1Ci(+)12 ~ 1 - 15 +
When $t \to \infty \left(\frac{ C_{f}(t) ^{2}}{ C_{i}(t) ^{2}} > 1 \right) = \frac{1}{2} \frac{1}{1} = \frac{1}{2}$
Indeed it turns out that these first order realls
cou Le "resummed" and the vight behaviour 15
$ C_{i}(t) ^{2} \sim e^{\Gamma t}$ $ C_{i}(t) ^{2} \sim e^{\Gamma t}$ Γ
Exponential stud

let's see how this works in explicit core of
eoustant potential.
By switching on potential at once, we have
a DISGNTINUITY => we try to work around
this as follows: modify potential os
$\int 0 e t = -\infty$
$V_{m} = \int e^{mt} H \forall t, u \in n > 0, u \leq 1$
we use m as a "regulator" to turn potential
on slowly of $t = -\infty$
IMPORTANT: we stort now @t=-70 so we won't need to seered t-> 90 ouyeuse !

st t=- a oncine system in his
let as eveluate Cf(t) & Ci(t) in this framework
Some franclas give
$C_{f}^{(o)}(t) = 0$ $C_{f}^{(n)}(t) = -\frac{v}{\pi} \langle f H i \rangle \int e^{\eta t'} e^{i\omega_{fi}t'} dt'$ $-\infty T$ $to = -\infty whom V \neq 0$
$= -\frac{1}{\pi} < f(M) = \frac{e^{Mt + i\omega_{fi}t}}{M + i\omega_{fi}}$ $\omega_{fi} = \frac{E_{f} - E_{i}}{\pi}$
oud there fine
$ C_{f}^{(n)}(t) ^{2} = \frac{1}{\pi^{2}} C_{f}^{(n)}(t$
Ly opoint, any t is very FAR from t=- 20 no t>20 Runt needed ! 7

this is not $\propto t$, how do we compute $T_{i \to f}$?
$\Gamma_{i\rightarrow f} = \frac{d}{dt} \left C_{f}(t) \right ^{2} = \frac{2 \left C_{f}(t) \right ^{2}}{t^{2}} \frac{\eta e^{2\eta t}}{\eta^{2} + \omega_{f^{2}}}$
now notice time $\frac{M}{\eta \rightarrow 0} = TT S(\omega)$ on other sep. $\eta \rightarrow 0 \eta^2 + \omega^2$ of Direc 5
b using $w_{fi} = \frac{E_f - E_i}{\pi}$ we get:
$\Gamma_{i} = \frac{2\pi}{\pi} \langle f(H i) ^2 \delta(E_{f} - E_{i}) \\ = \pi \\ \text{We recovered } F. G. R.$
$P = \frac{1}{1 + 1} + \frac{1}{1 + 1$
we will compute at up to SECOND ORDER
in perturbation theory!

• $C_{i}^{(o)}(t) = 1$ nothing hoppens
• $C_{n}^{(n)}(+) = -\frac{1}{\pi} \langle i H i \rangle \int e^{\eta t'} dt'$
$\omega_{ii} = \frac{1}{t} = 0$ $= -\frac{1}{t} e^{mt} \leq \frac{1}{1} \frac{1}{1} \frac{1}{1} \leq \frac{1}{t} \frac{1}{t}$
up to this order
$\frac{dc_{i}(t)}{dt} = -\frac{i}{\pi} \frac{1}{2} q e^{qt} \langle a M i \rangle$
$\frac{M - 2}{5} - \frac{i}{5} < i M i > = -\frac{i}{5} M_{ii}$
<i>q</i>

to go one order higher, remember the general brunke for Ur(t, to) derived us previous lecture
$U_{\rm L}^{(2)}(t, t_{\rm o}) = \left(-\frac{i}{\pi}\right)^{2} \int_{t_{\rm o}}^{t} dt' \int_{t_{\rm o}}^{t} dt'' V_{\rm L}(t') V_{\rm L}(t'')$
Interaction picture!
$\mathcal{L}_{f}(t) = \langle f \underbrace{\mathcal{U}}_{f}(t, t_{o}) \underbrace{\mathcal{U}}_{i}(t_{o}) = \int_{\pm}^{\pm} \underbrace{\partial}_{\pm} \underbrace{\partial}_{\pm$
so in our cose $[f = i]$
$C_{i}^{(2)}(+) = \left(-\frac{i}{\pi}\right)^{2} \int dt' \int dt'' \langle i V_{I}(t') V_{I}(t'') i \rangle$ $-\infty -\infty$ (msert $\leq n\rangle \langle n = 1 $
$= \left(-\frac{i}{\pi}\right)^{2} \int dt' \int dt'' \sum_{n} \frac{1}{2} \left(\frac{1}{\sqrt{t'}}\right) \left(\frac{1}{\sqrt{t'}}\right$

