
2. Identical Porticles

As	first	externi	ou ef	QH 1	, we	will	deal	with
						e how		
						u wit		
						um z		
the	en gr	everal 1	e to	the	whol	PERI	ODIC	TABLE
		exerci				· · · · ·		
The	delic	ate 1n	me tha	at dáf	<i>ferentiat</i>	es OH	fou	CH
						- PARTI		
Fro	m 1	t. N	porthe	Qas,	Qn	for under ou	V	
6	aus t	to gene	vol te	· · · · ·				· · · · ·
• •	14(1,.	,N)>	ste	te vec			· · · · ·	
4	X1	(NI 4(l,, N)			, XN		
	f <u>Jr</u>	f (xn, dt	×~) · · · · · · · · · · · · · · · · · · ·		·(×1, …,			

$H = \sum_{A=1}^{N} \frac{P_{A}^{2}}{2m_{4}} + V(x_{1}, \dots$, XN)
$= -t^{2} \sum_{\lambda=1}^{N} \frac{1}{2m_{i}} \frac{2}{2}$	- + V(X4,,XN) X ²
· · · · · · · · · · · · · · · · · · ·	in coordinate space
If porticles are different	notting special happens
INSTEAD :	
There is overwhelming e	experimental evidence that, if
perholes are IDENTICAL	
INDISTINGUISHABLE .	Atoms & moleculor spectra
· · · · · · · · · · · · · · · · · · ·	Ideal Goses [GIBBS PARADOX]
	Photons in LASERS
•••••••••••••••••••••••••••••••••••••••	
	collider experiments
· · · · · · · · · · · · · · · · · · ·	
	. •. •

We will see some clementary exceptes here
We start courdering system that contains Two IDENTICAL PARTICLES [NO SPIN !]
24(X1, X2) wove function, ouplinde to find
2f(1,2) fist porticle at X1, record at X2
What is 24(2,1) => presplitude to find first at X2, second at X1
at X2, second at X1
If perhale ore identical & indistinguishable
they must represent SARE PHYSICS
$= 7 \text{ shell } 4(1,2) \neq 4(2,1)$
but $ \psi(1,2) ^2 = \psi(2,1) ^2$
$\Rightarrow \psi(1,2) = e^{i\phi} \psi(2,1)$

this equation must be true $\forall X_{1}, X_{2}$ to φ is independent of X_{1}, X_{2} !
=> if we swop orguments we get e ^{i\$} , whotever the orguments
$\gamma(1,2) = e^{1\frac{1}{2}} \gamma(2,1) = e^{2\frac{1}{2}} \gamma(1,2)$
$2i\phi$ => $e^{-1} = 2 \Rightarrow \phi = h\pi n \in \mathbb{Z}$
wore function must be either . Symmetric if h EVEN
outing mmetric if n ODD
Now let's odd extra degree of freedom => SPIN

toue thing but now $2_{1,0}(1,2)$
SPIN PARTICLE @ 1 SPIN PARTICLE @ 2
Agoin $2f_{\sigma_2\sigma_3}(2,1) = e^{i\phi} 2f_{\sigma_1\sigma_2}(1,2)$
$\Rightarrow 4_{\sigma_1\sigma_2}(1,2) = e^{2i\phi} + \frac{1}{2} + \frac{1}$
$\phi = n\pi n \in \mathbb{Z}$
Now it is again matter of EXPERIMENTAL EVIDENCE
that v_1 ODD v_1 FERMIONS spin = $\frac{1}{2}$, $\frac{3}{2}$, $\frac{3}{$
n EVEN for Bosons $spin = 0, 1, 2,$
Notice that while in QH this is experimental evidence,
IN RELATIVISTIC QUANTUM FIELD THEORY His can be PROVED ! 5

