



| In previous lecture we have started a study of                       |
|----------------------------------------------------------------------|
| time dependent problems in QM, and focussed                          |
| on peu produits first an a sever EXACILY                             |
| hich problems are indeed very RARE, so it will be                    |
| dependent problems PERTUKBATIVELY                                    |
| fementer a previous lecture we wrote for t-evolution                 |
| $H(t) = H_0 + V(t)$ with $H_0(m) = E_0  m\rangle$                    |
| 14; t z= Z Cn(t) e Ent/m In> f Schrödingen                           |
| $l_{\psi};t > I = \sum_{n} C_{n}(t) l_{n} > \int Iutenachaen pichne$ |
| · · · · · · · · · · · · · · · · · · ·                                |

| We then found that the Cult pulpe engitem<br>of loves differential equations                    |
|-------------------------------------------------------------------------------------------------|
| $i\hbar \frac{\partial}{\partial t} C_n(t) = \sum_{m} V_{nm}(t) e^{i\omega_{nm}t} C_n(t)$       |
| $\omega_{nm} = \frac{E_n - E_m}{\tau_i}$                                                        |
| $V_{nm}(t) = \langle n   V(t)   m \rangle$                                                      |
| this is a good storking point to try & solve<br>these equations perturbatively if V(t) ~ 1 << 1 |
| Assume that @ t= o ystem in li><br>T<br>initial state                                           |
| $\Rightarrow$ Cn(0) = Sn <i>i</i>                                                               |

| we ask ourselves what is the probability to find                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ry sem in some find state 1f>                                                                                                                                                                        |
| · rime V(+) ~ 2 , at zeroth order we can<br>neglect its effect completely and write                                                                                                                  |
| $i\hbar \frac{2}{2t}C_{t}(t) = 0 \Rightarrow Cp(t) = Cp(0) = Spi$<br>f<br>boundary constant<br>moteon Retrains in (i)                                                                                |
|                                                                                                                                                                                                      |
| . to FIRST ORDER we can now soig                                                                                                                                                                     |
| $V(t) = \lambda V(t)$ $C_{t}(t) = \delta_{ti} + \lambda C_{t}^{(n)}(t) + 0(\lambda^{2}) - becase$ $V \propto O(\lambda)$                                                                             |
| $i \frac{\partial}{\partial t} C_{p}^{(n)}(+) = \sum_{m} V_{pm}(+) C \qquad $ |

| Such that a polation can be written of                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{f(t)}^{(1)} = -\frac{i}{\pi} \int dt' \langle f(V(t))   i \rangle e$                                                                                                                                                                                                                                                                                             |
| 1 boundry condition                                                                                                                                                                                                                                                                                                                                                  |
| Fyshen shorts in li>@t=0                                                                                                                                                                                                                                                                                                                                             |
| Spi @ orden zero!                                                                                                                                                                                                                                                                                                                                                    |
| this procedure could be sterated to only order.                                                                                                                                                                                                                                                                                                                      |
| We will do this in a more "elegant way"                                                                                                                                                                                                                                                                                                                              |
| using the INTERACTION PICTURE and working                                                                                                                                                                                                                                                                                                                            |
| with the Evolution OREDATOR ("Propagator" U(t,to))                                                                                                                                                                                                                                                                                                                   |
| $124; t > \pm = U_{I}(t, t_{0}) 124; t_{0} > \pm $ $124; t > \pm = U_{I}(t, t_{0}) 124; t_{0} > \pm $ $124; t > \pm = U_{I}(t, t_{0}) 124; t_{0} > \pm $ $124; t > \pm = U_{I}(t, t_{0}) 124; t_{0} > \pm $ $124; t > \pm = U_{I}(t, t_{0}) 124; t_{0} > \pm $ $124; t > \pm = U_{I}(t, t_{0}) 124; t_{0} > \pm $ $124; t > \pm = U_{I}(t, t_{0}) 124; t_{0} > \pm $ |
| $ \psi_i t\rangle_{s} = U_s(t, t_o)  \psi_i t_o\rangle_{s} \frac{s_{currobong}}{4}$                                                                                                                                                                                                                                                                                  |

