
3. The Heliom Atom & the Periodic toble

As non-truise experior hour of these idea, we
desule how QH can be used to make
predictions dout Atoms with $z > 1$
Atoms with more thou one electron are much
more complicated than Hydrogen. New "physics"
due to
- repulsion Letween electrons
- Pouli exclusion Pronciple
Both effects can be seen on the simplest
example HELIOM (Z=2) => ~1 HATTER
UNIVERSE. (excluding DM!)
In the exercises you will cousider also
atoms with Z>2 [regularities & structure
of the PERIODIC TABLE]

HELIUM	l e le nudeus interset only
₹2 +2 ₹2) through EM.
$Pu \# mg mu clev$ $H = \frac{\overline{P_1}^2}{2m} + \frac{1}{2m}$	s @ origin, hourietanion reads $\frac{\overline{P}_2^2}{2m} = \frac{\overline{Ze^2}}{4\pi\epsilon_0 r_1} + \frac{\overline{2e^2}}{4\pi\epsilon_0 r_2} + \frac{e^2}{4\pi\epsilon_0 r_1 - \overline{r_0}}$
· · · · · · · · · · ·	ing mony (subleading) effects
. spim - orl	t couplings f electric current generated by one
electron	ou the other one interactions one Calomb - like

So we write $H = H_{1} + H_{2} + V_{12}$ T T T T T $e^{-}e^{-}$ interaction First electron Second electron
Cleanly, if V12=0, then we could betoin full solution for 14 by using colution, for Hydrogen-like Homes (1 cleation, general Z)
As first attempt, we can try to use PERTIRBATION THEORY with H2+H2=Ho & V12=1H1
From your study of the Hydrogen Atom
$H_i \oint_{n_i \ell_i m_i} (\vec{r}_i) = E_{n_i} \oint_{n_i \ell_i m_i} \frac{i=1,2}{3}$

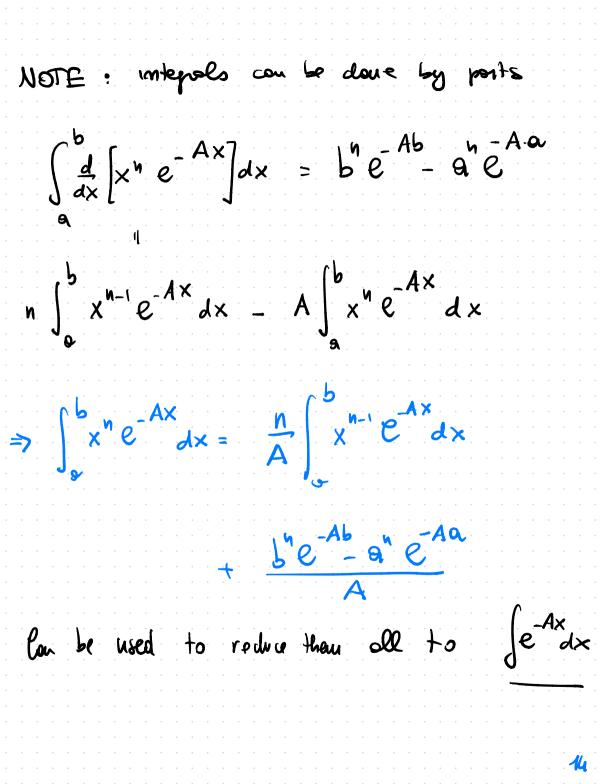
$ \Phi_{n_i \ell_i m_i} (\vec{r}_i) = \mathcal{U}_{n_i}^{\ell_i} (r_i) Y_{\ell_i}^{m_i} (\theta_i, \varphi_i) $
depends only on $\Gamma_i = \overline{\Gamma_i} $ Splencel by we can write
So we can write $r_i = 1\overline{r_i} 1$ Spleicel $r_i = 1\overline{r_i} 1$ Spleicel $r_i = 1\overline{r_i} 1$ tormonics $r_i(\overline{r_1}, \overline{r_2}) = \Phi_{nals} m_1(\overline{r_1}) \Phi_{nals}(\overline{r_2})$ with
$H_{0}\mathcal{U}(\vec{r}_{1},\vec{r}_{2}) = E_{n_{2}n_{2}}\mathcal{U}(\vec{r}_{1},\vec{r}_{2}) = \left[E_{n_{1}} + E_{n_{2}}\right]\mathcal{U}$
with $E_n = -\frac{1}{2}mc^2(z_0)^2 \frac{1}{n^2}$ Nucleus charge = $\frac{2}{2}$
$0ud = \sum_{n_2,n_2}^{2} = -\frac{1}{2} mc^2 [Zd]^2 \left(\frac{1}{n_1^2} + \frac{1}{n_2^2} \right)$
For Ground State $E_{1,1} = -MC^2 [2a]^2$
$MC_{=}^{2}$ (2. $Z_{=8}^{2}$) = 8 $E_{1}^{Hydrogen}$ (2. $Z_{=8}^{2}$)
= - 108 8 eV

