
4. Time Dependent Problems



| Until now loud probably for longe post of your    |
|---------------------------------------------------|
| Quantum Mechanics course ) we have dways          |
| considered time INDEPENDENT pulleurs              |
| Much of the interesting physics we can understand |
| through QK has to do with TIME DEPENDENT          |
| IN TERACTIONS & PHENOMENA : RADIATION             |
| SCATTERING   COLISIONS                            |
| etc                                               |
| Courder a system whose Howiltan reads             |
| $H = H_0 + V(t)$                                  |
| bure<br>independent                               |
| Where for now V(+) is NOT SHALL                   |
| · · · · · · · · · · · · · · · · · · ·             |

| Neventheles, omine we know                                | full plution to                     |
|-----------------------------------------------------------|-------------------------------------|
| time independent prodeur, i.e.                            | · · · · · · · · · · · · · · ·       |
| Hoin> = En In>                                            | · · · · · · · · · · · · · · · · · · |
| We would like to eustablish                               | a fruelou to                        |
| study how a general state 1.<br>time posses due to V(t).  | y) evolves of                       |
| $O t = t_0$ $124 > = S Culton (some subtrony minol time)$ | ) In><br>T<br>Complete set!         |
| we PARAMETRIZE them its time                              |                                     |
| $ \eta_i t\rangle = \frac{1}{n} C_n(t) e^{-iE_n t/t}$     |                                     |
| we explicitly factored ant interval                       | "tre dependence                     |
| which exists also if V(t) =                               | 0                                   |

| the Cult to defined is much that if $V(t) = 0$<br>Cult = Culto)                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| To derve differential equation inhighed by<br>Cult) is convenient to inhoduce INTERACTION PICTURE                                           |
| "In between "Schröchnger & Herrenking reprs.                                                                                                |
| Schrödinger Pichre Hereuberg Pichre                                                                                                         |
| $ \psi; t\rangle_{s} = 24 \rangle_{H} = e^{iHt/_{f_{1}}}  \psi; t\rangle_{s}$                                                               |
| $O_{s} \longrightarrow O(t)_{H} = e^{iHt/h} O_{s} e^{-iHt/h}$                                                                               |
| Interaction Picture fortors art only Ho                                                                                                     |
| $ \begin{aligned}  \Psi;t\rangle_{I} &= e^{iHot/\pi}  \Psi;t\rangle_{S} \\ \partial_{I} &= e^{iHot/\pi} O_{S} e^{-iHot/\pi} \end{aligned} $ |

| Clearly of $t=0$ $14$ $y = 14$ $y = 14$ $y = 14$                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTICE :                                                                                                                                                                         |
| CONVENTIONS for phoses for generic "to:                                                                                                                                          |
| lungue system is in Energy Egenstate In><br>Holn> = Enlin>                                                                                                                       |
| => In Schrödinger picture, state fixed up<br>to ~ "phose" e-iEnt///                                                                                                              |
| It is then convenient to prick                                                                                                                                                   |
| $ i, t_0\rangle_I \equiv  i\rangle$<br>$\Rightarrow  i , t_0\rangle_S = e^{-iEit_0/\pi}$<br>$\Rightarrow  i , t_0\rangle_S = e^{-iEit_0/\pi}$<br>Ii><br>Ii><br>Ii><br>Ii><br>Ii> |