| remember $ \eta_{j}t\rangle_{s} = e^{-iH_{o}t/\pi}  \eta_{j}t\rangle_{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| As we know, in Schrödinger picture Us<br>satisfy its evolution equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $i = \frac{2}{3t} \mathcal{U}(t, t_3) = H_s(t) \mathcal{U}_s(t, t_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| where, if $H_{s}(t) = H_{o}(1.e. V(t) = o)$<br>we know how to write solution "formally"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{cases} \mathcal{U}_{s}^{(0)}(t,t_{0}) = e^{-i(H_{0}(t-t_{0}))} \\ (1+t_{0}) = e^{-i(H_{0}(t-t_{0})/t_{0})} \\ (1+t_{0}) = e$ |
| $\frac{1}{14, t} = e^{-\frac{1}{16(t-t_0)}/t_t} \frac{1}{14, t_0} \leq 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| IMPORTANT : we can get Us from UI simply                                                                       |
|----------------------------------------------------------------------------------------------------------------|
| $ \psi_i t\rangle_{I} = e^{iHot/n}  \psi_i t\rangle_{S}$                                                       |
| = e <sup>: Hot/</sup> y(t, to) 124; to>s                                                                       |
| $= e^{iH_ot/\hbar} \frac{V(t,t_o)}{V(t,t_o)} e^{-iH_ot_o/\hbar} \frac{1}{1}{t_i t_o}$                          |
| UI(t, to)                                                                                                      |
| so $U_{I}(t, t_0) = e^{i + i + ot/T} U_{s}(t, t_0) e^{-i + i + ot/T}$                                          |
| notice also that for Holn> = EnIn>                                                                             |
| $(E_nt-E_mt_o)/\pi$<br>$(1)$ $U_{I}(t,t_o)$ $M > = e$<br>$(E_nt-E_mt_o)/\pi$<br>$(1)$ $U_{I}(t,t_o)$ $M > = e$ |
| Matex dements one the source up to a phose                                                                     |
| $ \langle n  \mathcal{U}_{I}(t, t_{0}) m\rangle ^{2} =  \langle n \mathcal{U}_{S}(t, t_{0}) m\rangle ^{2}$     |

| note that this is not true in general if                                                                                                        |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| we take matrix element Letween general states                                                                                                   |  |  |  |  |  |  |
| (no Energy Eigenstates)                                                                                                                         |  |  |  |  |  |  |
| $ \langle \psi_{\pm}(\psi_{\pm}(+,+)) \psi_{\pm}\rangle ^{2} \neq  \langle \psi_{\pm}(\psi_{\pm}(+,+)) \psi_{\pm}\rangle ^{2}$                  |  |  |  |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                           |  |  |  |  |  |  |
| But is it simpler to compute UIL(+,+.)?                                                                                                         |  |  |  |  |  |  |
| Uring evolution equation for ket in Interschion pc.                                                                                             |  |  |  |  |  |  |
| $nh \frac{d}{dt}   \psi_{i}(t) = V_{I}(t)   \psi_{i}(t) =$                                                                                      |  |  |  |  |  |  |
| we see that                                                                                                                                     |  |  |  |  |  |  |
| $th \frac{\partial}{\partial t}   \mathcal{Y}; t > r = ih \left[ \frac{\partial}{\partial t} \mathcal{V}r(t, t_0) \right]   \mathcal{Y}; t_0 >$ |  |  |  |  |  |  |
| $= V_{I}(t)  \psi; t\rangle_{I}$                                                                                                                |  |  |  |  |  |  |
| $= V_{I}(+) U_{I}(+, t_{o})   \Psi; t_{o} \rangle$ 7                                                                                            |  |  |  |  |  |  |

