10. The Lippmann-Schwinger Equation

let us go back to general inhubiou
H = Ho + V Ho known "FREE" V polewhich which generated scattering.
let 10> be ou eigenstate of Ho => Holp>= E10>
Now notice that, if FULL HAMILTONIAN It has a continuum of states (E>O, no BOUND STATE) then I can always imagine to find 124> s.t.
$H_{14} = (H_0 + V)_{14} = E_{14}$ \uparrow roure energy os $ \phi\rangle$!
What is the relationship between 10> & 14>?
=> quer by Lippmonn. Schwinger Equation !

Cousider Q, hermition operator. We know it has a complete set of equistates
$Q\ln > = 9n\ln >$
$\Rightarrow Q = \prod_{n=1}^{\infty} q_n n > < n $
1 continuous + discrete ru general
Now, if all $q_{n} \neq 0$, the inverse is
$Q^{-1} = \int_{n}^{n} q_{n}^{-1} (n) \leq n$
$\Rightarrow Q^{-1} Q = \underbrace{f}_{n} \underbrace{f}_{n} q_{n} \ln \times n \ln \times m \right]$ $= \underbrace{f}_{n} \underbrace{f}_{n} q_{n} \frac{1}{n} \times n \ln \times m \right]$ $= \underbrace{f}_{n} \underbrace{f}_{n} \frac{1}{n} \underbrace{f}_{n} \frac{1}{n} $
= 11 Fornally!
$(F_{Sr} Continuoum Sn, m \rightarrow S(n-m))_{2}$

What if nome eigenvolues ore zero? Let us consider Ero; Erce 1 and
$\left[Q \pm i\varepsilon\right]^{-1} = \frac{1}{n} \left(q_n \pm i\varepsilon\right)^{-1} \ln \left(n\right)$
Using this, let us define 2 states inpt> 0
$ \psi_{\pm}\rangle = \phi\rangle + (E - H_0 \pm i\epsilon)^{-1} \sqrt{ \psi_{\pm}\rangle}$
ligenstate of Ho Holip>= Elp> (Abymystatic silvition in scattering !) E>0, Ho has continuous Spectrum !
and we have
$(H_{5}-E) _{4\pm} = (H_{0}-E)(E-H_{0\pm i\epsilon})^{-1} \vee _{4\pm} >$ $\rightarrow - \vee _{4\pm} > source z \rightarrow 0$ 3

if all monipulations one allowed, we have them
$(H_{0+}V - E) _{4+} > = 0$
=> we found 2 states 12/±> which have some energy under 41, as 10/2 had under Ho
the equation that defines 174±> is colled LIPPHANN - SCHWINGER EQUATION
$ 2\psi_{\pm}\rangle = \phi\rangle + (E - H_0 \pm i\epsilon)^{-1} \sqrt{ 2\psi_{\pm}\rangle}$
Let's contract by $< \hat{\times}$ from $\angle EFT d \int d \hat{\times}' J \hat{\times}' k \hat{\times}' l$
$\langle \vec{x} \psi_{\pm} \rangle = \langle \vec{x} \phi \rangle$
$+ \int d\vec{x}' < \vec{x} (E - H_{o} \pm iE)^{-1} \vec{x}' > < \vec{x}' \vee 2f_{\pm} > 1$ $\int d\vec{x}'' \vec{x}'' > < \vec{x}'' $

U92 <2	×111×">= V($(\dot{x}') \delta^{(3)} (\dot{x}' - \dot{x}'')$)
DEFINIT	10N OF A LOCAL	- FOTENTIAL	
=> As a	distories non-los	t wont schon	at .
we ge	2 †	· · · · · · · · · · · · · · ·	
くネマチン	= <\$1\$>	. .	
· · · · · · · · · · · · · · · · · · ·	+ $\int d^{3} x' < x CE-H$	$\bullet \pm i\epsilon$) $1 \times 1 $	$) < \hat{\times} \gamma_{\pm} \rangle$
or with	wove function n	notation $(\vec{x}' \rightarrow \vec{g})$	RENAME ()
$2f_{\pm}(\vec{x}) =$	$\phi(\vec{x}) + \int d^{3}\vec{y} d$	(x1(E-Hotis) 1 g)	$v(y) = \frac{1}{2}(y)$
SAKE AS	· · · · · · · · · · · · · · · · · · ·		
24(x)	$= 2 + \frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}} \int d^{3} \vec{y}$	(x-y) V (y) 2	+(3)