Now courider system of 2 porticles with Houltonion 71(1,2)
Houretonion for indistinguishable portales must
be olso symmetric
$H(1,2) = \frac{P_1^2}{2m} + \frac{P_2^2}{2m} + V(1,2) \leftarrow \frac{1}{2m}$ $\frac{1}{2m} = \frac{1}{2m} + \frac{1}{$
H(1,2) = H(2,1) 1 these might include <u>spim</u>
H(1,2) = E + (1,2) (1)
H(2,1) = E + (2,1) = E + (2,1)
infloduce EXCHANGE OPERATOR P12
$P_{12} = (4,2) = (2,1)$

then ep (2) becomes
$H(1,2)$ P_{12} $2f_{0102}(1,2) = E P_{12}$ $4f_{0102}(1,2)$
$(H_{12,1})$ = P_{12} $H_{1,2}$ $\psi_{r_1r_2}(1,2)$
$= (H(1,2), P_{12}] = 0$
P12 is a constant of the motion
moreover $[P_{12}]^2 = 1$
so P12 = ± 1 ergenvolues; Egenstates ore
$24^{(4)}(1,2) = \frac{1}{N_{2A}} \begin{bmatrix} 14(1,2) - 4(2,1) \end{bmatrix}$ $\frac{1}{7}$ All LANELS IN CLOINC SPIN σ_{1} 7

fince Piz is coust out of the motion a state
that is fyrmetric at some time, will dways remain
symmetric, oud similarly for ou out symmetric one)
at's easy to work out generalitation to more
porlicles, FOR 3 PARTICLES:
$24^{(A)}(1,2,3) = \frac{1}{N_{3A}} \left[24(1,2,3) - 4(1,1,3) + 24(2,3,1) \right]$
$- \psi(3,2,1) + \psi(3,1,2) - \psi(1,3,2)$
Autisymm w.r.t. Swopping ANY PAIR of Indices
While in principle mixed statistics could exist, they
ORE EXPERIMENTALLY EXCLUDED IN QH
this is port of the
PAULI EXCLUSION PRINCIPLE
8

PAULI EXCLUSION PRINCIPLE
. Systemes courshing of Nidenhal perholes of
holf-odd-inteper spin are described by
outrymmetric wore functions and allest FERMIONS
. hysterns considing of Nidentical porticles of
integer spin are described by symmetric
were frue chiers and called BOSONS
. Hixed statistics are not allowed !
First class consequence => there is ZERS PROGRALITY
of fuding 2 FERMIONS in source state
$\psi_{\sigma_1\sigma_2}(1,2) = -\psi_{\sigma_2\sigma_1}(2,1)$ $\psi_{\sigma_1=\sigma_2=\sigma_1}(1,2)$
$\Rightarrow \forall_{\mathbf{r}\mathbf{r}}(1,1) = 0 \downarrow$

Fince 24(X1,X2) must be a continuous function Too I SAME SPIN
it must be zero in some neighbourhood of
X1 = X2 , => Fermions with forme spin eroid each other !
Condition on work functions 24 can be rephrased for states.
let {In> 4 be complete set of stoles for Sincice FERMION
14) state of PAIR of FERMIONS can be exponded
$h(r) = \sum_{n,m} g_{n,m} (n) m$
$\langle x_1 \ x_2; \sigma_1 \sigma_2 \ \ 2 \rangle = 2 f_{\sigma_1 \sigma_2} (1, 2)$ above 10

Y 54 62	$(1,2) = \sum_{n,m} \theta_{nm} \langle x_{1}, \sigma_{1} n \rangle \langle x_{2}, \sigma_{2} m \rangle$
	sworp X1, 61 <> X2, 52 and odd two expr
0	$= \sum_{n,m} \left[\frac{\alpha_{n,m}}{\alpha_{1,m}} \left\{ x_{1} \sigma_{1} \right\} \right] x_{2} \sigma_{2} m \right\}$
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	+ An,m <x2 g21n=""><x1 g11m="">] î renome n,m</x1></x2>
	$= \frac{5}{n_1 m} \langle x_1 \sigma_1 n \rangle \langle x_2 \sigma_2 m \rangle [\Theta_{n,m} + \Theta_{m,n}]$
· · · · · · · · · · · · · · · · · · ·	$= \langle x_1 x_2; \sigma_1 \sigma_2 \sum_{n,m} n\rangle m\rangle (\theta_{n,m} + \theta_{m,n})$
	$ n\rangle \text{ one lineally independent} => \sqrt{9n, m + 9m, n} = 0 11$