to see if it makes seuse to try perturb
theory, we can try to estimate effect of V12
e dons
for each dectron in ground state of one-el.
otom we can take $d \sim \frac{a_0}{Z}$
$ \theta_0 = \frac{\pi}{MC} \sim 0.53 \text{ Å} \sim 0.5 \cdot 10^{-10} \text{ Radius} $
the every is convest when electrons are as
for every on possible $D = 2d = 2\frac{\theta_0}{Z} \sim \frac{\beta_0}{Z}$
$v_{ith} \neq 2$
$\Delta E \sim \frac{e^2}{4\pi\epsilon_0} = \frac{e^2}{4\pi\epsilon_0} \left(\frac{z}{f}\right) \sim \left(27.2eV\right) \frac{z}{f}$
DE < 108.8 eV so pert theory is respublie 1

Even hefre switching on the perdorbetion, we notice something interesting
• Ionization Energy $E_{1002} = 54.4 \text{ eV}$ (remove one $e^- \rightarrow r=\infty$) in this "state", Atom has $E_{He}^{10012} = -54.4 \text{ eV}$
• First excled shales que $E_1 = -\frac{5}{8} mc(2d)^2 = -68, 1 eV$ $L_{n_1=1, n_2=2}$ or viewersa
$E_{x} = -\frac{1}{4} mc^{2} [2a]^{2} = -\frac{27}{2} eV$ T $Inn = 2$ $is 100E [0nizzhion]$ $iz = 2$ $evergey => Discrete$ $stele is Continuou m 1$

(2,2) = -24,2 eV	Continuence of states
$\frac{1}{1} = -54, 4 \text{ eV}$	
<u> </u>	
(1,2) E = -68, 1 eV	
(1,1) E = -108,8 × 1	Crowned State
New phenomenon of AUTOIONIZATION	· ·
$He^{[2,2]} \longrightarrow He^+ + e^-$	
it can decay into singly ioniz	d Helum!
We'll talk more about how atoms go doeays later in the course !	through these

Our picture of Helun still very primitive, let's odd some more effects
* PAULI EXCLUSION PRINCIPLE two elections are iDENTICAL FERMIONS, total wove function must be ANTISYMMETRIC
quarter de la $(\vec{r}_1, \vec{r}_2) = \phi_{100}(\vec{r}_1) \phi_{100}(\vec{r}_2) \chi_{simple}$ (1, 1) Symmetric 1
$\chi_{inngf} = \pm \left[\chi_{+}^{(i)} \chi_{-}^{(2)} - \chi_{-}^{(i)} \chi_{+}^{(2)} \right]$
First excited State) We can either autorymm (1,2) ~ (2,1)) spin or coordinate port
8


n = 2, R = 10, 13; m = 1-1, 0, 13explicitly_ $\mathcal{U}_{1}^{simpl} = \left[\phi_{1\infty}(\vec{r_{1}}) \phi_{2em}(\vec{r_{2}}) + \phi_{2em}(\vec{r_{1}}) \phi_{1os}(\vec{r_{2}}) \right] \chi_{simpl}$ $\mathcal{U}_{1}^{\text{tripl}} = \left[\phi_{100}(\vec{r}_{1}) \phi_{2em}(\vec{r}_{2}) - \phi_{2em}(\vec{r}_{1}) \phi_{100}(\vec{r}_{2}) \right] \chi_{\text{tripl}}$ $\chi_{trpl} = \begin{cases} \chi_{t}^{(n)} \chi_{t}^{(2)} \\ \chi_{t}^{(n)} \chi_{t}^{(1)} + \chi_{t}^{(n)} \chi_{t}^{(2)} \\ \sqrt{z} \\ \chi_{t}^{(n)} \chi_{t}^{(2)} \end{cases}$ ~ V vere fle, mg! 4 déferent states which, in current pichie, ore all DEGENERATE IN ENERGY Shelf we have igned remainst effect, Viz = interaction among two electrons -> let's try to enhange at with pert the .9