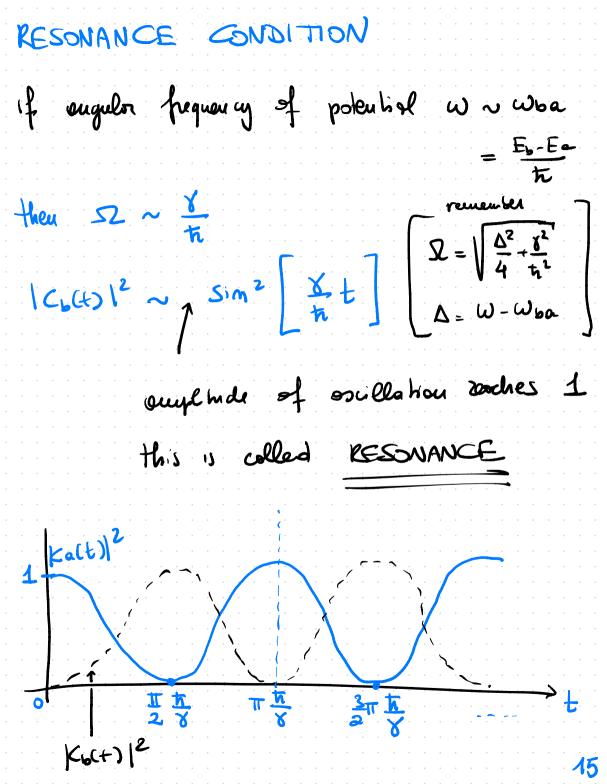
how does 124; t> = evelve?  $i\hbar \frac{\partial}{\partial t} |2\phi_i t\rangle_{T} = i\hbar \frac{\partial}{\partial t} \left[ e^{iH \cdot t/h} |2\phi_i t\rangle_{S} \right]$ - #0 e iHot/ 14; t>s + e Hot/ [240+V] 14; t>s = e V e e ly; t>s 14; t>I VI  $th \frac{\partial}{\partial t} |\psi; t\rangle_{II} = V_{II} |\psi; t\rangle_{II}$ in Interaction Richne state evolves 5

| Equally to any time independent OPERATOR O                                                               |
|----------------------------------------------------------------------------------------------------------|
| $\frac{dO_{T}}{dt} = \frac{1}{i\pi} \left[ O_{T}, H_{o} \right]$                                         |
| ~ Herenserg Evolution with H -> Ho!                                                                      |
| Now notice that we prometored 14:t>s or                                                                  |
| $ \eta_{j}t\rangle_{s} = \frac{2}{n}C_{n}(t)e^{-iE_{n}t/\hbar}  n\rangle$                                |
| $124; t > T = \sum_{n} C_{n}(4) e^{-iE_{n}t/n} e^{iH_{0}t/n}$                                            |
| $= \sum_{n} C_{n}(+) \text{ in } $ $= \sum_{n} C_{n}(+) \text{ in } $ $= \sum_{n} C_{n}(+) \text{ in } $ |
| $\Rightarrow \langle m  \psi; t \rangle = \underset{n}{\leq} C_n(t) \langle m  n \rangle$                |
| $C_{n(+)} = \langle n   4; t \rangle_{I}$                                                                |

| use now diff. Eq. sotisfied by 14; t>I                                                                     |
|------------------------------------------------------------------------------------------------------------|
| and contract by <n1< td=""></n1<>                                                                          |
| $i\hbar \frac{2}{2} \langle n \psi_i t \rangle_{I} = \langle n V_{I} \psi_i t \rangle_{I}$<br>$\partial t$ |
| $= \sum_{m} \langle n   V_{I}   m \rangle \langle m   \psi_{i} t \rangle_{I}$                              |
| $\langle n V_{\pm} m\rangle = \langle n e^{iH_{3}t/\hbar}V(+)e^{-iH_{3}t/\hbar} m\rangle$                  |
| $= e^{i(E_n-E_m)t/\hbar} \langle n V m \rangle$                                                            |
| Vnm (t)                                                                                                    |
| b we have                                                                                                  |
| $i\hbar \frac{\partial}{\partial t}C_{n}(t) = \sum_{m} V_{nm}(t) C_{m}(t) C_{m}(t)$                        |
| $= \sum_{m} V_{nm}(t) e^{i\omega_{nm}t} C_{m}(t) $                                                         |

| => to fud tome-dependence of some state     |
|---------------------------------------------|
| 14>, we need to solve system of lunce       |
| loupled differential equations for Cn(+),   |
| whose cal fficients one matix dements       |
| of the time - dependent potential!          |
| Most of the times solving these equations   |
| exorthy is IMPOSSIBLE and we need           |
| to report to perturbation theory.           |
| Bafae going there, let's shudy a case where |
| on EXACT SOLUTION is possible :             |
| TWO-LEVEL SYSTEM                            |
| Consider a system that can be in two states |
| & rubject to an OSCILLATING POTENTIAL       |
| 8                                           |