=> by composison we found on OPERATOR EXPRESSION
for the Green's function is) I too possibilities t
$G_{\pm}(\vec{x}-\vec{y}) = \frac{\hbar^2}{2\mu} \langle \vec{x} (E-H_0 \pm i\epsilon)^{-1} \vec{y} \rangle$
We will prove that $dG + \rightarrow \text{OUTGOING WAVE}$ $(G - \rightarrow \text{INGMING WAVE}$
Before that, consider now the operator T defined or
$T \phi \rangle = V \psi_{\pm} \rangle$
Ommuptotic state TEigenstate of 500 kg, D 01 - full Houndtonion
H=Ho+V
· · · · · · · · · · · · · · · · · · ·

then we can write (using Lippmoun - Schninger)
$T_{\phi} = V_{\phi} + V(E - H_{o} + i\epsilon)^{-1} V_{\psi}$
= $V_{1\phi}$ + $V(E-H_{0\pm i\epsilon})^{-1}$ T I_{ϕ}
this should hold & 10> (orbitiong !)
\Rightarrow T = V + V (E-Ho ±ie) ⁻¹ T
tis equation can be sterated to reproduce the BORN EXPANSION of Operator lovel
$T = V + V(E - H_0 \pm i\epsilon)^{-1}V + O(V^3)$
Take matrix dement between some whole his
and some final state 1f>

$\langle p T i\rangle = \langle p \int d^{3}x x\rangle \langle x V i\rangle + O(V^{2})$
$= \int d^{3}\vec{x} d\vec{y} \langle \vec{p} \vec{x} \rangle \langle \vec{x} \forall \vec{y}\rangle \langle \vec{y} i \rangle$
$= \int d^{3} \vec{x} < f(\vec{x}) < \vec{x} < \vec{y} < \vec{x} > \vec{x} < \vec{y} < \vec{x} < \vec$
how if $ i\rangle = \vec{p}_i\rangle$ moments plane $ f\rangle = \vec{p}_f\rangle$ eigenstates noves
$\langle \vec{x} \vec{p} \rangle = e^{i\vec{p}\cdot\vec{x}/T_{h}} \frac{1}{(2\pi t_{h})^{3/2}}$
$\langle \vec{p}_{4} T \vec{p}_{i} \rangle = \frac{1}{(2\tau h)^{3}} \int d\vec{x} e^{i(\vec{p}_{1} \cdot \vec{p}_{4}) \cdot \vec{x}/h} V(\vec{x})$
$(\vec{p}-t_{1}\vec{k} \circ e^{2} \sigma_{1} \sigma_{2})$ $-\frac{2\pi \hbar^{2}}{\mu} f_{k}(\theta_{1}\varphi)$ $(\vec{p}-t_{1}\vec{k} \circ e^{2} \sigma_{2} \sigma_{2})$

$\langle \vec{p}_{4} T \vec{p}_{1} \rangle = - \perp \perp f(\vec{p}_{4}, \vec{e}_{1})$ $4\pi^{2}t_{1} \mu$ obtainative way p writing $f(\theta_{1}, e)$!
From which we get $\left f(\theta, \varphi) \right ^2 = \left[G \pi^2 \frac{1}{k} \mu \right]^2 \left k p_1 \tau \right p_2 r^2$
Now far the scallering RATE we have
$Sn = \hat{1} \frac{d\sigma(\theta_{1}, e)}{dsz} dsz$
$= i f(0, \varphi) ^2 d 52$
$= \left[\frac{p_{i}}{\mu} (2\pi t_{h})^{3}\right] (4\pi^{2} t_{h} \mu)^{2} \langle \vec{p}_{4} T \vec{p}_{i} \rangle ^{2} dS^{2}$
$\int \frac{\pi}{2\pi \hbar} \frac{e^{-i\vec{p}\cdot\vec{x}/\hbar}}{(2\pi \hbar)^{3/2}} \begin{bmatrix} \ln \det q w e \\ \ln d e^{i k\cdot\vec{x} } \\ \ln d e^{i k\cdot\vec{x} } \\ \ln d e^{i k\cdot\vec{x} } \end{bmatrix}$