First	ORD PERT	THEORY	- first on	d port
. Go	ind State	ŧ., =	Eo +	ΔE.
∆€.		;100 V1		
<td>$= \int d^3 \vec{r}_1 d^3 \vec{r}_2$</td> <td>น* (กี, กี)</td> <td>V12(rd, rz) J spin molep</td> <td>Uo(I, IZ)</td>	$= \int d^3 \vec{r}_1 d^3 \vec{r}_2$	น * (กี, กี)	V12(rd, rz) J spin molep	Uo(I, IZ)
	$= \int d^3 \vec{r}_1 d^3 \vec{r}_2$	\$100 (rī)	$2 \left \phi_{100}(\vec{r}_2) \right ^2$	e ² 4118, 14- 121
NOICE	THAT ;	chorge dau	ity for first	e ⁻
	$\int \frac{3}{d\vec{r}_1} \frac{elphos}{l\vec{r}_1}$	$\frac{\tilde{(\vec{r}_{i})}^{2}}{\tilde{z}_{i}}$	= U(E) stential gen hrst e @	wated by

$\Delta E_0 = -\frac{1}{4\pi\epsilon_0} \int d^2 r_2 e \left[\phi_{1\infty}(\vec{r_2}) \right]^2$	U(r₂)
is electrostatic energy of e	number 2 in U(r)
this integral is "standard"	
$\varphi_{100}(\vec{r}) = \frac{2}{\sqrt{4\pi}} \left(\frac{\chi}{g_0}\right)^{3/2} e^{-\frac{Zr}{g_0}}$. .
$\Delta E_{0} = \frac{1}{\pi^{2}} \left(\frac{z}{a_{0}}\right)^{6} \frac{e^{2}}{4\pi\epsilon_{0}} \int_{0}^{\infty} dr_{1} r_{1}^{2} e$	$\frac{22r_1}{a_0}\int_{dr_2}^{\infty} r_2^2 e^{\frac{22r_1}{a_0}}$
$\times \int d\Omega_1 d\Omega_2 \frac{1}{ \vec{r_1} - \vec{r_2} }$. .
$\begin{bmatrix} 2\pi & 1 \\ d \psi_2 \end{bmatrix} = \begin{bmatrix} d \cos \theta_2 \\ \vdots \end{bmatrix}$	$\frac{1}{r_1} \frac{y_2}{y_2}$
$\int \int \sqrt{\vec{r}_1^2 + \vec{r}_2^2} - 2\vec{r}_1 \vec{r}_2 \cos \theta_2$ -1	

$= \frac{2\pi}{r_{1}r_{2}} \left\{ \sqrt{r_{1}^{2} + r_{2}^{2} + 2r_{1}r_{2}} - \sqrt{r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}} \right\}$ $\sqrt{(r_{1} + r_{2})^{2}} - \sqrt{(r_{1} - r_{2})^{2}}$	
$= \frac{2\Pi}{r_{4}r_{2}} \left[\Gamma_{4} + \Gamma_{2} - \Gamma_{4} - \Gamma_{2} \right]$ $T depends on whether \Gamma_{4} \leq 1$	د د ک
oud $\int d\Omega 1 = 4\pi^2$ to putting all tage then	•
$\Delta E_{0} = \frac{8e^{2}}{4\pi \varepsilon_{0}} \left(\frac{2}{a_{0}}\right)^{6} \int_{0}^{\infty} dr_{1} r_{1} e^{-\frac{22r_{1}}{a_{0}}} x$	•
$\times \left\{ 2 \int_{0}^{r_{1}} dr_{2} f_{2}^{2} e^{-\frac{2 Z r_{2}}{Q_{0}}} + 2 \Gamma_{1} \int_{r_{1}}^{\infty} dr_{2} r_{2} e^{-\frac{2 Z r_{2}}{Q_{0}}} \right\}$	
$=\frac{5}{8}\frac{Ze^{2}}{4\pi\epsilon_{o}}=\frac{5}{4}Z\left[\frac{1}{2}mc^{2}a^{2}\right]>0$	•
$if Z = 2 \Delta E_{11} = + 34 eV$	12