| which gres                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Rightarrow \left[ i\hbar \frac{2}{\partial t} U_{I}(t, t_{o}) = V_{I}(t) U_{I}(t, t_{o}) \right]$                                                                                 |
| four equation as for Us, but ONLY with $V_{\pm}$                                                                                                                                    |
| A frimal calubou is INTEGRAL EQUATION                                                                                                                                               |
| $\mathcal{U}_{\mathrm{I}}(H,t_{\mathrm{o}}) = \underbrace{\mathrm{I}}_{v} - \frac{i}{\mathrm{t}} \int_{v}^{t} V_{\mathrm{I}}(H')  \mathcal{U}_{\mathrm{I}}(H',t_{\mathrm{o}})  dH'$ |
| boundary condition (verfy this by differentiation!)<br>@t=to                                                                                                                        |
| This is portocaloly convenient to produce a                                                                                                                                         |
| perturbative expansion, race VI << Ho<br>"Small"                                                                                                                                    |
| 11 EKHIIINU 2HS (MTO KHIS                                                                                                                                                           |

| $U_{I}(t, t_{0}) = U_{I}^{(0)}(t, t_{0}) + U_{I}^{(0)}(t, t_{0}) + \cdots$                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZEROTH ORDER : Drop VI(+)                                                                                                                                                                          |
| $(\mathcal{V}_{\mathbf{T}}^{(o)}(t, t_{\mathbf{s}})) = 4\mathbf{I} + O(\mathbf{V}_{\mathbf{T}})$<br>T<br>nothing happens                                                                           |
| FIRST ORDER : leep only one power of $V_{I}$<br>$\Rightarrow$ substitute $U_{I} = U_{I}^{(0)}$ in RHS                                                                                              |
| $U_{\perp}(t, t_{0}) = -\frac{i}{t} \int_{t_{0}}^{t} V_{\perp}(t') dt'$                                                                                                                            |
| SECOND ORDER : keep terms $\propto O(V_{\pm}^2)$                                                                                                                                                   |
| $\mathcal{U}_{\mathrm{I}}^{(2)}(t,t_{\mathrm{o}}) = \left(-\frac{\lambda}{\hbar}\right)^{2} \int_{t_{\mathrm{o}}}^{t} dt' \int_{t_{\mathrm{o}}}^{t} dt''  V_{\mathrm{I}}(t')  V_{\mathrm{I}}(t'')$ |
| etc => DYSON SERIES                                                                                                                                                                                |

| How do we derive now diff Eq. for Cn(+)?                            |
|---------------------------------------------------------------------|
| remember $124; t > I = \sum_{n} C_{n}(t) In >$                      |
| mehthat Cf(+) = <fl~+;t>I which becomes</fl~+;t>                    |
| $C_{f}(t) = \langle f   u(t, t)   \psi_{i}^{t} \rangle_{I}$         |
| and expanding Uz anning 14; to z = 1i)                              |
| • AT ZELOTH ORDER                                                   |
| $C_{f}^{(0)}(+) = \langle f   1   \gamma, t_{0} \rangle_{I}$        |
| = <fli>= Spi as hefse</fli>                                         |
| . At First order we need non-trivial<br>contraction from UI(+,+0) 9 |

| $C_{f}^{(n)}(t) = \langle f \left(-\frac{i}{n}\right)\int_{t_{0}}^{t}dt' V_{I}(t') [2i_{1}^{+}t_{0}\rangle_{I}$                      |
|--------------------------------------------------------------------------------------------------------------------------------------|
| $= -\frac{i}{\hbar} \int_{t_0}^{t} dt' < f   V_{I}(t')  i >$                                                                         |
| $\left(V_{I}(t) = e^{iH_{o}t/h} V(t)e^{iH_{o}t/h}\right) = -\frac{i}{\hbar} \int_{t_{o}}^{t} dt' e^{i(E_{P}-E_{v})t} < f(v(t))i)$    |
| which is what we found already:                                                                                                      |
| $C_{\text{flt}} = \delta_{\text{fi}} - \frac{i}{\pi} \int_{+\infty}^{+} dt' e^{-i\omega_{\text{fi}}t} < e_{\text{flv(H)}}  i\rangle$ |
| From here, easier to derve expression for $C_p^{(2)}(t)$<br>TEXERCISE                                                                |
| TRANSITION PROBABILITY                                                                                                               |
| $P(i \rightarrow f) =  C_{f}^{(a)}(t) + C_{f}^{(a)}(t) +  ^{2}$                                                                      |
| Amining 1 f> = 1i> !                                                                                                                 |

