
13. Low-Energy Scotteing: more examples

We counded here a further example of scattering by a "bounded potential", in porticular the so-called FOTENTIAL WELL (spherical well!)
$V = \begin{cases} -v_0 & h & r \le 0 \\ 0 & h & r > 0 \end{cases}$
let's courder folgement of Schröchngen Eq made & particle
WSIDE (using V(r) = - Vo in radial Eq)
$-\frac{t^{2}}{2\mu}\frac{1}{2}\frac{d^{2}(rR)}{dr^{2}}+\frac{t^{2}}{2\mu}\frac{\ell(l+1)}{R}=(\frac{1}{\sqrt{2}}R)$ $=(\frac{1}{\sqrt{2}}R)$ $=(\frac{1}{\sqrt{2}}R)$
some on free volutions with E>E=E+16
define $K' = \frac{2\mu}{\pi^2} (E + V_0)$ then $\frac{1}{\pi^2}$
$r \leq a$ $R_{ke}(r) = A \int e(k'r) \left(\begin{array}{c} spherical lengl \\ smooth @ r=0 \end{array} \right)$

· ·
· ·
· ·
• •
· · ·
· · ·
• •
• •

$= e^{i\delta e} \left[e^{-i[kr - \frac{er}{2} + \delta e]} - e^{-i(kr - \frac{er}{2} + \delta e)} \right]$ zikr zikr
$=\frac{i\delta e}{kr} \ln \left(kr - \frac{e\pi}{2} + \delta e(k)\right)$ $\frac{1}{kr} \qquad \qquad$
$= \frac{e^{i\delta e}}{kr} \left[\sin(kr - \frac{e\pi}{2}) \cos \delta e + \sin \delta e \cos(kr - \frac{e\pi}{2}) \right]$
these are all alternative versions of some formea!
now expanding general plution (C r -> ~
$R_{ke}(r) \sim B \frac{\sin(kr - l\pi/2)}{kr} - C \frac{\cos(kr - l\pi/2)}{kr}$
Comparing with behaviour above, ques [ignore phose]]
<u>C</u> = - tou Se => so if I can get B, C,
13 there I can alterian phase shift 3

to fud B, C I need to motel solution inside and active potential well
A fe(k'a) = B fe(ka) + C fe(ka)
$k'A d \frac{fe(g)}{dg}\Big _{f=k'a} = k \left[B \frac{d fe(g)}{dg} \Big _{f=ka} + C \frac{d ye(g)}{dg} \Big _{f=ka} \right]$
ratio gres
k' $\frac{\int e^{i(k'a)}}{\int e^{i(ka)}} = k \frac{\int e^{i(ka)} + \frac{c}{B} \frac{g^{2}(ka)}{g^{2}(ka)}}{\int e^{i(ka)} + \frac{c}{B} \frac{g^{2}(ka)}{g^{2}(ka)}}$
Jerra) Jerra) + 3 yerra)
$J_e^l = d \frac{f_e(p)}{dp}$ etc, while $k' \neq k$!

this fimula can be inverted to give $\frac{c}{B}$, which in
turn determines the tougent of the phose shift
omme V.>0 EATTRACTIVE POTENTIAL J there we can write
$\left(\frac{C}{B}\right) + \tan \delta e = \frac{k \int e^{i(ka)} \int $
What $f k y'e(ka) je(k'a) - k' ye(ka) je'(k'a) = 0?$
$fou \delta e = \infty \implies \delta e = \frac{\pi}{2} + n\pi$
(non section $Q_k = \frac{k\pi}{k^2} = \frac{2}{2} (2\ell+1) \partial m^2 \delta e(k)$
$f = \frac{\pi}{2}$ $T = \frac{\pi}{2}$ $T = \frac{\pi}{2}$ $T = \frac{\pi}{2}$ $T = \frac{\pi}{2}$
=> REFONANT SCATTERING 5

Courider cose when potential	VERY DEEP
Vome => k'>> k p	we can soy.
kass l>> ka	
in this further limit we can expo tonde. Assume first reacce, t	heu .
ton Se ~ $\frac{(2l+1)}{[(2l+1)!!]^2}$ (kg) [(l jelka) - k'a jelka) l+1) jelka) + k'a jelka)
poure behaviour we	now expand this fri
found for hord sphere	kasse
due to low energy kazzl	
	6

(l+1) felka) + k'a felka) = 0 versuou ce coudiniou
$\int e(k'a) \sim \frac{1}{k'a} \cos(k'a - \frac{(l+1)}{2}) \pi$
$\int_{e}^{l} (k'a) \sim -\frac{1}{k'a} \left[\lim_{k'a} \left(\frac{1}{2} \left(l(+) \right) - \frac{1}{k'a} \operatorname{Cn} \left(k'a - \frac{1}{2} \left(l(+) \right) \right) \right]$
s resonance condition becomes
$\frac{l}{k'\alpha}\left(k'\alpha-\frac{(l+1)}{Z}\pi\right) = \sin\left(k'\alpha-\frac{(l+1)}{Z}\pi\right)$
$\tan\left(k^{\prime}\varrho-\frac{(l+1)}{2}\pi\right)=\frac{l}{k^{\prime}\varrho}\sim0$
this must be small too (module NTT)
$k'a - \frac{(l+1)}{2}\pi \sim \frac{l}{k'a} + h\pi$
$k' \alpha \cong \left[\frac{e+1}{2} + n\right] \pi \sim \left(\frac{e}{2} + n\right) \pi \Rightarrow \text{ in infute}$
IMPORTANT => LWEAR POLE W K'=> (N Energy ! 7

