Advanced Quantum Field Theory SS 2023

Lecturer: Prof. Lorenzo Tancredi
Assistants: Philipp Alexander Kreer, Cesare Mella, Nikolaos Syrrakos, Fabian Wagner
https://www.groups.ph.tum.de/ttpmath/teaching/ss-2023/

Sheet 8: QCD β-function.

In this exercise, we study the β-function in a Yang-Mills theory coupled to different types of matter fields. Throughout the exercise sheet, we work in dim reg and in the Feynman gauge $\xi=1$.

1 QCD β-Function

In the last sheet, you computed all the pieces to obtain the $\mathrm{QCD} \beta$-function. It is defined through

$$
\begin{equation*}
\beta\left(g_{s}\right)=g_{s} \mu \frac{\partial}{\partial \mu}\left(-\delta_{1}+\delta_{2}+\frac{1}{2} \delta_{3}\right), \tag{1}
\end{equation*}
$$

where μ is the renormalization scale, $\delta_{1,2,3}$ are the counter terms for the vertex-correction, fermion selfenergy and the gluon self-energy. They remove the divergences from the last sheet. Put the pieces together and compute the β-function in a non-abelian YM theory coupled to n_{f} fermionic fields.

2 Ghost counter term

In the lecture and in the previous exercise sheet, we have computed almost all one-loop counter terms required to renormalize a Yang-Mills gauge theory based on the group $\mathrm{SU}(\mathrm{N})$ and coupled to a fermionic matter field in the fundamental representation. The only missing counter term is the ghost counter term, which we called $\bar{\delta}_{3}^{c}=Z_{3}^{c}-1$ in the lectures. By evaluating the ghost two-point function, calculate this counter term in dimensional regularization in the $\overline{\mathrm{MS}}$ scheme.

3 Scalar Field Extension to QCD β-Function

Consider a $\operatorname{SU}(3)$ gauge theory with two types of matter fields:

1. n_{f} massless Dirac fermions
2. n_{s} massless, complex scalars that transform in the fundamental representation of $\mathrm{SU}(3)$

In this exercise we will compute the counter-terms $\widetilde{\delta}_{i}$ in this theory.
Step 1: Derive the new Feynman rules in this theory. You should find a simple modification of the Feynman rules of scalar QED.
Step 2: How does $\tilde{\delta}_{1}-\tilde{\delta}_{2}$ change with respect to $\delta_{1}-\delta_{2}$ from the previous exercise? Hint: Remember the renormalization conditions imposed by gauge symmetry.
Step 3: Compute the counter term $\tilde{\delta}_{3}$ in the new theory. Note that in comparison to δ_{3} from above, you only have one additional diagram. Which one?
Step 4: Putting all the pieces together compute the β function in this theory. You should find

$$
\begin{equation*}
\beta=-\frac{g^{3}}{(4 \pi)^{2}}\left(\frac{11}{3} C_{F}-\frac{1}{3} n_{s} C_{A}-\frac{4}{3} n_{f} C_{A}\right) . \tag{2}
\end{equation*}
$$

