1. Intro to the course & lightering recop of QM1

IMPORTANT INFOS	
2V+2U: No moodle- webri	te with Lechires
	Exerciseo
pb. not. tum. de / ttpmath/teac	ling 155-2024
EXERCISES HANDATORY & bon	24
PARTICIPATION + ATTEMPT ALL SOL SOLVE N E0%	utions Greetly
DISCUSS 1 Sour	TION IN CLASS
START WEEK 3, ex out c	Nacle Z
2 seve aus, some osc gewig !	totors stort al
	2] Discussion of solution
	\mathbb{V}
Written exom at the end	fign up on
Oral 1 4 15 people V	welsste during
	frst two weeks

IMPORTANT . Equ up for tutorials on DDDDZES on website is indicate your AUAILABILITY (both, in (me) Two ex dones foll are thursdays that one holdoup, first on May 9th (Hummelfolirt) it will be moved to MAY 8th more details soon ou website V

In this course we will ded with row more advouced topics in Quantum Mechanics, which have direct application to understand physically interesting
phenomena
the main topics will be time-dependent phenomena:
1. Interaction of Atoms with EM. Field induced eminion gradiative DECAYS spontoneous eminion
2. Scotlering / Collir on theory
Optical theseen, scattering Anglitudes. Born approximation
To get there we need to develop our tools further - let's reap first what you all
annors when the Art CLIT conset

In Quantum Mechanics we describe a system ving
a formologing that is very different from classical
Physics
Concept of STATE OF SYSTEM in Qualtyr Mechanics is
central and different from classical physics
. States one vectors in importe dimensional vector spore
$ n\rangle$, $ p\rangle$; $ a,b\rangle$ kets 1
Labols que volue of "dosenvolles"
9,6 two lotels for two compattle of sendles
. A ket cou be expressed as liner couldinable ou
of other kets
$ 24\rangle = \leq C_n n\rangle$ $ 24\rangle = \int dx C(x) x\rangle$
Cheque Lobel conte continuous! 2

Vector space kets -> Dual vector space BRAS
$ \psi\rangle \longrightarrow \langle \psi $
We can define a scala product between bros likets BRA[c]KET
· <24100> E & complex number
• $\langle \varphi \psi \rangle^* = \langle \psi \psi \rangle \Rightarrow \langle \psi \psi \rangle = \psi ^2 \in \mathbb{R}^+$
$\cdot \langle \varphi (a \psi_1 + b \psi_2) \rangle = a \langle \varphi \psi_1 \rangle + b \langle \varphi \psi_2 \rangle$
14 14 14 14 14 14 14 14
$\sqrt{\langle 14 14 \rangle} = \sqrt{ 14 ^2}$ longth of vector
3

Observables ore represented by OPERATORS
Operators regracent dynamical voidles
· A 124> = 162> operator ou e state gres onother state
$\cdot (A14)^* = \langle 241A^+ \langle 4 \rangle$
. <xiai45 <4ia<sup="" =="">+IX> LAdjoint operator</xiai45>
if At = A is self-adjoint ? REAL or Hermition Spenter
if $ n\rangle$ set of eigenstates of A (complete A orthononnol) Alm> = nln> $\langle nlm\rangle = \delta n,m$
$ \psi\rangle = \frac{5}{n} \ln \psi\rangle \implies \ln 2 \ln 2 \ln 2 \ln 4$

such that $ 1\rangle = \sum_{n} n\rangle \langle n \rangle$
\[\lambda n \] \[\
ICn1 ² problement that a measurance of f A on state 124> gives eigenvolue "n"
"n" need not be descrete è gevolver X, P por hou & momeyhun operators
$X x \rangle = x x \rangle$ $= \sum y \rangle = \int_{-\infty}^{+\infty} dx' c(x') x' \rangle$ $-\infty$
$C(x) = \langle x 2 \rangle \equiv 2 \langle x \rangle$ wore function 5