E centrfigel bonier ~ l(lei) rz
"opposimate bound ctates "
V_0 V_0
$R_{ke}(r) = A fe(kr)$ for $r \leq a$ $R_{ke}(r - a) = 0 \implies fe(ka) = 0$ for $ka \gg e$
$\frac{1}{k\alpha} \sin\left(k\alpha - \frac{\ell\pi}{2}\right) = 0 \implies k\alpha = \left(n + \frac{\ell}{2}\right)\pi$
RESONANT SCATTERING occurs when everyy matches the every levels that "would be bound states" if V-> 10
"pseudo bound states" "me now E>O (SCATTERING!)

going both to general Lehovour of Seifn Kake
ton Se ~ $\frac{(2l+1)}{[(2l+1)!!]}$ $(ka)^{2l+1}$ $\left[\begin{array}{c} l \ jelka \end{pmatrix} - k'a \ jelka \end{pmatrix} \right]$ $\left[(l+1) \ jelka \end{pmatrix} + k'a \ jelka \end{pmatrix}$
-> - if ka is small ro very mill Se but there are versonances, as we sow, where
Se vien ropidly from 0 -> TT (ton Se = 00)
lou we pour net rite behaviour close to resource?
se Ee Ee

In general devoys Sinkle POLE we can porometrize this a	
ton $Se \cong \frac{\gamma(ka)^{2l+1}}{E - E res}$ Divergences to power.	1 1
T resourant energy_ (whatever it is)	· · · · · · · · · · · · · · · · · · ·
now what does this mean for cron-section?	· · · · · · · · · · · · · · · · · · ·
we write $\sigma_{ToT} = \frac{5}{2} \sigma_{e}$	• •
$\overline{Oe} = \frac{\mu \overline{\Gamma}}{k^2} (2l+1) \operatorname{rm}^2 Je = \frac{\mu \overline{\Gamma}}{k^2} (1l+1) \frac{\operatorname{tor}^2 Se}{1+\operatorname{tor}^2 Se}$	· · ·
$\begin{bmatrix} invertime \\ touise = \frac{finise}{i-finise} \end{bmatrix}$	· · · · · · · · · · · · · · · · · · ·
$\sigma_{e} = \frac{\mu_{T}}{\kappa^{2}} (2l+1) \frac{[\gamma(k\alpha)^{2l+1}]^{2}}{(E-Eres)^{2} + [\gamma(k\alpha)^{2l+1}]^{2}}$	

Collimp hT=	4 [y(ka)20+1] ²	(very small!) (very small!)
$Ge \sim \frac{4\pi}{k^2}$	$\frac{1}{2(2+\epsilon)} \frac{\frac{1}{2}\Gamma^2}{(E-Eres)^2}$	t ^h T ² 4
б <u>них</u> 2		BREIT-WIGNER distribution!
2.		
	$\frac{7}{2} \text{ Eres}$ $\frac{7}{2} \text{ width } e$	HALF-MAXIMUM !
	nd this general beha	
studying DECA	YS of UNSTADLE S	TATES
(see Lecture 6		-11

Now let's use the fact that at Low ENERCIP
S~ (ka) ^{2l+1} and so l=0 dominates
S-WAVE APPMOXIMATION
let's de maiteling of selections from scratch
(NSIDE $U(r) = r \operatorname{Rol} r) = C \operatorname{sim} k'r$ (regulor of $r=0$)
OUTSIDE N(r) = AM(Kr+S(K)) [up to e
$C im(ka) = fim(ka + \delta)$
$c \in co(ka) = k co(ka + \delta)$
$k' \cot(k'a) = k \cot(ka + \delta)$
$tou S = \frac{k' \kappa' tou \kappa' a - tou \kappa a}{1 + k' \kappa' tou (\kappa' a) tou (\kappa a)}$

let's define $ton(qa) = \frac{k}{k} + ou(k'a)$ there
$\tan \delta = \frac{\tan qa}{1 + \tan(qa)} = \tan(qa - ka)$ $1 + \tan(qa) \tan(ka)$
$=$ $\delta = \operatorname{encton} \left[\frac{k}{k'} + \operatorname{tou}(k'a) \right] - ka$
revenser now that
$(k'a)^2 = (ka)^2 + \frac{2m \sqrt{a}a^2}{\pi^2}$ from definition (($\sqrt{a} > 0$)
Low Energy gres then [(ka) ~ 1, S ~ 1]
$5 \sim \frac{ka}{k'a}$ touk'a - $ka = ka \left(\frac{touk'a}{u'a} - 1 \right)$
也