| While this seems now a "formal" probleme,                                                      |
|------------------------------------------------------------------------------------------------|
| at can be used to model mony acceptant                                                         |
| physical rituations - Atom in E(+) field<br>that generates transhows<br>aring two states       |
| - Spin Haguetic Reponduce<br>Maxes etc                                                         |
|                                                                                                |
| two states { 12 > 16 > 3 with Ea; Eb Eb>Ea                                                     |
| b Hold> = Eald> Umpertiched                                                                    |
| er Holb> = ELB> system<br>1 system here                                                        |
| Ving 192,162 or borns                                                                          |
| $H_0 = E_a  a \times a  + E_b  b \times b  = \begin{bmatrix} E_a & 0 \\ 0 & E_b \end{bmatrix}$ |


| Now soy V(t) con generate transflours among                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the two states                                                                                                                                                                                                                      |
| int int interview.                                                                                                                                                                                                                  |
| _ [ 0 $\chi^{e^{i\omega t}}$ ] hermition                                                                                                                                                                                            |
| $V(L) = \gamma e^{i\omega t}  a\rangle \langle b  + \gamma e^{ib \lambda \langle a }$ $= \int_{re^{-i\omega t}}^{0} \gamma e^{i\omega t}  a\rangle \langle b  + \gamma e^{i\omega t}  a\rangle \langle a $                          |
| Following our general formalism, we unde for<br>evolution of 124>5                                                                                                                                                                  |
| $ \eta_{t}t\rangle_{s} = C_{a}(t)e^{\frac{c}{tr}} a\rangle + C_{b}(t)e^{-iE_{b}t/s} b\rangle$                                                                                                                                       |
| $i\hbar \frac{\partial}{\partial t} \begin{bmatrix} Calt \end{pmatrix} = \begin{bmatrix} 0 & \chi e^{-i\omega t} e^{i\omega bat} \\ \chi e^{-i\omega t} e^{i\omega bat} \end{bmatrix} \begin{bmatrix} (alt) \\ (alt) \end{bmatrix}$ |
| $\omega_{ha} = -\omega_{ab} = \frac{E_{b}-E_{a}}{h} > 0$                                                                                                                                                                            |

| $\frac{1}{2\pi} \frac{\partial}{\partial t} \begin{bmatrix} C_{0}(t) \\ C_{1}(t) \end{bmatrix} = \begin{bmatrix} 0 & \gamma e^{i\Delta t} \\ \gamma e^{-i\Delta t} & 0 \end{bmatrix} \begin{bmatrix} C_{0}(t) \\ C_{1}(t) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| with $\Delta = W_{a} - W_{b} + W$ STANDARD<br>= $W - W_{ba}$ first order system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| folution can be obtained by derving II and ep.<br>for one of the two, say & Calt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{d^2}{dt^2} C_a(t) - i\Delta \frac{dC_a(t)}{dt} + \frac{\chi^2}{\hbar^2} C_a(t) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| sending for solutions os: Calt) = e we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\lambda^{2} - \Delta \lambda - \frac{\chi^{2}}{\hbar^{2}} = 0 \Rightarrow \lambda \pm = \frac{\Delta}{2} \pm \sqrt{\frac{\Delta^{2} + \kappa^{2}}{4 + \kappa^{2}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $C_{\bullet}(t) = A_{+}e + A_{-}e +$ |

| oud from system we have for Cb(t)                                                               |
|-------------------------------------------------------------------------------------------------|
| $\gamma e^{i\Delta t} C_{u}(t) = it \frac{\partial}{\partial t} C_{u}(t)$                       |
| $= \pi \left[ A_{+} e^{i J_{+} t} + A_{-} e^{i J_{-} t} \right]$                                |
| $= -t_{1}A_{+}A_{+}e^{iJ_{+}t} - t_{1}A_{-}e^{iJ_{-}t}$                                         |
| $C_{1}(t) = -\frac{\pi J_{+}}{8}A_{+}e^{-iJ_{-}t} - \frac{\pi J_{-}}{8}A_{-}e^{-iJ_{+}t}$       |
| now let's omume that $C_0(0) = 1$ ? Boundary.<br>$C_0(0) = 0$                                   |
| => system storts @ t=0 in 10>, then:                                                            |
| $C_{a}(0) = A + + A - = 1$ $C_{b}(0) = -\frac{\pi A + A + }{8} - \frac{\pi A - A - }{8} = 0$ 12 |