Nuclealy Plp> = plp>	$d < p p' \rangle = \mathcal{F}(p-p')$
$\Rightarrow \phi(p) = \langle p 2 \rangle$	wove function (a momentom representation
oud	
$\gamma(x) = \langle x \psi \rangle = \int dp dq$	<×1 p> <pl 4=""></pl>
- ∞ + ∞ = ∫ dp	<×(p) \$ Cp)
~~~	<10 ( ) ) ×/+
Ξ	dp φ(p) e Tourier Trourlam
$\Rightarrow \langle x   p \rangle = \frac{1}{2}$	e ip×/ħ
ν2πħ	6

Note that if Aln> = n(n> then we
can build operator $P_n = \lfloor n \rangle \langle n \rfloor$
Pm Pn = Smn Pn { Projector on lu>
$\leq T_n = 1$
Pulzy> = In> <ulzy> projects y outs In&gt;</ulzy>
to we can write $A = \sum_{n} n \ln  n $
$\langle 4 A  \rangle = \sum_{n} n  \langle 4 n \rangle ^2$
overage of eger values
with Zup Ins os weights!
· · · · · · · · · · · · · · · · · · ·

State rectors and operators can be neally represented
as vectors and matrices once we fix a "bons" in>
Kets => column vectors
Bros => row vectors
Openators => matrices
$ 4\rangle = A \phi\rangle$
$\langle m  \psi \rangle = \sum_{n} \langle m A n \rangle \langle n \phi \rangle$
$\left(\begin{array}{c} \beta_{1} \end{array}\right)$
$\begin{array}{c} \mathbf{\beta}_{2} \\ \mathbf{\beta}_{2} \\ \mathbf{\beta}_{3} \\ \mathbf{\beta}_{4} \\ \mathbf{\beta}$
$\langle \phi   n \rangle = \rangle (a_1^*, a_2^*, \dots)$
(\$14) = Z dn Bn scoln product

ANGULAR MOMENTUM (& SPIN	
$\vec{L} = \vec{r} \times \vec{p} \implies QM$ spendtor	mich that
$\begin{bmatrix} L_i, L_j \end{bmatrix} = \lambda \mathcal{E}_{\lambda}$	yet Le
$[L_{i}, L^{2}] = 0$	$L^2 = L^2 + L^2 + L^2$
if H rotation invoriant EH, Li	] = 0
=> Set of commuting operators for centurely symmetric problem	$\{H, L^2, L_i\}$ one of the components
1 l, m> such that	·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·       ·
$L^{2} P,m\rangle = t^{2}P(P+1) P,m\rangle$	
$L_{z} e,m\rangle = t_{z} e,m\rangle$	· · · · · · · · · · · · · · · · · · ·

by consistency one finds $l \ge$	0
$l(l+1) \geq m(m+1) \implies l(l+1) \geq m(m-1)$	$-\ell \leq m \leq +\ell$
m takes 28+1 volueo	l = [ Integer half - integer [SPIN]
For l'integer, eigenfuctions ORDITAL ANGURAR MOMENTUM	or Sphercol Hormon's
$\frac{\gamma_{em}(\vartheta_{i}\varphi)}{\langle \vartheta_{i}\varphi \rangle} = \langle \vartheta_{i}\varphi   \vartheta_{i}m \rangle$ $\frac{\langle \vartheta_{i}\varphi^{i} \vartheta_{i}\varphi \rangle}{\langle \vartheta_{i}\varphi^{i} \vartheta_{i}\varphi \rangle} = \frac{1}{\delta_{i}m} \frac{\delta(\vartheta_{i}-\vartheta^{i})}{\delta(\vartheta_{i}-\vartheta^{i})} \frac{\delta(\vartheta_{i}-\vartheta^{i})}{\delta(\vartheta_{i}-\vartheta^{i})}$	æ. 
due to spherical coord.	y y x
$Y_{em}(\theta, \varphi) = C(\ell, m) P_{e}^{m}(\omega, \theta)$	eingendre Polynomile
PARITY P Yem - (-1) e Yem	IMPORTANT 10

SCHRÖDINGER EVOLUTION EQUATION
By selving egenselve eps. fr sour operators we
get information about system at a grentime
$\int L^{2}  2_{\ell,m}\rangle = t_{n}^{2} l(l+1)  2_{\ell,m}\rangle$
$\int L_2  2\epsilon, m\rangle = tr m  \ell, m\rangle$
$\left( H   \mathcal{Y}_n \right) = E_n   \mathcal{Y}_n \right) = e^{t_c}$
How do we get dynamical Evolution with time?
$ \eta(t)\rangle = f  \eta(t_0)\rangle$ with $t_0 < t$ ?
In QM, each state evolves through pour lnear operator T
$ \psi(t)\rangle = T(t, t_{0})  \psi(t_{0})\rangle$

Convertation of langth " (anservation of langth " $probability = TT^{+} = T^{+}T = 1$ during evalution unitary evalution !
Now infuteriously, f t = to + St
$\lim_{t \to t_0} \frac{ \eta(t)\rangle -  \eta(t_0)\rangle}{t - t_0} = \frac{d}{dt_0}  \eta(t_0)\rangle$
$= \lim_{\delta t \to 0} \left[ \frac{T(t, t_0) - 1}{\delta t} \right] \left[ \frac{1}{2} \left( \frac{1}{2} \right) \right]$
oue con prove that:
at must be a purely imagnory linear
operation = $\frac{H(t_0)}{it_i}$ with $H(t_0)$ REAL 12