opoin nuoque to innerse V. slowly; k'a innerses
when k'a goes through I touvia -> 00
here count use ton 5~5
$tous = \frac{k/k'}{touk'a - touka}$
1+ k/ki ton(k'a) ton(ka)
$\sim \frac{1}{100 \text{ kg}} \rightarrow \infty \text{ because kg = 0},$
12 on resonance 5-3 To we now fready
$K' = \frac{1}{2}$ is condition that well deep enough to
que a BOUND STATE in Well (epin bound state ~ resonance)
keep ou inversing Vo, then with BOUND
STATE $S \sim Tt^2 + ka \left(\frac{tank'a}{k'a} - 1 \right)$

this is required by could must y
$tou \delta \sim O(ka) \Longrightarrow \delta = ka \left(\frac{tou ka}{ka} - 1 \right) + n\pi$
n if $S > \frac{\pi}{2}$, it must be $-\pi$ with $n = 1$
os Vo because longer and longer, the well
becomes deeper and deeper
k'a posses through $\frac{3\pi}{2}$
$\delta = 2\pi + k\alpha \left[\frac{+\alpha k'\alpha}{k'\alpha} - 1 \right]$ and so an
loch time that we ADD a BOUND STATE
LEVINSON'S THEOREM (For sphercolly bymm V)
$S(k\to\infty) - S(k\to\infty) = M_{G} \cdot T$
all Lound nouser of Bound Stotes
states "seen" no basad states 15

	of identical			•
	the surple cou			•
happens whe	w we scatten	IDENTICAL	PARTICLES	•
If we scaller	two CLASSICAL	identical	porlicles	•
	· · · · · · · · · · · · · ·			•
		· · · · · · · ·	· · · · · · · · · · · ·	•
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·		•
		· · · · · · · · ·	60	•
		() ⁶ -7		•
· · · · · · · · · · · · ·			· · · · · · · · · · · · ·	0
θ~π-θ	diffection		· · · · · · · · · · · · · ·	•
		}) <i>⊥</i> ⊂ (π	-8)	•
	(lomically $\overline{\sigma}_{e}(\theta) = \overline{\sigma}(\theta) + \overline{\sigma}(\pi - \theta)$			
· · · · · · · · · · · · ·	oun portid	es of the	detects.	•
				6

QH => Porticles one (NDISTNGUIJHABLE
=> this means scattering anylindes can INTERFERE
$\frac{d\sigma_{an}}{d\varrho} = \left f(\varrho) + f(\pi - \varrho) \right ^2$
= $ f(0) ^2 + f(t-0) ^2 + 2Re[f(0)f(t-0)]$
Quantum Correction to clonical repult
For example, $e^{9=\frac{T}{2}}$
$\left(\frac{d\sigma_{en}}{ds}\right)_{\frac{T}{2}} = 4 f(\frac{T}{2}) ^2 \implies \frac{\text{Imlerference gres}}{s}$
thimps become even more interesting when spin invold
=> proton (proton or dechan lelachon cuttering 17

it depends if porticles one in	SINGLET Z TRIPLET J
Spin singlet is outrymmetric their spatial wore function must be hymmetric	$\frac{\chi_{\pm}^{4}\chi_{\pm}^{2}-\chi_{\pm}^{2}\chi_{\pm}^{1}}{\sqrt{z}}$
$\frac{d\sigma_s}{dS} = \frac{ f(\theta) + f(\pi - \theta) ^2}{1}$	chouging two portider!
	$\left(\begin{array}{c}\chi_{+}^{A}\chi_{+}^{2}\chi_{+}^{2}\chi_{-}^{4}\chi_{-}^{1}\\\chi_{+}^{A}\chi_{-}^{2}+\chi_{+}^{2}\chi_{-}^{1}\\\overline{\sqrt{2}}\end{array}\right)$
$\frac{d\sigma_{\epsilon}}{d\sigma_{\epsilon}} = f(\theta) - f(\pi - \theta) ^2$	excluse juy porticles ! 18

of electrons, ALL SPIN STATES EQUALLY LIKELY
=> productions, the structure of trylet 3 times singlet !
$\frac{d\sigma}{d\Omega} = \frac{3}{4} \frac{d\sigma_{t}}{d\Omega} + \frac{1}{4} \frac{d\sigma_{s}}{d\Omega}$
$=\frac{3}{4} f(0)-f(\pi-0) ^{2}+\frac{1}{4}(f(0)+f(\pi-0))^{2}$
$= f(9) ^{2} + f(\pi-9) ^{2} - \frac{2}{2} \operatorname{Re}[f(0) f(\pi-9)]$
As long as the potential V is SPIN-INDERENDENT
the - sign means we have DESTANCTIVE INTERFERENCE
$especially @ = => 2 f(=) ^2 - f(=) ^2$
$= f(\Xi) ^2$! 19