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Sheet 06: Tree level amplitude for four-gluon scattering

The following problem contains a number of bonus questions, which you may attempt to solve at your
own discretion.

Tree-level amplitude for the scattering of four gauge bosons

In this exercise, we compute the tree-level amplitude for the scattering of four gauge bosons in a non-
abelian gauge theory based on the gauge group SU(N). We take all particles as incoming

gλ1,a1(p1) + gλ2,a2(p2) + gλ3,a3(p3) + gλ4,a4(p4) → 0 , (1)

where λi and ai denote the helicity and colour of the corresponding gauge boson, respectively. Momen-
tum conservation implies p1 + p2 + p3 + p4 = 0.

1. Draw the four Feynman diagrams that contribute to the amplitude at tree level.

Imagine, we would consider instead the gauge group U(N) = SU(N)×U(1). This means adding another
gauge boson to the theory that is associated with the abelian gauge group U(1), a ”photon”. Its generator
is proportional to the identity, which is not traceless, as the constraint on the determinant for SU(N)
is lifted in U(N). However, it commutes trivially with all SU(N)-generators, which implies that it does
not couple directly to the other gauge bosons. Consequently, the amplitudes for the scattering of n
gauge bosons are identical for SU(N) and U(N) Yang-Mills theory. At tree level, this remains true
even if fermions are added to the theory, as they cannot appear in tree-level diagrams with only gauge
bosons in the final and initial states. The inclusion of the photon will simplify the calculations at several
points, as you will see soon.

2. Working now in the theory based on the gauge group U(N), the Feynman rules for the gauge boson
vertices remain unchanged, albeit colour indices might take on an extra value corresponding to the
photon. As we just argued, this doesn’t give an extra contribution to the amplitude as all structure
constants fabc involving the photon index vanish. Write down the amplitude explicitly, extract
the colour factors and show that it can be decomposed into colour-ordered partial amplitudes

Mλ1,λ2,λ3,λ4
a1,a2,a3,a4

(p1, p2, p3, p4) = 4
∑
σ∈S3

tr (T a1T aσ(2)T aσ(3)T aσ(4)) A [1, σ(2), σ(3), σ(4)] , (2)

where the sum runs over all permutations of {2, 3, 4} and T ai denotes the generator ai in the
fundamental representation. You may find it helpful to write

fabc = −2 i tr
([
T a, T b

]
T c

)
(3)

and to make use of the Fierz completeness relation for U(N):

T a
ij T

a
kl =

1

2
δil δjk . (4)
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3. How does the Fierz identity look like in the case of SU(N), i.e. without the contribution from the
photon generator? Show that this leads to the same colour structures as above.

The partial amplitudes have a number of useful properties. For once, they are all gauge-invariant on
their own.

4. (Bonus) Check the partial orthogonality condition for your choice of U(N) or SU(N) and any
permutation σ ∈ S3∑

a1,a2,a3,a4

tr (T a1T a2T a3T a4) tr (T a1T aσ(2)T aσ(3)T aσ(4))∗ =
N2

8
(N2 − α)

[
4∏

i=2

δi,σ(i) +O(N−2)

]
, (5)

where α = 0 for U(N) and α = 1 for SU(N). The colour traces are hence linearly independent
at leading order in the expansion and as gauge invariance must hold order-by-order in 1/N , this
implies the gauge invariance of the partial amplitudes.

Further, they satisfy a number of different relations that we will not prove here:

(a) Cyclicity : A [1, 2, 3, 4] = A [4, 1, 2, 3] = A [3, 4, 1, 2] = A [2, 3, 4, 1] , (6)

(b) Reflection symmetry : A [1, 2, 3, 4] = A [4, 3, 2, 1] , (7)

(c) Photon decoupling : A [1, 2, 3, 4] +A [2, 1, 3, 4] +A [2, 3, 1, 4] = 0 . (8)

One way to show the last identity is by choosing one of the external gauge bosons to be the photon and
imposing that the amplitude vanishes, hence the name. These identities are a consequence of the fact
that the four-colour traces are an overcomplete basis to describe the scattering of four gauge bosons.
To see this, notice that there are six different colour traces involving four generators, but the Feynman
rules produce only three different colour structures in the form of products of two structure constants.
Further, only two of them are actually independent because of the Jacobi identity.

5. Show that the above relations reduce the number of independent partial amplitudes to two, for
which we can choose A [1, 2, 3, 4] and A [1, 2, 4, 3].

It turns out that there exist even more linear relations. The so-called BCJ relation states

(p1 + p4)
2A [1, 2, 3, 4] + (p1 + p3)

2A [1, 2, 4, 3] = 0 (9)

and therefore we end up with only a single independent partial amplitude, say A [1, 2, 3, 4], which we
have to calculate explicitly.

6. Take the expression from Feynman rules for the whole amplitude and extract the piece correspond-
ing to A [1, 2, 3, 4]. Which Feynman diagrams contribute to this partial amplitude?

To perform the computation, we will employ spinor-helicity formalism and write A
[
1λ1 , 2λ2 , 3λ3 , 4λ4

]
for

the individual helicity amplitudes.

7. Imagine you have an expression for A
[
1λ1 , 2λ2 , 3λ3 , 4λ4

]
in terms of spinor products. Explain why

the amplitude with flipped helicities A
[
1−λ1 , 2−λ2 , 3−λ3 , 4−λ4

]
, can be obtained by swapping angle

and square brackets as follows ⟨ij⟩ ↔ [ji] (notice the different order).
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8. How many helicity configurations are there in total? How many do you have to consider explicitly?

9. Prove that the partial amplitudes with all plus helicities or all plus and one minus helicities are
zero

A
[
1+, 2+, 3+, 4+

]
= 0 , A

[
1+, 2+, 3+, 4−

]
= 0 .

To do that, use the fact that the reference vector for each external gauge boson can be chosen freely
in every individual helicity amplitude but the choice has to be consistent across all diagrams. This
implies that the only non-zero helicity amplitudes are the ones with at least two minus helicities,
usually referred to as maximally helicity violating (MHV).

10. The relations among partial amplitudes from equations (6), (7) and (8) have to be satisfied also
at the level of individual helicity amplitudes. Using this and crossing symmetry for the external
gauge bosons, show that there is only one independent MHV amplitude, which we can choose
as A [1+, 2+, 3−, 4−]. To relate amplitudes with adjacent and non-adjacent equal helicities, you
should prove that

A
[
1+, 2−, 3+, 4−

]
= −A

[
1+, 3+, 2−, 4−

]
−A

[
1+, 3+, 4−, 2−

]
. (10)

11. Finally, perform an explicit computation for the only independent non-zero helicity amplitude and
derive

A
[
1+, 2+, 3−, 4−

]
= g2

⟨12⟩4

⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨41⟩
. (11)

12. (Bonus) Using equation (10), show that

A
[
1+, 2−, 3+, 4−

]
= g2

⟨13⟩4

⟨12⟩ ⟨23⟩ ⟨34⟩ ⟨41⟩
. (12)

With the derivation of equations (11) and (12), you have proven two important special cases of the
famous Parke-Taylor formula, which provides a closed formula for MHV amplitudes for the scattering
of n gauge bosons at tree level as follows

A
[
1−, 2−, ..., i+, ..., j+, ..., (n− 1)−, n−] ∝ ⟨ij⟩4

⟨12⟩ ⟨23⟩ ... ⟨(n− 1)n⟩ ⟨n1⟩
. (13)

This formula can be proven using on-shell methods, for example by the so-called BCFW recursion
relation [1, 2]. You are invited to try to think how complicated it would be to derive this result by direct
calculation by Feynman diagrams for n ≥ 6!

References

[1] R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B 715 (2005), 499-522
doi:10.1016/j.nuclphysb.2005.02.030 [arXiv:hep-th/0412308 [hep-th]]. 3

[2] R. Britto, F. Cachazo, B. Feng and E. Witten, Phys. Rev. Lett. 94 (2005), 181602
doi:10.1103/PhysRevLett.94.181602 [arXiv:hep-th/0501052 [hep-th]]. 3

3