= 2T KFFITIPi>12 (Piµds2)
$= \frac{2\pi}{\hbar} \langle \vec{p}_{f} T \vec{p}_{i} \rangle ^{2} \left(\frac{p_{i}^{2}}{f_{i}} \frac{dp_{i}}{dE} d\Sigma \right)$
p(E) dE deuxing of states
BORN 21 KPFIVIPiX P(E) dE
$(Iused T = V + O(V^2))$
We get FERMI GOLDEN RULE = BORN APPROXIMATION
CONFUTATION OF THE GREEN'S FUNCTION
let's now compute
let's now compute $G_{\pm}(\vec{x} - \vec{y}) = \frac{\hbar^2}{2\mu} < \vec{x} (E - H_0 \pm iE)^{-1} \vec{y} >$
Let's now compute $G_{\pm}(\vec{x} - \vec{y}) = \frac{\hbar^2}{2\mu} < \vec{x} (E - H_0 \pm iE)^{-1} \vec{y} >$ with $H_0 = \frac{\vec{p}^2}{2\mu}$ FREE HAMILTONIAN

ma Ho is dispond in momentum sysce, its convenient to perform the colculation there:
$G_{\pm}(\bar{x}-\bar{g}) = \frac{\hbar^2}{2\mu} \int d^3 \vec{p} \langle \vec{x} \vec{p} \rangle \langle \vec{p} CE - H_0 \pm i\epsilon \rangle \left[\frac{1}{p} \right] \langle \vec{p} \vec{g} \rangle$
$=\frac{\hbar^{2}}{2\mu}\frac{1}{(2\pi\hbar)^{3}}\int_{0}^{2}d^{2}e^{\frac{\lambda}{2}\frac{\mu}{2}\cdot\frac{(\bar{x}-\bar{y})}{\hbar}}\frac{1}{(E-\frac{\bar{P}}{2\mu}\pm18)}$
introduce $E = \frac{\hbar \vec{k}^2}{2\mu} \vec{p} = \hbar \vec{k}'$
$G_{\pm}(\vec{x}-\vec{y}) = \int \frac{d^{3}\vec{k}'}{(2\pi)^{3}} \stackrel{i\vec{k}'(\vec{x}-\vec{y})}{=} \underbrace{\int \frac{d^{3}\vec{k}'}{(2\pi)^{3}}}_{\vec{k}^{2}-\vec{k}'^{2}\pm i\epsilon}$
$\Rightarrow sphercal coord d^{3}\vec{k}' = dk' k'^{2} d(\cos \theta) d\varphi$ $\vec{k}' (\vec{x} - \vec{y}) = k' \vec{x} - \vec{y} \cos \theta$
$= \frac{1}{(2\pi)^{2}} \int_{0}^{\infty} \frac{ k ^{2} dk'}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} \pm i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} - k'^{2} - k'^{2} + i\epsilon} \int_{0}^{1} \frac{ k' \bar{x} - \bar{y} z}{k^{2} - k'^{2} - k'^{2$

$= -\frac{i}{(2\pi)^2} \frac{1}{ \vec{x}-\vec{y} } \int_{0}^{\infty} dk' - \frac{1}{k^2}$	$\frac{k'}{e} \left(e^{+ik' \vec{x} \cdot \vec{y} } - e^{-ik' \vec{x} \cdot \vec{y} } \right)$)
$= \pm \frac{i}{(2\pi)^2} \frac{1}{2 \vec{x}-\vec{y} } \int dk' dk'$	$\frac{k'}{k'-k^2 \neq i\epsilon} \begin{bmatrix} ik'l\vec{x} \cdot \vec{y}l & -ik'l\vec{x} \cdot \vec{y} \\ e & -e \end{bmatrix}$	
(interrord EVEN k'->-k', Descending on $G_{\pm} \Rightarrow k$	$\int_{0}^{\infty} = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{1}{2} \right)$ $L' = \pm \sqrt{k^{2} \pm i\epsilon} = \pm (k \pm i\epsilon)$	
- 1 - 1	Tun(k ^r)	· · ·
G	4 + ⊙ ^k ŧĩ ^ε	
-k	κ κ κ-ίε G-	