| $\Rightarrow \int A_{+} + A_{-} = 1$ $\int J_{+}A_{+} + J_{-}A_{-}$  | $A_{t} = -\frac{1}{1_{t}-1_{t}}$ $\Rightarrow \qquad A_{t} = -\frac{1}{1_{t}-1_{t}}$ $= O \qquad A_{t} = +\frac{1}{1_{t}-1_{t}}$ |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| $A_{+} = -\frac{\lambda_{-}}{2.52}$                                  | $A - = \frac{1}{2S}$                                                                                                             |
| $Ca(t) = \frac{1}{252}$                                              | J + e - J - e                                                                                                                    |
| $C_{b}(+) = -\frac{\hbar}{2\chi} \frac{\lambda_{+}\lambda_{-}}{-52}$ | $-\begin{bmatrix} -iJ_{t}t & -iJ_{t} \\ e & -e \end{bmatrix}$                                                                    |
| $= -\frac{\hbar}{2\chi} \frac{4+\lambda}{\Sigma}$                    | $e^{-i\frac{\Delta}{2}t} \begin{bmatrix} -i\Omega t + i\Omega t \\ e - e \end{bmatrix}$ $12$                                     |

| $C_{b}(t) = 2i \frac{\pi}{2\chi} \frac{J + J - e^{-i\frac{\Lambda}{2}t}}{SZ} + imSZt$                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| which gres for the probability of finding                                                                                                                                                                                                                  |
| 124;t> in 16> @ time t                                                                                                                                                                                                                                     |
| $P_{b}(t) =  C_{b}(t) ^{2} = \frac{\hbar^{2}}{\chi^{2}} \left[ \frac{\chi^{4}}{\hbar^{4}} \right] \frac{1}{\left[ \frac{\Lambda^{2}}{4} + \frac{\chi^{2}}{\hbar^{2}} \right]} \frac{1}{\left[ \frac{\Lambda^{2}}{4} + \frac{\chi^{2}}{\hbar^{2}} \right]}$ |
| $= \frac{\delta^2/\hbar^2}{\delta^2/\hbar^2} + \frac{(\omega - \omega_{ba})^2}{4} \frac{\delta^2 m^2 (SZt)}{RABIFORMULA}$                                                                                                                                  |
| $aud (Calt))^2 = 1 - (C_b(t))^2$                                                                                                                                                                                                                           |
| Probability ou llates with typical frequency                                                                                                                                                                                                               |
| $SZ = \sqrt{\frac{\chi^2}{\hbar^2} + (\omega - \omega_{ba})^2}$ RABI FREQUENCY<br>4                                                                                                                                                                        |



| from $t = 0$ to $t = \frac{\pi}{2} \frac{\pi}{8}$ , the system obsorbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| everyy from the potential and goes from EasEb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| then from $t = \frac{\pi}{2} \frac{\pi}{2} \rightarrow t = \pi \frac{\pi}{8}$ every goes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| back into potential and byshem retains to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| orignal state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PERIDD T = $\pi \frac{h}{8} = \frac{\pi}{52}$ due to $\sin^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of course, oway from resonance $ Ca(t) ^2 < 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{\left \left(\begin{array}{c}a^{hax}\\a\right)\right ^{2}}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\frac{1}{2} = \frac{48}{1200}$ weak contained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th<br>Th |
| We - 28 Wo et W<br>to Wha T What T What T resonance frequency 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| these two-state systems have various applications                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atoms in È field => we will donss<br>more sout this<br>later in the<br>course                                                                          |
| . Spim Magnetic Resonance                                                                                                                              |
| , Modens<br><br>SPIN -MAGNETIC RESONANCE                                                                                                               |
| At the boxis of MRI systems in Hospitals                                                                                                               |
| Courider a spin 1/2 system (ECECTRON) bound in<br>on Atom (typically Hydrogen)                                                                         |
| Apply $\vec{B} = B_0 \hat{z} + B_1 (\hat{x} \cos \omega t + \hat{y} \sin \omega t)$<br>$\int \int 1$<br>Constant dang $\tilde{z}$ ration $\omega(x,y)$ |
| Constant doing t rotating cu(X,y) 17                                                                                                                   |