|      |              |     | 1.0   |         |  |
|------|--------------|-----|-------|---------|--|
|      | <b>~</b> . A |     | 1.    |         |  |
|      |              | NV. |       |         |  |
| _< ` | <b>N/</b>    | UΛ  | <br>_ | •       |  |
|      |              |     |       | <br>• • |  |
|      |              |     |       |         |  |

| Courder a portide of mons m, duorge q, in potential                           |
|-------------------------------------------------------------------------------|
| of 1 don Oscillator ou x-ovis                                                 |
| $H_0 = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2$                             |
| perturbed by $V(t) = qE \times e^{-\frac{t^2}{t^2}}$                          |
| $e t = -\infty$ ; $V(t = -\infty) = 0$ ; $H_0(n) = h_0(n+\frac{1}{2})(n)$     |
| onume porticle in ground state of Ho; 10>                                     |
| We would like the probability to find it in In>                               |
| ofter course long true t >> T                                                 |
| $C_{n}(t) = -\frac{i}{n} qE \int dt' e' \langle n x o \rangle e^{t/\tau^{2}}$ |
| $(f t) > T$ L, $\sim \int^{+\infty} oud we get -\infty$ 11                    |

| $C_n(\infty) =$<br>= $-\frac{\lambda}{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = - <sup>ί</sup> π 9<br>ηΕ <ηι | $E < n   x   o > \int_{-r}^{-r}$    | $e^{+\infty}$                  | $\begin{bmatrix} n\omega t' & t'/z^2 \\ e^{-t'/z^2} \\ \frac{2}{t} \end{bmatrix}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|
| fs matix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | clement                        |                                     | τ. ( a<br>2mω<br>(Λ<br>ου      | t + a <sup>+</sup> )<br>T<br>eoliou b<br>wihlota<br>perators                      |
| <n xlo=""></n>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=\sqrt{\frac{\pi}{2m\omega}}$ | <n19+10></n19+10>                   | Ince                           | $\theta_{\rm L} 0\rangle = 0$                                                     |
| .       .       .       .       .       .       .         .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       < | $=\sqrt{\frac{t}{2m\omega}}$   | Sn1 ≠ 0                             | only                           | ·f n= 1                                                                           |
| Cn(100) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - <u>i</u> 9E<br>t             | $t\sqrt{\frac{\hbar T}{2m\omega}}e$ | $-\frac{n^2\omega^2\tau^2}{4}$ | δn1<br>12                                                                         |

| no protochy to find system in 11> is                                                                                 |
|----------------------------------------------------------------------------------------------------------------------|
| $ C_{1}(\infty) ^{2} = \frac{T}{2} \left(\frac{qE^{2}\tau^{2}}{m\pi\omega}\right) e^{-\frac{\omega^{2}\tau^{2}}{2}}$ |
| Notice • $ C_1(n) ^2 \rightarrow 0$ if $T \rightarrow \infty$                                                        |
| which means potential V(+) is                                                                                        |
| Furned on very slowly                                                                                                |
| => ADIABATIC PERTURBATION , more                                                                                     |
| gres no tronsisour ! ] later!                                                                                        |
| · V(t) ~ X implies a "selection rule"                                                                                |
| => only trous how N -> N+1                                                                                           |
| N -> N-1                                                                                                             |
| ore possible!                                                                                                        |
| if $V(t) \prec \chi^2$ , doo $n \rightarrow n \pm 2$<br>would be possible ! 13                                       |