V(t) = Me^{Mt} gres $C_{1}^{(2)}(t) = \left(-\frac{1}{\pi}\right)^{2} \sum_{n} |H_{n}|^{2}$ $x \int dt' \int dt'' e e$ $= \left(-\frac{i}{\pi}\right)^2 \frac{5}{n} |H_{ni}|^2 \int dt' e^{-i\omega_{ni}t' \cdot \eta t'} \frac{e}{\eta + i\omega_{ni}}$ Whi = - Win to $= \left(\frac{i}{\pi}\right)^{2} \sum_{n} |\eta_{ni}|^{2} \int dt^{i} \frac{e^{2\eta t^{i}}}{\eta + i \omega n t^{i}}$ $= \left(\frac{-i}{\pi}\right)^2 \frac{2}{n} |M_{ni}|^2 \frac{e^{2\eta t}}{2\eta (\eta + i\omega_{ni})}$ 11

now separate n=i from the rest	
$= \left(\frac{i}{\pi}\right)^2 \left[H_{\bar{\lambda}\bar{\lambda}} \right]^2 \frac{e^{2\eta t}}{2\eta^2} +$. .
$+ \left(-\frac{1}{\pi}\right)^{2} \sum_{\substack{n \neq i}} M_{ni} ^{2} \frac{e^{2\eta t}}{i 2\eta \left(\frac{E_{n}-E_{i}}{\pi}-i\eta\right)}$.
$= \left(-\frac{i}{\hbar}\right)^2 \left M_{ni}\right ^2 \frac{e^{2\eta t}}{2\eta z} +$	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
$+\left(\frac{-i}{\hbar}\right)^{2}\left[\frac{1}{\frac{-i}{\hbar}}\right] \sum_{\substack{n \neq i}} \left[M_{ni}\right]^{2} \frac{e^{2mt}}{2m}\left(E_{i}-E_{i}\right)^{2}$. + int)
$= C_{i}^{(1)}(t)$ $= dC_{i}(t)$	
Une more, compute lisi ~ dt	12

$\frac{dC_{i}(t)}{dt} = \frac{d}{dt} \left[1 - \frac{i}{\pi \eta} \operatorname{Max}^{2} \right]$	$+\left(-\frac{i}{\pi}\right)^2 M_{ii} ^2 \frac{e^{2\eta t}}{2\eta^2}$
$+\left(-\frac{i}{k}\right) \stackrel{>}{\underset{n \neq n}{=}} P$	$\frac{ _{1}}{ _{2}} \frac{e^{2\eta t}}{2\eta (E_{t}-E_{t}+i\eta t)} \right]$
$= -\frac{i}{\hbar} \operatorname{Hin} e^{\eta t} + \left(-\frac{i}{\hbar}\right)^{2} \operatorname{Hin}$	$al^2 \frac{e^{2m+1}}{\eta}$
$+\left(-\frac{\dot{n}}{\hbar}\right) \underset{h\neq \bar{n}}{\geq} M_{n\bar{n}} ^{2} \underbrace{CE_{n}}_{CE_{n}}$	$-E_{n+i}\eta t$
now compute f 1 $dC_i(f) = [$	<u> </u>
$C_{i}(t)$ dt $1 - \frac{1}{\pi} \frac{t}{t}$	$\frac{1}{1}$ e^{1t} L dou't need T order here
Crontern Coucelo term wth pole !	because numerator Storts @ first orden elready ! 13

上- C;(+)	$\frac{dc_{n}(+)}{dt}$	$= -\frac{i}{\pi} \operatorname{Min} \operatorname{e}^{m+}$ $+ \left(-\frac{i}{\pi}\right) \xrightarrow{\sum_{n \neq i}} \operatorname{IM}$	$\frac{e^{2\eta b}}{(E_{i}-E_{n}+i\hbar \eta)}$
tohe	now l	lmit n>0	keep of here Ance Ed ~ En Jongerous
1 (1(+)	$\frac{dc_{1}(t)}{dt} =$	$-\frac{\dot{a}}{\hbar} \operatorname{Min} + \left(-\frac{\dot{a}}{\hbar}\right)$	$\sum_{\substack{n \neq n}} \frac{ M_{nn} ^2}{E_i - E_n + i\hbar m}$
huu E -><	<u>1</u> ×±i8	= $PV(\frac{1}{x}) \neq i$ T Principal Value	$\pi \delta(x)$