$a_{n,m} = -a_{m,n}$	
$\partial r = 0$	$\Psi = \sum_{n,m} \frac{\Theta_{n,m}}{1} \ln \left(\frac{\ln n}{2} \right)$
	$\int_{-\infty}^{\infty} \frac{\omega_{\mu}}{\omega_{\mu}} d\omega_{\mu} d$
· · · · · · · · · · · · · · · · · · ·	zero probobility to fud
	two formions in forme
· · · · · · · · · · · · · · · · · · ·	state In>
THE TWO-PARTICLE Lourider a system of	two porholf in D=3
$H = \frac{\bar{p}_{1}^{2}}{2m_{1}} + \frac{\bar{p}_{2}^{2}}{2m_{2}} + \frac{\bar{p}_{2}^{$	V(r, r); 24(1,2) = X12 4(4,1) T T SPINS Conductor
Focus on 24 (ra, rz) for now :
Define $\vec{P} = \vec{p}_1 + \vec{p}_2$	$\vec{r} = \vec{r}_1 - \vec{r}_2$
$\vec{R} = \frac{m_1\vec{G}}{r}$	$+ \frac{m_2}{r_2}$ C.o.M coordinate $n_1 + m_2$
$[P_{i}, R_{j}] = -i\hbar \delta$	j R conjugate to total mom. 12

momerhim c	onjugate to r	rsp=-	$\vec{p}_4 - \vec{m}_4 \vec{p}_2$ $\vec{m}_1 + \vec{m}_2$
$\begin{cases} \vec{p}_1 = \vec{p} + \vec{n} \\ \vec{p}_2 = -\vec{p} + \vec{n} \end{cases}$	$\frac{m_1}{m_1 + m_2} = \frac{m_2}{p_1}$	$ \frac{\overline{P_1}^2}{2m_1} + \frac{\overline{P_2}^2}{2m_2} $ $ M = m_1 + m_2 $ $ \mu = \frac{m_1 m_2}{m_1 + m_2} $	$=\frac{\vec{P}^2}{2M}+\frac{\vec{P}^2}{2M}$
$\frac{20}{H} = \frac{\overline{P}^2}{2h}$	$\frac{\vec{F}}{2\mu}$ \neq V(i	(\vec{k}) ; (\vec{k})	(\vec{r}, \vec{R}) too
$if H und \vec{z}_i \rightarrow \vec{z}$	houged under $i + \vec{X} \Rightarrow$	T only	on relative Instea
=> TOTAL H	LO RENTUH 2	1, CONSERVED	13

now if possibles are identical mi = m2
$\vec{p} = \frac{\vec{p_1} - \vec{p_2}}{2}$ $\mu = \frac{m}{2}$; $M = 2m$
if we interchange $1 \Leftrightarrow 2 V(\hat{\epsilon}) = V(-\hat{\epsilon})$
but particles one identical, system must fulfil
the source equation \Longrightarrow $V(\overline{c}) \equiv V(\overline{c})$
modulus only.
Schrödingen Eq becomes
$\begin{bmatrix} \vec{p}_{er}^{2} + \vec{E}_{er}^{2} + V(r) \end{bmatrix} \psi(\vec{r},\vec{R}) = E \psi(\vec{r},\vec{R})$ $\uparrow \qquad \uparrow \qquad$
$\psi(\vec{r},\vec{k}) = e^{-i\vec{P}\cdot\vec{k}/t_{T}} u(\vec{z})$

$\omega_{1}\mathcal{H} = \left(\frac{\vec{F}_{e}^{2}}{2\mu} + V(2) \right) u(\vec{z}) = \left(E - \frac{\vec{F}_{e}^{2}}{2\eta} \right) u(\vec{z})$
Central potential
$u(\bar{z}) = R_{n,e}(r) Y_{e,m}(\partial_{i}e)$
spherical harmonics
Swopping $1 \Leftrightarrow 2$ means $r \rightarrow r$ $\theta \rightarrow \pi - \vartheta$ $\varphi \rightarrow \varphi + \pi$
$Y_{e,m}(\vartheta, \varphi) \rightarrow (-1)^{\ell} Y_{e,m}(\vartheta, \varphi)$ Like PARITY ! 15