| We consider now some special CLASSES of perhabations                                |
|-------------------------------------------------------------------------------------|
| and try to make general statements from first                                       |
| order perturbation theory                                                           |
| SUDDEN PERTURBATION                                                                 |
| We imagine a perturbation that acts on a                                            |
| very short time composed to typical time-scale                                      |
| of evolution of the system                                                          |
| Case just shudied                                                                   |
| $H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 x^2 + qE \times e^{-\frac{t^2}{t^2}t^2}$ |
| period oncillator $T = \frac{2\pi}{\omega}$                                         |
| tipical time perturbation $T \ll T = \frac{2\pi}{\omega}$                           |
| ( TW 22 2TT 1/2                                                                     |

| Trou is how       | pudoli ety                                                                                                                                                                                                                                |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ C_{1}(00) ^{2}$ | $ = T^2 \longrightarrow \circ \circ T \rightarrow \circ $                                                                                                                                                                                 |
| there is          | no trans trace !                                                                                                                                                                                                                          |
| this is           | expected on general grounds.                                                                                                                                                                                                              |
| Imofre            | V(t) octs for $t \in \left[-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right]$<br>with $\varepsilon \rightarrow 0$                                                                                                                      |
| Schrödinger       | Equation $\frac{5}{2}$                                                                                                                                                                                                                    |
|                   | $- \frac{1}{2} = -\frac{i}{\pi} \int dt  V(t)  \frac{1}{2}; t > -\frac{\epsilon}{2}$                                                                                                                                                      |
| 0€-3 }1           | $\int_{\frac{1}{2}}^{\frac{1}{2}} dt  V(t)   \psi_{i}(t) \rangle \sim O(\epsilon)  if$ $\frac{1}{2} \qquad \qquad$ |

| For fuite V(+) then                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------|
| $ \lim_{E \to 0} \left[ \right] \Rightarrow  \psi_i - \frac{\varepsilon}{2} \rangle =  \psi_i - \frac{\varepsilon}{2} \rangle $ |
| no charge 14 State.                                                                                                             |
| More realistic problem, ATOM with atomic number Z                                                                               |
| electron in 15                                                                                                                  |
| Inque now nucleus undugoes p decoy                                                                                              |
| => ,+ entrs on electron and Z > Z+1                                                                                             |
| La neutron becomes                                                                                                              |
| a proton)                                                                                                                       |
| Flectron is relativistic, so we can "cloncelly"                                                                                 |
| cotimate tome-scole of interaction through tome                                                                                 |
| taken by electron to "leave" the n=1 shell                                                                                      |
| $T \sim \frac{a_{0}}{2} \sim \frac{1}{2} \sim \frac{r_{s} d_{us}}{2} \sim J$                                                    |
| E S Velochy 16                                                                                                                  |

| What is instead the characteristic time-scale                                                                                |
|------------------------------------------------------------------------------------------------------------------------------|
| of the system => has much time the electron                                                                                  |
| takes to go around the 1s state?                                                                                             |
| $T' \sim \left(\frac{\alpha_0}{Z}\right) \cdot \frac{1}{Z a C} = \frac{\alpha_0}{Z^2 a C}$                                   |
| electron velocity                                                                                                            |
| Fite thele $\nabla \sim \frac{e^2}{4\pi \epsilon_0 t_0} - C = \int_{0}^{\infty} \frac{m v^2}{2} \frac{e^2}{4\pi \epsilon_0}$ |
| $10 \frac{\Gamma}{T} = Zd$ remember $d = \frac{1}{137}$                                                                      |
| to as long as Z << 137, we expect the                                                                                        |
| interaction to be "indden"                                                                                                   |
| $\Rightarrow$ often $\beta$ -decoy, $e^{-1}$ in 1s shell will                                                                |
| have stayed there pust now, this is                                                                                          |
| a ruper position of legenstates of                                                                                           |
| "new" Atom with $z^* = 2 + 1$                                                                                                |
| 17                                                                                                                           |

