Advanced Quantum Field Theory SS 2023

Lecturer: Prof. Lorenzo Tancredi
Assistants: Philipp Alexander Kreer, Cesare Mella, Nikolaos Syrrakos, Fabian Wagner
https://www.groups.ph.tum.de/ttpmath/teaching/ss-2023/

Sheet 2: Spinor-Helicity Formalism

1 Explicit Representations

Remember

$$
\left(\sigma^{\mu}\right)_{a \dot{b}}=\left(1, \sigma^{i}\right)_{a \dot{b}}, \quad\left(\bar{\sigma}^{\mu}\right)^{\dot{a} b}=\left(1,-\sigma^{i}\right)^{\dot{a} b}
$$

with Pauli matrices

$$
\sigma^{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Furthermore, the 2 component Levi-Civita symbol is defined as

$$
\varepsilon^{a b}=\varepsilon^{\dot{a} \dot{b}}=-\varepsilon_{a b}=-\varepsilon_{\dot{a} \dot{b}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

1.1 Explicit Spinor Representations

Consider the momentum vector,

$$
p^{\mu}=(E, E \sin \theta \cos \phi, E \sin \theta \sin \phi, E \cos \theta)
$$

Step 1: Express $p_{a b}$ and $p^{\dot{a} b}$ in terms of $E, \sin \frac{\theta}{2}, \cos \frac{\theta}{2}$ and $e^{ \pm i \phi}$.
Step 2: Show that the helicity spinor $|p\rangle^{\dot{a}}=\sqrt{2 E}\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \phi}}$ solves the massless Weyl equation.
Step 3: Find expressions for the spinors $\left.\left\langle\left. p\right|_{\dot{a}},\right| p\right]_{a}$, and $\left[\left.p\right|^{a} \text { and check that they satisfy } p_{a \dot{b}}=\mid p\right]_{a}\left\langle\left. p\right|_{\dot{b}}\right.$ and $p^{\dot{a} b}=|p\rangle^{\dot{a}}\left[\left.p\right|^{b}\right.$.

1.2 Explicit Representation Polarization Vector

In this exercise, we establish the connection between the polarization vectors

$$
\begin{equation*}
\epsilon_{-}^{\mu}(p ; q)=\frac{\left.\langle q| \gamma^{\mu} \mid p\right]}{\sqrt{2}\langle q p\rangle} \tag{1}
\end{equation*}
$$

and the more familiar polarization vectors

$$
\tilde{\epsilon}_{-}^{\mu}(p)=\frac{e^{-i \phi}}{\sqrt{2}}(0, \cos \theta \cos \phi+i \sin \phi, \cos \theta \sin \phi-i \cos \phi,-\sin \theta) .
$$

Note that for $\theta=\phi=0$, we have $\tilde{\epsilon}_{-}^{\mu}(p)=\frac{1}{\sqrt{2}}(0,1,-i, 0)$

Step 1: Since $\tilde{\epsilon}_{-}^{\mu}(p)$ is null, $\left(\tilde{\epsilon}_{-}^{\mu}(p)\right)_{a \dot{b}}=\left(\sigma_{\mu}\right)_{a \dot{b}} \tilde{\epsilon}_{-}^{\mu}(p)$ can be written as a product of a square and an angle spinor. To see this specifically, first calculate $\left(\tilde{\epsilon}_{-}^{\mu}(p)\right)_{a \dot{b}}$ and then find an angle spinor $\langle r|$ such that $\left.\left(\tilde{\epsilon}_{-}^{\mu}(p)\right)_{a \dot{b}}=\mid p\right]_{a}\left\langle\left. r\right|_{\dot{b}}\right.$. Verify that $\langle p r\rangle=\sqrt{2}$.

Step 2: Next, show that it follows from Eq. (1) that $\left.\left.\left(\epsilon_{-}(p ; q)\right)_{a b}=\frac{\sqrt{2}}{\langle q p\rangle} \right\rvert\, p\right]\langle q|$.
Step 3: Now suppose there is a constant c_{-}such that $\epsilon_{-}^{\mu}(p ; q)=\tilde{\epsilon}_{-}^{\mu}(p)+c_{-} p^{\mu}$. Show that this relation requires $\langle p r\rangle=\sqrt{2}$ and then show that $c_{-}=\langle r q\rangle /\langle p q\rangle$.

1.3 Spinor identity

Prove the Fierz and reversal identity from the lecture.

Fierz identity:

$$
\begin{aligned}
{\left[p \gamma^{\mu} q\right\rangle\left[k \gamma_{\mu} l\right\rangle } & =2[p k]\langle l q\rangle \\
\left\langle p \gamma^{\mu} q\right]\left\langle k \gamma_{\mu} l\right] & =2\langle p k\rangle[l q]
\end{aligned}
$$

Reversal identity:

$$
\begin{aligned}
\left\langle p \gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n}} q\right\rangle & =-\left\langle q \gamma^{\mu_{2 n}} \ldots \gamma^{\mu_{n}} p\right\rangle \\
\left\langle p \gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}} q\right] & =\left[q \gamma^{\mu_{n}} \ldots \gamma^{\mu_{2 n+1}} p\right\rangle
\end{aligned}
$$

2 QED Compton Scattering

In this exercise, we compute the tree level amplitude for electron-positron annihilation $\mathcal{A}\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)$ using spinor-helicity formalism. We assume that the fermions are massless and take all particles as incoming

$$
e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right)+\gamma\left(p_{3}\right)+\gamma\left(p_{4}\right) \longrightarrow 0 .
$$

Step 1: What are the independent helicity configurations?
Step 2: Draw the two diagrams of this process.
Step 3: Insert the QED Feynman rules and perform the algebra using spinor-helicty formalism.
Step 4: Use the result from above to check that $\sum_{\text {spins }} \mid\left.\mathcal{A}($ spins $)\right|^{2}$ gives the known result obtained from trace formalism à la Peskin \& Schroeder, see Eq. (5.87).