mede that nh d 14(t dt	$) > = H(t)   \eta(t) > \begin{pmatrix} renowed \\ t_o > t \end{pmatrix}$
Schröchngen we identify	Erdubou Equabou if H(to) = HAMICTONIAN
Connot be "proven"	, it is a posheate $=$
in $\frac{dTlt}{dt}$ [4(+2)]	$> = H(t) T(t_1 t_2)   \gamma(t_2) >$
$\Rightarrow i \frac{dT}{dt} = t$	t(+) T Schrödinger ep for evolution operator! 13

f H(+) is CONSTANT in $t = H$ there
we can write formal alution
$\int T(t_i, t_o) = e^{-iH(t_i-t_o)/t_i}$
(which onumes T(to, to) = 11
$= iH(t-t_{0})/h   \psi(t_{0}) >$
$(f   12(1+0) > =   n > s.t. H   h > = E_n   n >$
then $-iE_n(t-t_0)/t_n$ $12f(t_0) > = e$ $\ln >$
12(1)> differs from 1 h> only by a phone!
STATIONARY STATE 14

TIME - INDEPENDENT PERTURBATION THEORY
When every is conserved [Potential is time independent]
nt is shill extremely difficult to solve Schrödingen
Equation expetly => perturbation theory
blows up to get appoximate results starting from a prislem that we can solve.
H = Ho + JH1 T pertition, porometries by strang predent that we can rolve (f.e. Hydrogen Atom)
Assume $H_0(\phi_n) = E_n^{(0)}(\phi_n)$ known 15

Ŵ۶	would like to solve
(H	$o + \lambda H_1 \left( 2 t_n \right) = E_n \left( 2 t_n \right)$
ha	ene we omume $E_n(1) \longrightarrow E_n^{(0)}$ $1 \rightarrow 0$
the	lpn> form a complete set, so we can write
Inf	$h > = N(A) \left\{ \frac{ \phi_n }{ \phi_n } + \frac{5}{ \phi_n } C_{nk}(A) \frac{ \phi_k }{ \phi_k } \right\}$ $\int \int \frac{1}{ \phi_k } C_{nk}(A) \frac{ \phi_k }{ \phi_k } $ $\int \int \frac{1}{ \phi_k } C_{nk}(A) \frac{ \phi_k }{ \phi_k } $ $\int \int \frac{1}{ \phi_k } C_{nk}(A) \frac{ \phi_k }{ \phi_k } $
· · ·	we guoroutee this by picking appropriate
<ul> <li>.</li> <li>.</li></ul>	phose for 124n > so that forst order perturbation is ORTHOGONAL to umperturbed state
· · · ·	NLI) E R to fx Normalization 16

$ \gamma_{n}^{(n)}\rangle = \sum_{k \neq n} C_{n,k}(\lambda)  \phi_{k}\rangle$ with $N(0) = 1$
$\widehat{\uparrow} \qquad \qquad$
$C_{nk}(1) = \int C_{nk}^{(n)} + \int^{2} C_{nk}^{(1)} + O(J^{3})$ $E_{n} = E_{n}^{(0)} + J E_{n}^{(n)} + J^{2} E_{n}^{(2)} + O(J^{3})$
plugging them in schrödinger Eg & collecting In
$[1^{(0)} \Rightarrow H_0(\phi_n) = E_n(\phi_n)$ trivially solutions field
$J^{(n)} => H_0 \sum_{k \neq n} C_{nk}^{(n)}  \phi_k\rangle + H_1  \phi_n\rangle$
$= E_{n}^{(0)} \sum_{k \neq n} C_{nk}^{(0)}  \phi_{k}\rangle + E_{n}^{(1)}  \phi_{n}\rangle$
$E_{n}^{(1)}\left \phi_{n}\right\rangle = H_{1}\left \phi_{n}\right\rangle + \sum_{k\neq n} \left[E_{k}^{(0)} - E_{n}^{(0)}\right] \left(\prod_{k\neq k}^{(1)} \left \phi_{k}\right\rangle\right)$
and controching with 17

$JE_{n}^{(4)} = \langle \phi_{n}   JH_{1}   \phi_{n} \rangle$
First order everyg shift & Expertation volue of perturbing Hounftonion on umperturbed state!
Controching (*) with $\angle \phi_m$ with $m \neq n$ $\downarrow C_{nm}^{(n)} = \frac{\langle \phi_m   -\downarrow H_1   \phi_n \rangle}{E_n^{(0)} - E_m^{(0)}}$
which mondes coefficients of the eigenstate !
Vong this on O(12) terms we get
$E_{n}^{(2)} = \sum_{\substack{k \neq n \\ k \neq n}} \frac{ \langle \varphi_{n}  H_{1}   \varphi_{k} \rangle ^{2}}{E_{n}^{(0)} - E_{k}^{(0)}}$
nestby levels tend to have bigger effect! 18

hese levels	fomul	les of Non-	Cour	ENER	mume ITE	e the	<b>↓</b>	reenges	· · · · · · · · · · · · · · · · · · ·
	Ho	is de	gene	note	oul	hoo	- - 	First	· · ·
dispo	ud.te	the p	en tur	baho		the	deg	evente	••••
entre		order	+0	REAC	NE I	DECEN	IERA	ποΝ	· ·
oud	the	proceed		the	Young	woy		befsre	· ·
· · ·	· · · · ·	· · · · · ·	· · ·	· · ·	· · · · ·	· · · ·	· · ·	· · · · ·	• •
			• • •		· · · ·		• • •		• •
• • •									• •
• • •							• • •		
							• • •		
							• • •		• •
									• •
									• •
									• •
									• •
									· · · /