Advanced Quantum Field Theory SS 2023 Lecturer: Prof. Lorenzo Tancredi Assistants: Philipp Alexander Kreer, Cesare Mella, Nikolaos Syrrakos, Fabian Wagner https://www.groups.ph.tum.de/ttpmath/teaching/ss-2023/

Sheet 2: Spinor-Helicity Formalism

1 Explicit Representations

Remember

$$(\sigma^{\mu})_{ab} = \left(1, \sigma^{i}\right)_{ab}, \quad (\bar{\sigma}^{\mu})^{\dot{a}b} = \left(1, -\sigma^{i}\right)^{\dot{a}b},$$

with Pauli matrices

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Furthermore, the 2 component Levi-Civita symbol is defined as

$$\varepsilon^{ab} = \varepsilon^{\dot{a}\dot{b}} = -\varepsilon_{ab} = -\varepsilon_{\dot{a}\dot{b}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

1.1 Explicit Spinor Representations

Consider the momentum vector,

$$p^{\mu} = (E, E \sin \theta \cos \phi, E \sin \theta \sin \phi, E \cos \theta)$$

Step 1: Express p_{ab} and $p^{\dot{a}b}$ in terms of $E, \sin \frac{\theta}{2}, \cos \frac{\theta}{2}$ and $e^{\pm i\phi}$. **Step 2:** Show that the helicity spinor $|p\rangle^{\dot{a}} = \sqrt{2E} \begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2}e^{i\phi} \end{pmatrix}$ solves the massless Weyl equation. **Step 3:** Find expressions for the spinors $\langle p|_{\dot{a}}, |p]_{a}$, and $[p|^{a}$ and check that they satisfy $p_{a\dot{b}} = |p]_{a} \langle p|_{\dot{b}}$ and $p^{\dot{a}b} = |p\rangle^{\dot{a}} [p|^{b}$.

1.2 Explicit Representation Polarization Vector

In this exercise, we establish the connection between the polarization vectors

$$\epsilon^{\mu}_{-}(p;q) = \frac{\langle q \mid \gamma^{\mu} \mid p]}{\sqrt{2} \langle q p \rangle} \tag{1}$$

and the more familiar polarization vectors

$$\tilde{\epsilon}^{\mu}_{-}(p) = \frac{e^{-i\phi}}{\sqrt{2}}(0,\cos\theta\cos\phi + i\sin\phi,\cos\theta\sin\phi - i\cos\phi,-\sin\theta).$$

Note that for $\theta = \phi = 0$, we have $\tilde{\epsilon}^{\mu}_{-}(p) = \frac{1}{\sqrt{2}}(0, 1, -i, 0)$

Step 1: Since $\tilde{\epsilon}^{\mu}_{-}(p)$ is null, $(\tilde{\epsilon}^{\mu}_{-}(p))_{ab} = (\sigma_{\mu})_{ab} \tilde{\epsilon}^{\mu}_{-}(p)$ can be written as a product of a square and an angle spinor. To see this specifically, first calculate $(\tilde{\epsilon}^{\mu}_{-}(p))_{ab}$ and then find an angle spinor $\langle r |$ such that $(\tilde{\epsilon}^{\mu}_{-}(p))_{ab} = |p]_a \langle r|_b$. Verify that $\langle pr \rangle = \sqrt{2}$.

Step 2: Next, show that it follows from Eq. (1) that $(\epsilon_{-}(p;q))_{ab} = \frac{\sqrt{2}}{\langle qp \rangle} |p] \langle q|$.

Step 3: Now suppose there is a constant c_{-} such that $\epsilon^{\mu}_{-}(p;q) = \tilde{\epsilon}^{\mu}_{-}(p) + c_{-}p^{\mu}$. Show that this relation requires $\langle pr \rangle = \sqrt{2}$ and then show that $c_{-} = \langle rq \rangle / \langle pq \rangle$.

1.3 Spinor identity

Prove the Fierz and reversal identity from the lecture. **Fierz identity:**

$$[p\gamma^{\mu}q\rangle [k\gamma_{\mu}l\rangle = 2[pk]\langle lq\rangle \langle p\gamma^{\mu}q] \langle k\gamma_{\mu}l] = 2\langle pk\rangle [lq]$$

Reversal identity:

$$\langle p\gamma^{\mu_1} \dots \gamma^{\mu_{2n}}q \rangle = - \langle q\gamma^{\mu_{2n}} \dots \gamma^{\mu_n}p \rangle \langle p\gamma^{\mu_1} \dots \gamma^{\mu_{2n+1}}q] = [q\gamma^{\mu_n} \dots \gamma^{\mu_{2n+1}}p \rangle$$

2 QED Compton Scattering

In this exercise, we compute the tree level amplitude for electron-positron annihilation $\mathcal{A}(e^+e^- \to \gamma\gamma)$ using spinor-helicity formalism. We assume that the fermions are massless and take all particles as incoming

$$e^{-}(p_1) + e^{+}(p_2) + \gamma(p_3) + \gamma(p_4) \longrightarrow 0.$$

Step 1: What are the independent helicity configurations?

Step 2: Draw the two diagrams of this process.

Step 3: Insert the QED Feynman rules and perform the algebra using spinor-helicty formalism.

Step 4: Use the result from above to check that $\sum_{spins} |\mathcal{A}(spins)|^2$ gives the known result obtained from

trace formalism à la Peskin & Schroeder, see Eq. (5.87).