We can perfrim actends w.	Her Cauchy theore M
=> split (mto two piece	2 k= 0+ib
$T = \begin{pmatrix} +\infty \\ -dk'k' \\ e^{ik'(\bar{x}-\bar{y})} \end{pmatrix}$	+
$-\frac{1}{2} \int k^{2} - k^{2} \mp i\xi$	e-bix-gi
$\mathbf{II} = \begin{pmatrix} \mathbf{z} \\ \mathbf{d} \\ \mathbf{z}' \\ \mathbf{k}' \\ \mathbf{z}' \\ \mathbf{z}$	k'= 8-'b
$\frac{1}{2} \int k' - k' \neq i \epsilon$	
	e-61x-91
Counterlack wire ±ik 1x-y1	
$I_{\pm} = \pm 2\pi i \qquad \frac{e}{\pm 2\kappa} \cdot (\pm \frac{1}{2\kappa})$	k)
dack wise ±iklx-y]	
	· (∓ k) ⁄13

$T_{\pm} - \Pi_{\pm} = 2\pi i e^{\pm i k \vec{x} - \vec{y} } \begin{bmatrix} 1 + \frac{1}{2} \\ 2 + \frac{1}{2} \end{bmatrix}$ $= 2\pi i e^{\pm i k \vec{x} - \vec{y} }$
and putting every thing together
$G_{\pm}(\vec{x}-\vec{y}) = \frac{i}{(2\pi)^{2}} \frac{1}{2 \vec{x}-\vec{y} } - 2\pi i e^{\pm ik \vec{x}-\vec{y} }$
$G_{\pm}(\vec{x}-\vec{y}) = -\frac{e}{4\pi i \vec{x}-\vec{y}}$
which proves the formula for G+ that we used in Lecture 9 ! Outgoing Place wave as it implies
$2f = e^{ikz} + \frac{e^{ikr}}{r} f_{k}(\partial_{r}\psi) [1+O(\frac{1}{r})] $ (see (echarge 9!) 14

UNITARITY & THE OPTICAL THEOREM
We will now use the Lippmonn-Schwinger Eq
to derive a very general result that relates
the scattering cross section to the so-collect
FORWARD SCATTERING AMPLITUDE
Stort from velation Letween Scotterng Lung Chide
$f(q, q) = f(\overline{p_{f}}, \overline{p_{n}}) $ motax T
$\langle \vec{p}_{1} T \vec{p}_{1}\rangle = - \perp \perp f(\vec{p}_{1},\vec{p}_{1})$ $4\pi^{2}t_{1}\mu$
remenner
$T \phi \rangle = V 2 + z \rangle$
anymptotic state Eigenstate of
= 1pi> ! full Houndhonon
(plane wore here) 15

now courden limit forward scattering $9 = 0$
$\vec{P}_{f} = \vec{P}_{i} = \vec{P}$ three
$f(\theta=0) = f(\vec{p},\vec{p}) = -4\pi^{2}\hbar\mu \langle \vec{p} T \vec{p} \rangle$
how let us compute Im <pitip></pitip>
use TIp> = VI2+> & L'rpmoure Schwimper
$ \psi_{\pm}\rangle = \phi\rangle + (E - H_0 \pm i\epsilon)^{-1} \vee \psi_{\pm}\rangle$
$I_{m} \langle \vec{p} V 2 \psi_{+} \rangle = I_{m} \left[\left(\langle \psi_{+} - \langle \psi_{+} V \frac{1}{E - H_{o} - i\epsilon} \right) V 2 \psi_{+} \right]$
Adjaint chouges sign
$-\frac{1}{p} \rightarrow 124 + 7$