| => clearly this is NOT TRUE if YLH ~ S(+)                                                               |
|---------------------------------------------------------------------------------------------------------|
| withold core $\int_{-\epsilon}^{+\epsilon} \delta(t) dt = 1$ .                                          |
| perharbotron not negligible, see exercises!                                                             |
| HARMONIC PERTURBATION                                                                                   |
| A very lorge number of perhiston potentials                                                             |
| of importance for physics can be parametrized                                                           |
| Ly Hormovic functions of tome                                                                           |
| V(+) = M e ; M time independent                                                                         |
| (and of V(+) not Hormonic, one could decompose                                                          |
| nt into its Fourier modes!)                                                                             |
| $C_{flt}) = \delta_{fi} - \frac{i}{\pi} \int_{t_0}^{t} dt' e^{-i\omega_{fi}t} < f(V(t))  i\rangle > 18$ |

| Specialitup our general formu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | la ouce more                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| to system in state li> e t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =0, we get                                                    |
| $C_{f}^{(h)}(t) = -\frac{i}{\hbar} < f(h) i > \int_{0}^{t} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $e^{i\omega_{f}\cdot t'}e^{\pm i\omega t'}$                   |
| the nuteral over the exponents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ols cou be done                                               |
| eoney gung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wfi±w]t                                                       |
| $\int dt' e = -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $i [\omega_{fi} \pm \omega]$                                  |
| $= e^{i \left[\omega_{i}^{+}\right] \pm i \left[\omega_{i}^{+}\right] \pm i \left[\omega_{i}^{+}\right] + i \left[\omega$ | $\omega$ ]t $m\left(\frac{\omega_{\pm}}{2}t\right)$           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{bmatrix} \omega_{fi} \pm \omega \\ 2 \end{bmatrix} $ |
| much that the probability a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on le comprised os                                            |
| $P_{\lambda}, p \propto  C_{p}^{(m)}(t) ^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | z                                                             |

| 2 |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |

| es t > 00, the function becomes increasingly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pedeed at $\Delta = 0$ , while for from $\Delta = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| it oscillates very rapidly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| toke some reques function $f(\Delta)$ , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\lim_{t \to \infty} \int_{-\infty}^{+\infty} d\Delta  f(\Delta)  \frac{4}{\Delta^2}  \lim_{x \to \infty} \int_{-\infty}^{+\infty} d\Delta  \lim_{x \to \infty} \int_{-\infty}^{$ |
| $= \int_{-\infty}^{+\infty} d\Delta \left[ f(\Delta) - f(o) \right] \frac{4}{\Delta^2} + m^2 \left[ \frac{t\Delta}{-2} \right] = > 0$ perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| + $f(0) \int d\Delta \frac{4}{\Delta^2} Fm^2 \left[\frac{tA}{2}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| aπt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $= 2\pi t f(o)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| which is a possible representation of the<br>Dire S- function                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\mu}{\Delta^2} \sin^2\left(\frac{\pm \Delta}{2}\right) \xrightarrow{t \to \infty} 2\pi \pm \delta(\Delta)$ $= 2\pi \pm \delta(E_{\rm P}-E_i \pm t_{\rm W})$ |
| tonition probablely PER ONIT TIME                                                                                                                                  |
| $\Gamma_{i\to f} = \frac{ \zeta_{f}(t) ^{2}}{T} = \frac{2\pi}{\hbar}  \langle f H i\rangle ^{2} \delta(E_{f}-E_{i}\pm\hbar\omega)$                                 |
| => troushous require tw =   Ef-Ei                                                                                                                                  |
| this is alled FERMI GOLDEN ROLE (F.C.R.)                                                                                                                           |
| the formula is extremely requestion out we will use it A LOT in next lectures 22                                                                                   |

| NOTICE:                                                                                |
|----------------------------------------------------------------------------------------|
| A system can go through a transtian of                                                 |
| potential supplies connect energy $\int t_1 w = E_1 - E_1$<br>$\int t_1 w = E_1 - E_1$ |
|                                                                                        |
| stimulated tiwt stimulated<br>EMISSION e ABSORPION<br>e-iwt!                           |
| Quartum system dons does NOT conserve                                                  |
| everyly, or $E_f = E_i = h \omega$                                                     |
| In first cose, system "enitts" every into                                              |
| In second cose it door to and gets to excled<br>state                                  |