$\int we can write \perp \frac{dC_i(t)}{dt} = -\frac{1}{2\pi} \left[M_{ii} + \frac{dC_i(t)}{dt} $	$\frac{\text{Resl}}{\text{PV}\left(\frac{5}{n=1},\frac{ M_{n-1} ^2}{E_{i}-E_{n}}\right)}$
estra i _ it	$\sum_{n \neq i} M_{ni} ^2 \delta(E_i - E_n)$
$= -\frac{\Gamma_{i}}{2} - \frac{i}{t_{i}}$	∆i by defining:
$\Gamma_{i} = \frac{2\pi}{\pi} \sum_{n \neq i} H_{ni} ^{2} SCE$ $\Delta_{i} = M_{ni} + PV \left(\sum_{n \neq i} \sum_{n \neq$	$\frac{ H_{ni} ^2}{E_i - E_n}$
$n_{2}hi\phi = \prod_{n \neq A} \prod_{$	Bun of travision RATES from FERMI GOLDEN RULE 15

notion that r.h.s of differential equation is tome independent up to second order in part. I	s Kreag!
$\dot{z}(+) = \left[-\frac{1}{2} - \frac{i}{\hbar} \Delta_{i} \right] c_{i}(+)$	
$\Rightarrow C(t) = C_{i0} e^{-\frac{n!t}{2} - \frac{i}{n}\Delta_i t}$	
Let's interpret Δ : P P : :	
1] remember	
$ \eta_{i}t\rangle_{s} = \frac{z}{n}C_{n}(t)e^{-i\frac{t}{n}t/t} n\rangle$	
$ \psi;t\rangle I = \sum_{n} C_{n}(+) n\rangle$	· · · · ·
	16

æif u ot ats	ve a eve	start Cullo Ou	poeu ve	state have	li> u Sd	oud	loole p. Picto 20	•
11 >			C,(H)	e-iEa	t/n -	i > .	· · · · · · · · ·	•
			e ⁻²		E↓+∆]	t/n	1 1 >	•
	· · · ·	 	· · · · · ·	Δ ; g	ves	fle		•
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· · · ·	 		ENBRA Y the	level	FT e		•
2] If		look	H	pole	laty) Ci	(+)]2	•
1 C- (+)		1010	l'e			 	· · · · · · · · · ·	•
courstent Formi Gu	uith Olden	eale		l'I g	state	, 1 <u>6</u> i>	$ \rightarrow \underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{\text{(n)}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\underset{m_{\pm}}{\overset{n}{\underset{m_{\pm}}{\overset{n}}{\underset{m_{\pm}}{\underset{m_{\atopm}}{\underset{m_{\atopm}}{\underset{m_{\atopm}}{\underset{m_{}}{\underset{m_{m}}}{\underset{m_{}}{\underset{m_{}}{\underset{m}}{\underset{m}}{\underset{m_{}}{\underset{m}}{\underset{m}}{\underset{m_{}}{m_{}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{\underset{m}}{m}}$	- > 1]

oue after introduces also the mean lifetime
$ \overline{v}_{i} = -\overline{v}_{i} \overline{v}_{i} $
as we write dos (Ci) ² ve ^{-1/ti}
Let's go bock to Ti => Colled DECAY WIDTH
to see why, go fran t to E (Fourier trand.
$f(E) \propto \int_{0}^{\infty} \frac{i(E_{i} + \Delta_{i})t'_{h}}{dt'} - \frac{T_{i} + b}{2} \frac{iEt'_{h}}{e}$
$= \frac{i\hbar}{E - (E_i + \Delta_i) + i\hbar\Gamma_i/2}$
$\Rightarrow \left f(E)\right ^{2} \propto \frac{1}{\left[E - (E_{1} + \Delta_{1})\right]^{2} + \hbar \Gamma_{1}/4}$ 18

let's plot	1+ f(E) ²	· ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <	frax ~ 1 tit2	· ·
· ·	frax Z	
· · · · · · · · · · · · · · · · · · ·		
	τ	$F = FA + UA + \frac{1}{2}$
	$E = F_{a+} \Delta i - \frac{n}{2}$	· · · · · · · · · · · · · · · · · · ·
	$E = F_{a} + \Delta i - \frac{v_{1,a}}{2}$ $F_{i} \text{gres the width eff}$	the prototely
. .	E= Fa+ Di - VIA Zi gres the width of distribution of holf-	the probability maximum !
. .	E= Fa+ Si - n1 A Zi gres the width of dstrbation of holf-	the protot ety mesomoun!
. .	$E = F_{a} + \Delta i - \frac{v_{1}}{2}$ $T_{i} gves the width ef$ $dstrbuttou of helf$	the prostility maximum !
. .	$E = F_{a} + \Delta i - \frac{v_{1}}{2}$ $T_{i} gves \text{the width ef}$ $dstrbuttou \text{ot holf}$	the protot cty maximum !