Now	o let's look at the spin port	
	$(1,2) = R_{ne}(r) Y_{e,m}(\theta, \varphi) X_{12}$ Spin port	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 .	two spins in singlet state $\chi_{12}^{[S]} = \frac{1}{\sqrt{2}} \left(\chi_{+}^{(n)} \chi_{-}^{(e)} - \chi_{-}^{(n)} \chi_{+}^{(z)} \right)$ Antisymmetric under 16-2	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
	hymmetric under	

Parli Exclusion Princi ple	opplies to TOTAL WAVE FUNCTION !
=> if two porticles one	FERMIONS (Electrons)
24(1,2) must be or	ubnymm etric
=> Spim simplet states mus spim tuplet states mu	
Do we need to core if we electrones very for oway? one way true every electron	couriden two Do we need to n in the Universe?
take two "free" fermions	Yolxa) Yolxz) 17

4(x,, x,)	= $\frac{24}{9}(x_1) \frac{14}{6}(x_2)$	unconclated
oll lødels {E, T, }	$= \frac{1}{N} \left[\frac{\psi_{a}(x_{1})}{\psi_{b}(x_{1})} \right]$ concerted	$-\frac{4}{4}(x_2)\frac{4}{5}(x_1)$ (aubignmetric)
by squarny	you can see that	· ·
$N^{2} = 2 \left(1 \right)$	1 - \[dx 4 *(x) 4 (×) ²)
where we use	ed normal=2400 of	4. (x1) & 4. (x2)
QUESTION 15
is there a d	Aprence of we to	ry to compute
the probability	that porticle with l	olels "a" s
in some region	R? (does this de	peerd are whethe
	I out rymm	etised?) 18

1. Unconcluted $P(R) = \int_{R} dx \int_{everywhere}^{everywhere} \psi_{\alpha}(x) ^{2} \psi_{\alpha}(x) ^{2}$	K(y)1 ²
$= \int_{R} dx \left \mathcal{Y}_{a}(x) \right ^{2}$	Intersted everywhere normalted to 1
2. concluded Li terms $P(R) = \frac{1}{N^2} \int_{R} dx Y_a(x) ^2 \int_{a} dx$	$\frac{1}{12}$
$+ \frac{1}{N^2} \int_{\mathcal{R}} dy \left[\frac{24a(y)}{2}\right]^2 \int_{\mathcal{R}} dy \frac{1}{ EVERY }$	× [1/L(×) 2 where " 1
$-\frac{1}{N^{2}}\int_{R}dx\int_{R}dy\left[\psi_{a}^{*}(x)\psi_{b}+\psi_{b}^{*}(x)\psi_{b}\right]$	$(x) : \psi_{e} : (y) : \varphi_{a}(y)$ $\left[\gamma_{a}^{(x)} : \psi_{a}^{*}(y) : \psi_{b}(y) \right]$ 19

$P(R) = \frac{2}{N^2} \int_{R} dx 2_0(x) ^2$
- Z/dx/dy y=(x) 24(x) 24(y) 42(y) R R
= 0 only if two wove functions overlops over Ri
hoy now $2f_{e}(x) \sim Ce^{-\beta x^{2}}$ D=1 $\gamma_{b}(x) \sim Ce^{-\beta (x-L)^{2}}$ for muplify
At two electrons govssion Le At centred ort distoirce "L"
$L \sim voronce, "width" \beta 20$

overlop intepol Lecomes
$\left[\int_{R} dx \left[\frac{4}{4} (x) + (x) \right] \right]^{2}$
$ = \int_{R}^{\beta} \left(x^{2} + (x-L)^{2} \right) $ $ = \int_{R}^{\beta} \left(x^{2} + (x-L)^{2} \right) $ $ = \int_{R}^{\beta} \left(x^{2} + (x-L)^{2} \right) $ $ = \int_{R}^{\beta} \left(x^{2} + (x-L)^{2} \right) $
Also imples decreases
N ~ 2 + small connections with distance!
when L >> 1 it can be covily ignored
remet is the some whet
PAULI PRINCIPLE must be taken into account
for electrons bound in some ATOM or MOLECULE
=> often it can be neglected even in
LATTICES when L~ several Augstroms ! 21