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1 QCD corrections to gq production in e e¢™ annihilation

In this problem, we will fill in the gaps of the computation of the leading QCD corrections to the process

e (p1) + e (p2) = q(ps) + q(pa) (1)

studied in the lecture. It contains a number of bonus questions, which you may attempt to solve at your
own discretion.

All fermions are assumed to be massless and we neglect the contribution of Z-boson exchange for
simplicity. Working in dimensional regularization with D = 4 — 2¢ and the MS-scheme, the leading
result for the corresponding cross section was derived as
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where N, denotes the number of colours, @, is the electric charge of the quark ¢ and s = (p; + p2)?.

1.1 Virtual QCD correction

The leading virtual correction in QCD comes from the exchange of a gluon between the quark and
anti-quark. The corresponding amplitude gives rise to the following tensorial one-loop integral
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where as in the lecture we put
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To calculate the virtual correction to the cross section, you used in the lecture that this integral can be
expressed through a one-loop massless bubble integral which you computed in the first exercise sheet.
We will now prove this result or more precisely, we will show that
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In the following, we omit Feynman’s ¢d"-prescription for ease of typing.

1. Explain why
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2. Prove that the bubble with a numerator can be reduced to the bubble without a numerator:'
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3. (Bonus) Use the integration-by-parts identities
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to show that the massless triangle integral is in fact reducible to the massless bubble
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4. (Bonus) Finally, employ one of the following two strategies to show eq. (4):
a) Use Lorentz covariance to write down an ansatz for I in terms of all possible rank-2 tensors
and fix the coefficients by considering suitable contractions.

b) As you already argued in the lecture, it follows from general considerations and Lorentz
covariance that

u(ps) 1" ulps) = I(s) ulps)y"u(pa) - (10)

To compute the scalar function I(s), construct a projector P, o< @(ps)y*u(ps) such that

> Pualps) " u(ps) = I(s). (11)
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With eq. (4), the leading virtual correction to the cross section was derived in the lecture to read
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1.2 Real QCD corrections

The real corrections to the process e”et — qq at O(ay) are given by the emission of a real gluon ¢ from
the final state quark or antiquark,

e (p1) + €' (p2) = qlps) + qlpa) + 9(k) . (13)

1. Explain why the cross section of the real emission process, albeit the apparently different final state,
should be added with the cross section for e"et — ¢g to define a sensible physical observable.

2. Draw the two diagrams and write down the corresponding amplitude Mg using Feynman rules in
Feynman gauge.

Hint: you can use a shift in the loop momentum k — k + p, and a suitable ansatz for the resulting tensorial integral.
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The differential cross section for the process may be split into a leptonic and a hadronic part,

(4 s
doly) = —dH3 § Mgl | = —”;2‘ & Q2 Ly X, (14)
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where the leptonic tensor L, reads

1

Ly = 7 Y lp2)yu(pr)u(pr)vu(pe) (15)
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The integration over the D-dimensional three-particle phase space

dD—lp3 dD—lp4 dD_lk

(2m)P-12E,, (2r)P-12E,, (2m)P-12E,

dIl; = ji* (2m)7 6P (py + po — p3s — pa — k) (16)

has been absorbed in the hadronic tensor X*”, which contains all the dependence of the amplitude
squared on the final state momenta.

3. The hadronic tensor is associated with the decay of the intermediate off-shell photon into the
quark-antiquark pair and the gluon. Use this to show that?

G XM

X" = ((p1+p2)"(p1 +p2)" —sg") X(s), where X(s)= (1-D)s

(17)

Instead of working with scalar products of momenta, it is convenient to introduce new variables as
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These are essentially the energies of the final state particles in the rest frame of the decaying photon.
From momentum conservation, it follows that

2
$1+$2+Iw:g(p1+P2)'(P3+P4+k?)=2- (21)

4. Use your expression for Mg from Feynman rules to extract X*¥ from eq. (14) and show that
207+ 223+ (D — 4) 22
(]_ — 271)(1 — IL’Q)

2Note that the Ward identity for the photon holds no matter whether it is on-shell or not. For the proof, see Schwartz,
QFT and the SM(2013), section 14.8.3.

gw,XHVZQNCCF (2-D)dH3 (22)




If you wish to avoid the tedious part of the task of computing the huge trace, you may take for

granted that
222 +222 + (D — 4) 22

tr (9, Sn) = 20D —2) TR g T (23)
where
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. Demonstrate explicitly that the phase space integral can be simplified to
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where 73 = /(21 & 22)2. Check that after eliminating x., by the constraint from the J-function,
the region to integrate x; and xo over is given by {0 <27 < 1,0 <z <1} N{1l < 2y + 25},

. (Bonus) Parametrize the remaining integration region as x; = z, xo = 1 — 2y with 0 < z < 1,
0 <y <1 and perform the integrals to verify that

Gu X = =N, Cp 2 (1= 22)(2* — 26 + Q)GMEF(Z(:?E)I;(??)__ 53>€) (%)_ (26)

. Finally, put all the pieces together and check that the final result for the real correction to the
cross section reads
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such that all IR divergences indeed cancel in the sum of real and virtual corrections,

& c— 4 S
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2 Universality of the eikonal current in QCD

2.1 Soft gluon emission from external gluons

Let’s take any process producing two gluons,

X — g(p1,a1) + g(pa, a2) (29)

where p; and a; denote momentum and colour, respectively. Assuming that X is a colour singlet state,
the corresponding amplitude can be written as

Mgy = 62 MY (pr, p2) €(p1) € (p2) (30)
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Consider now the real corrections to this process given by emission of an additional gluon from one of
the two final state gluon legs,

X = g(p1,a1) + g(p2, az) + g(k, ). (31)
Show that in the soft limit, k# — 0, the amplitude M, for the real corrections behaves as

p1-e(k)  p2-e(k)
p1-k p2 -k

Mgg 220 i 9s falazb ( ) M (p1,p2) €u(p1) €4(p2) (32)

for physical gluons. In the case of a more complicated colour dependent M (p1,ps) in eq. (30), a
behaviour similar to eq. (32) can be shown on the level of individual colour-ordered partial amplitudes.
2.2  Soft gluon emission from external massive quarks

Consider now instead the production of a massive quark-antiquark pair from a colour singlet state X,

X = Q(pla Z) + Q(p%]) ) (33)
with amplitude B
Mg = 6 u(p1) Mx(p1, p2) v(p2) - (34)

Show that the amplitude for the real corrections (emission of a real gluon g(k,a) from the final state
quark or antiquark) behaves in the soft limit as

p1 - €(k) P2 e(k)
p1-k p2-k

My 225 g1 < ) (1) M (pr, pa) o(pa) (35)
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