= Im	2411124+> - Im 24+1V 1 V124+> E-Ho-iE
how	use infortant formula (see exercuses!)
<u>1</u> X±i	$\varepsilon = \frac{9}{\varepsilon} \left(\frac{1}{x}\right) = \frac{1}{\varepsilon} i \pi \delta(x) \left(x = \varepsilon - H_{\circ}\right)$
= Im	$\langle \psi_{t} V \psi_{t}\rangle - I_{m}\langle \psi_{t} V PV\left(\frac{L}{E-H_{0}}\right)V \psi_{t}\rangle$
- Im	<2+1 V xTT δ(E-H0) V 17+>
Now	$I_{m} < \frac{1}{1} + \frac{1}{1} = 0$
· · · · · ·	$I_{m} \left\{ 2\psi_{+} \right\} V PV\left(\frac{i}{E-H_{0}}\right) V \left\{ \psi_{+} \right\} = 0$
becouse	V is Hermitian $V^+ = V$, real potential!
only	third term survives, in portsalso:
	<u>17</u>

$I_{m} \langle \vec{p} T \vec{p} \rangle = -\pi \langle \gamma_{+} \sqrt{\delta(E-H_{0})} \sqrt{12} \langle \gamma_{+} \rangle$
Now $V _{2+} = T _{\phi} = T _{\tilde{p}} $
$= -\pi < \beta T^{+} S(E-H_{0}) T \beta >$
$= - \pi \int d^{3}\vec{q} < \vec{p} T^{\dagger} \vec{q} > \langle \vec{q} T \vec{p} \rangle \delta(E - \frac{\vec{q}^{2}}{2\mu})$
$(used Holq) = \frac{q^2}{z_m} lq^2 $
write $d^2 \hat{q} = q^2 dq d \Sigma_q = q^2 \left(\frac{dq}{dE_q}\right) dE_q d \Sigma_q$
$\left(\frac{dE}{dq} = \frac{2q}{2\mu} = \frac{q}{\mu}\right)$ due to δ -function constraint)
$= -\pi \int d\Omega q dE q^{2} \left(\frac{\mu}{q}\right) Z\vec{p} T \vec{q}\rangle ^{2} \delta(E - E_{q})$
$= -\pi \int d\Omega q (mq) \langle \vec{p} T \vec{q} \rangle ^2$
18

Fixing $E = Eq$ means also $p = q$ ance $E = \frac{p^2}{z\mu}$!
$\Rightarrow I_m \langle \vec{p} T \vec{p} \rangle = -\mu \pi p \int d\Omega_q \langle \langle \vec{p} T \vec{q} \rangle ^2$
going back to original formula
$f(\theta=0) = f(\vec{p},\vec{p}) = -4\pi^{2}\hbar\mu \langle \vec{p} T \vec{p} \rangle$
$\operatorname{Im}\left[f(\vec{p},\vec{p})\right] = -4\pi^{2}\hbar\mu\left[-\mu\pi p\left[d\Omega_{q}\left \left\langle \vec{p}\right \right.\right]^{2}\right]$
$= 4\pi^3 \hbar \mu^2 \rho \int d\Omega_q \langle \vec{\rho} T \vec{q} \rangle ^2$
remenser now relation with f
$\langle \vec{p}_{j} T \vec{p}_{i} \rangle = -\frac{1}{4\pi^{2} \hbar \mu} f(k_{j}, k_{i})$ 17

Im (f(p,p)) =	$\frac{4\pi^{3}h}{(4\pi^{2}h}r)^{2}$	$\int d \Omega_q \left[f(\vec{p}, \vec{q}) \right]$	2
$I_m(f(\vec{p},\vec{p})) =$	$\frac{P}{4\pi \hbar}$ $\overline{0}$ TOT	$= \frac{k}{4\pi} \sigma_{\tau \sigma \tau}$	
Soys that To to the Form	MARD SCATTERIN	TION 11 proport	onl
. .	<td>. .</td> <td>· · · · · · · · · · · · · · · · · · ·</td>	. .	· · · · · · · · · · · · · · · · · · ·