remember that very roughly we had estimated
$\Delta E_{o} \sim (27.2 \text{ eV}) \frac{Z}{F}$
7- some factor
$\frac{1}{1-1} \text{ some factor}$
Indeed this volue conceptudes to $\frac{1}{2} \sim 1.6$
s we get
$E_0^{(1)} = (-108.8 + 34) eV = -74.8 eV$
EXPERIMENTALLY one finds [Eexp = -78.975eV]
7
forst order perton ballon theory
not bod, but make, mistuke
0(5%)

to or for or GROUND STATE goes, PAULI principle
and spin play no role. What elast excited
stotes ?
$n = 2$, $l = \{0, 1\}$ & $m = \{0, -1, 1\}$
consider only m=0 Fince V12 commutes with Lz
which means it count change spin slong that
stis 1
to courder generic l, m=0 & SINGLET ! TRIPLET
$\Delta E_{1}^{(s,t)} = \frac{1}{2} \frac{e^{2}}{4\pi\epsilon} \int d\vec{r}_{1} d\vec{r}_{2} \left[\frac{\phi_{100}(\vec{r}_{1})\phi_{2\ell_{0}}(\vec{r}_{2})}{ \vec{r}_{1} - \vec{r}_{2} } \frac{\phi_{100}(\vec{r}_{2})\phi_{100}(\vec{r}_{1})}{ \vec{r}_{1} - \vec{r}_{2} } \right]$
where + => fimylet spim
- => trylet spim

opering the square and using V(riciric) symm to rename the int voidles, we write
$\Delta E_{1}^{(s)} = J + k$
$\Delta E_{1}^{(+)} = J - k$
where $J = \frac{e^2}{u \pi \epsilon_0} \int_{0}^{3} \frac{3}{r_1} \frac{1}{d r_2} \frac{ \phi_{noo}(\vec{r}_1) ^2 \phi_{2e_3}(\vec{r}_2) ^2}{ \vec{r}_1 - \vec{r}_2 }$
$K = \frac{e^{2}}{4\pi\epsilon_{0}} \int_{0}^{2} d\vec{r}_{1} d\vec{r}_{2} \frac{\varphi_{00}^{*}(\vec{r}_{1}) \varphi_{100}(\vec{r}_{2}) \varphi_{200}^{*}(\vec{r}_{1}) \varphi_{200}(\vec{r}_{2})}{ \vec{r}_{1} - \vec{r}_{2} }$
NOTE J >0 manifestly
K >0 less obvious for general l (see exercises!)

the source can be derved for Un \$100 \$neo Igenerse n!
this means $\Delta E_{n,e}^{(t)} < \Delta E_{n,e}^{(s)}$
so PAULI PRINCIPLE implies that degeneration of
state, with different ornougement of spins
is lifted
=> even if V is SPIN INDEPENDENT
gunnetry requirements ou vore
function moles its effects spin dependent
=> "EXCHANCE INTERACTION"
Hiraugh this effect, spin - dependent from con
be generated which are NOT SUPPRESSED composed
to electrical interactions [typically spin ~ magnetic
supposed $O(\left(\frac{v}{c}\right)^2) \sim O(d^2)$] 17

A D	thouks	to	ters	flect	we	predict	He
sp	ectrum	· · · · ·		· · · · · ·			· · · · · · · · ·
	UNPERTUR		(15)(2P)			1P_1	singl type ingle
l = 4 l =		s)	(15)(25)			- ³ 5,	
L =	0 (IS)(1	s)		· · · · · · ·		
	pectrosco notation					> ²⁵⁺¹	J TOT ANG ROMENTUM OF ECECTIONS
· · · ·		· · · · ·	 	L=0 → L=1 → L=2 → L=3 →	S P D F		

We can improve an our estimate for energy of ground state of Helium wing VARIATIONAL PRINCIPLE
Courder some Hometorion H & a state 19
with $< 741 = 1$
HIK> = En In> Complete set of égensistes
then $ 1\rangle = \sum_{k} C_{k} k\rangle$
normalitation surples $\sum_{k} C_{k} ^{2} = 1$
elso we have $\langle \psi H \psi \rangle = \sum_{k} C_{k} ^{2} E_{k}$
$\geq E_{o} \sum_{k} C_{k} ^{2} = E_{o}$ \int_{1}^{k}
because Ek≥Eo grand state 19

$\Rightarrow E_{o} \leq \langle \psi H \psi \rangle$
we can use this choosing some ly>=ly(d1dn)>
Let energy
$computing < \psi H \psi > = \Delta (d_1,, d_1)$
oud fuelly minimizing Δ with dj
=> if we choose try? "wisely", this proceedure
con gue very good estimate of ground state Eo
low we apply this to HELIUM?
14> = 4100 (r, Z) 4100 (r, Z*)
this a like $\phi_{100}(\vec{r})$ [Hychogen like
used before, but with I but with ARBITMARY
$2 \rightarrow 2^{*}$; we call Z^{*} it 2_{100} not to confine it!