| la previous         | picture             | here                     | Boz      | = Ho              | · · · · · · ·  |
|---------------------|---------------------|--------------------------|----------|-------------------|----------------|
| · · · · · · · · · · |                     | · · · · · · · · ·        | B1[]=    | = V(+)            |                |
| Electron            |                     |                          |          |                   |                |
| bo that             | H = - ,             | e 5 B                    | oud      | there fre         | explatly       |
| H.                  | = - <u>e (</u><br>m | <u>کہ</u> S <sub>Z</sub> |          |                   |                |
| ٧u                  | )=- e               |                          | + Sx + 8 | m wł Sy           |                |
| Use now             | S2   ±              | $> = \pm \frac{h}{2}$    | '  ±>    | to wr             | 1 <del>.</del> |
| Sz = 2              | $\frac{k}{2}(1+>4)$ | (+  - (->                | ,<-1)    | · · · · · · · · · |                |
| Sx=                 | $\frac{1}{2}$ (1+>0 | <-1 + 1-                 | ><+1)    | · · · · · · · ·   |                |
| Sy = 1              | <u>토</u> ( ->       | <+1 - 1-                 | +><- )   | · · · · · · · · · | 18             |

| An obvious way to check                    | there is very fing that                             |
|--------------------------------------------|-----------------------------------------------------|
| $[S_i, S_j] = i \varepsilon_{ijk} t_i S_k$ | commutation relations                               |
| For et e co ou                             |                                                     |
| $H_0 +> = E_+ +>$                          | $E_{t} = \frac{1e1\hbar B_{0}}{2mC}$                |
| Ho (-> = E- 1-7                            | $E_{-} = -\frac{101 \text{ h B}_{-}}{2 \text{ mc}}$ |
| E+>E-<br>J<br>lvel "b" level "a"           |                                                     |
| then $Wba = \frac{E_{+}-E_{-}}{ti}$        | = <u>lelBo</u> <u>resonance</u><br>mc frequency     |
| $=D$ if $B_1=0$ , then                     | this is PRECESSION                                  |
| frequency for e spin                       | ne constant Bz field!                               |

| As long as BI=0, the probabilities of being                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------|
| in state 1+> or 1-> don't change, despite                                                                                    |
| SOIN PRECESSION                                                                                                              |
| $ 2_{it}\rangle_{B_{i=0}} = C_{+}(t) _{+} + C_{-}(t) _{-}$                                                                   |
| $ C_{t} ^{2} \&  C_{-} ^{2}$ Constout                                                                                        |
| with B1 = 0, comparing with general formulas                                                                                 |
| $V(t) = + \frac{161\pi B_1}{2mc} \left[ \frac{1+><-1}{\omega wt} - i \sin \omega t \right]$                                  |
| + 1-><+1 (conwt +i smwt)]                                                                                                    |
| $=\frac{iel \hbar B_1}{2mc} \left[ e^{-i\omega t} + \frac{i\omega t}{b} + \frac{i\omega t}{a} + \frac{i\omega t}{b} \right]$ |

| $10 we can identify y = \frac{1e1ha_1}{2mc}$                   |
|----------------------------------------------------------------|
| At resonance $\left[ W = W_{ba} = \frac{1e a_{0}}{mc} \right]$ |
| spin flips It> <> I-> in oddhion to                            |
| precession generated by BoZ                                    |
| RESONANCE con Le abtoiment adjusting frequency                 |
| of rotating field to match precessor frequency                 |
| => in this way, by varying frequency of                        |
| rotating field one can precisely meane                         |
| maquelse moment ju                                             |
| MRI works detecting radio frequency                            |
| Induced by Spin polorization endethour                         |
| during tome !                                                  |

| Finally notice that is practice votating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fields one d'épart to produce four effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| can be obtained with oscillahap fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Le 2 or je drection; la example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $B_1 \hat{x} \cos \omega_x t \equiv \frac{B_1}{2} [\hat{x} \cos \omega t + \hat{y} \sin \omega t] \hat{f} fcc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| + B1 [x crowt - growt] gfc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $f_{cc}(w) = f_{c}(-w)$<br>$f_{cc}(w) = f_{c}(-w)$ |
| if we get resonance on one of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| the two, the other is negligible if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $B_{1} << B_{0} \Rightarrow \frac{\chi}{\pi} << \omega_{ba}$<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |