Advanced Quantum Field Theory SS 2023

Lecturer: Prof. Lorenzo Tancredi
Assistants: Philipp Alexander Kreer, Cesare Mella, Nikolaos Syrrakos, Fabian Wagner
https://www.groups.ph.tum.de/ttpmath/teaching/ss-2023/

Sheet 04: Yang-Mills classical field theory

Problem 1 - Additional term in the non-abelian Lagrangian

For this exercise we could consider a non-abelian gauge field theory with an arbitrary gauge group. For definiteness, let us take the explicit case of $S U(N)$. The Lagrangian density is given by

$$
\mathcal{L}_{A}=-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu, a}=-\frac{1}{2} \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]
$$

with $F_{\mu \nu}^{b}=\partial_{\mu} A_{\nu}^{b}-\partial_{\nu} A_{\mu}^{b}-g f^{b c d} A_{\mu}^{c} A_{\nu}^{d}$. $f^{a b c}$ are the structure constants, g is a constant and represents the coupling. The indices a, b, c are in the adjoint representation, such that $F^{\mu \nu, a}$ in general transforms non-trivially under gauge transformations.
At first sight, it appears possible to add to the standard gauge field Lagrangian the term

$$
\delta \mathcal{L}=\epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left[F^{\mu \nu} F^{\rho \sigma}\right] .
$$

1. Discuss how you expect this term to change under a parity transformation.
2. Show that this term is, in fact, a total derivative $\delta \mathcal{L}=\partial_{\mu} J^{\mu}$.
3. Find the expression for the vector current J^{μ} and explain why such terms do not change the equations of motion.

Problem 2-Equations of motions in non-abelian field theory

Consider a non-abelian gauge theory where gauge fields couple to scalar fields in the fundamental representation of the gauge group

$$
\mathcal{L}=\mathcal{L}_{A}+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi-\lambda\left(\phi^{\dagger} \phi\right)^{2},
$$

where \mathcal{L}_{A} is the standard Lagrangian for the gauge fields given in the previous exercise.

1. Show that the equations of motion for the gauge field can be written in a form

$$
\begin{equation*}
\left(D_{\mu} F^{\mu \nu}\right)^{a}=g J_{\nu}^{a} \tag{1}
\end{equation*}
$$

and find the current J_{ν}^{a}. Note that in Eq.(1) the covariant derivative acts on $F^{\mu \nu}$ which has values in the Lie Algebra and transforms in the adjoint representation! The covariant derivative is given by

$$
D_{\mu}^{a b}=\partial_{\mu}-i g f^{a b c} A_{\mu}^{c} .
$$

2. Show that $D_{\mu} D_{\nu} F^{\mu \nu}=0$. Use this result to write down the conservation equation for the current J_{μ}^{a}.
3. Find the equations of motion for the scalar field ϕ.