=> physical rubuition : 14 using imple
pertitation theory, we neglect SCREENING
EffECT : et see smaller $Z^* < Z(=2)$
because port of nt is screened by other
electron!
la we have suppress dependence on Z*
$\left(\frac{\vec{p}^2}{2m}-\frac{Z^*e^2}{4\pi\epsilon_0 r}\right)\gamma_{100}(\vec{r})=E^*\gamma_{100}(\vec{r})$
$(2m)$ $(4\pi \epsilon_{0} r /)^{120}$
$\langle \Psi H \Psi \rangle = \left[J_{1}^{3} + J_{1}^{3} + \frac{P_{1}}{P_{1}} + \frac{P_{2}}{P_{1}} - \int \frac{2e^{2}}{2e^{2}} \left(1 + \frac{1}{P_{1}} \right) \right]$
$\langle \psi \mathcal{H} \psi \rangle = \int d^{3} \vec{r}_{1} d^{3} \vec{r}_{2} \left[\frac{\vec{P}_{1}}{2m} + \frac{\vec{P}_{2}}{2m} - \int \frac{2e^{2}}{4\pi\epsilon_{s}} \left(\frac{1}{r_{1}} + \frac{1}{r_{2}} \right) \right]$
$\frac{e^{2}}{4\pi \varepsilon_{a} \overline{r}_{a}-\overline{r}_{a} } \left[\frac{1}{4} \frac{1}{400} (\overline{r}_{a}) ^{2} \frac{1}{4} \frac{1}{400} (\overline{r}_{a}) \right]^{2}$
(1) Collection (1) Co
How lto nou evolucited
for correct 2, not 2*

$\angle \psi H \psi \rangle = 2$ Using $r_1 \leftarrow r_2$ Symmetry	$\int d^{3}\vec{r}_{n} d^{2}\vec{r}_{2} 2f_{n\infty}(\vec{r}) ^{2} $ $\times \left[\frac{P_{1}^{2}}{2m} - \frac{2^{*}e^{2}}{6\pi\epsilon_{0}r_{1}} - \frac{e^{2}}{6\pi\epsilon_{0}r_{1}} \right]$ standard Calends yrelean	$\frac{\psi_{100}(\vec{r}_{1})}{4\pi\epsilon_{0}r_{1}}^{2} \times \frac{2^{2}(2-2^{*})}{4\pi\epsilon_{0}r_{1}}$
× [$\frac{e^{2}}{4\pi\epsilon_{-} \tau_{A}^{2}-\tau_{S}^{2} }$	DE. DE. with 2*
$-\frac{1}{2}mc^{2}\left(\frac{z}{2a}\right)^{2}\times 2$	$\frac{z^{*}}{z_{0}} \left< \frac{1}{100} \right _{r}^{4} \left \frac{1}{100} \right> + \frac{z^{*}}{q_{0}}$ $z^{*} + 4 z^{*} (z - z^{*})$	$\frac{5}{4} z^{*} \left(\frac{1}{2} mc^{2} d^{2} \right)$

$= -\frac{1}{2} mc^2 d$	$2 \left[-22^{*2} + \right]$	4 ZZ* - 5 4	z*] = F(2*)
<u>)</u> 274 F(2			$Z = \frac{5}{16}$
$\frac{\partial^2}{\partial 2^*}$, F(2*	· · · · · · · · · · · · ·		mini no m?
$E_o \leq -\frac{1}{2}m$	$c^2 d^2 \int 2 \left(\frac{7}{2} \right)^2 dz$	$\left[-\frac{5}{16}\right]^{2} = \left[-\frac{5}{16}\right]^{2} = \left[-\frac$	-77, 4 eV 1 NERY CLOSE += Eexp!
Tremender	$\alpha = \frac{e^2}{4\pi\epsilon_s}$ $\alpha = \frac{1}{2}$	$\frac{1}{137}$	fue structure constoret frc mc ²
· · · · · · · · · · · · · · · · · · ·		z*2 tc =	
. .	· · · · · · · · · · · · · · · · · · ·	$(Z^*a)^2 mc$	2 2.3