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Sheet 11: Longitudinal gauge-boson scattering and unitarity

The following problem contains a number of bonus questions, which you may attempt to solve at your
own discretion.

1 Spontaneous Symmetry Breaking with different masses

Using what you know about SSB and the Higgs mechanism, construct a field theory with spontaneously
broken gauge symmetry SU(2) where the masses of all 3 gauge bosons are different.

2 High energy-limit of longitudinal gauge-boson scattering and unitarity

In this problem, we will see that unitarity (via the optical theorem) implies an upper bound on the mass
of the Higgs Boson. For simplicity, let’s consider just the abelian U(1) gauge group of hypercharge with
a gauge boson B and one complex scalar Higgs field φ. The Lagrangian is

L = −1

4
BµνB

µν + (Dµφ)(Dµφ)∗ − V (φ) , (1)

where the covariant derivative reads Dµ = ∂µ − i g′ YφBµ with Yφ > 0 and the potential is given by

V (φ) =
λ

4!

(
|φ|2 − v2

2

)2

. (2)

We break the gauge symmetry spontaneously by choosing the vacuum expectation value of the Higgs
field in positive real direction, φ = (v + h)/

√
2, with a real scalar field h.

1. Show that the gauge boson acquires a mass m2
B = (g′ Yφ v)2. Derive the Feynman rules of the

theory after spontaneous symmetry breaking.

Consider now the scattering process

B(p1, λ1) +B(p2, λ2) −→ B(p3, λ3) +B(p4, λ4) , (3)

where pi and λi denote momentum and polarisation of the corresponding gauge boson, respectively. We
will write the corresponding amplitude as A(λ1, λ2, λ3, λ4). Further, as usual, we consider the process to
be back-to-back and θ denotes the scattering angle, i.e. the angle between ~p1 and ~p3, in the centre-of-mass
frame.

2. Show that the optical theorem implies for any configuration of polarisations the unitarity bound

Im [A(λ1, λ2, λ3, λ4)|θ=0] ≥
√
s(s− 4m2

B) σ (Bλ1(p1)Bλ2(p2)→ Bλ3 Bλ4) , (4)

where s = (p1 + p2)
2 > 4m2

B is the usual Mandelstam variable.
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To learn something from this bound at the lowest order in perturbation theory, we could determine the
imaginary part of A at one-loop order in forward-scattering kinematics (θ = 0) and compare it to the
tree-level cross section. However, it is actually not necessary to do the one-loop calculation to derive
interesting implications of the unitarity bound. We will see this in the following. The first step is to
view A as a function of cos θ, such that we can perform a partial wave decomposition of the amplitude,

A(cos θ) =
32π s√

s(s− 4m2
B)

∞∑
l=0

(2l + 1)Al Pl(cos θ) (5)

with some coefficients Al. The overall factor in front of the sum implies a normalisation of the Al that
will turn out to be convenient later. The functions Pl(x) are the Legendre polynomials you might recall
from your Quantum Mechanics courses. They can be compactly written by Rodrigues’ formula,

Pl(x) =
1

2l l!

dl

dxl
(
x2 − 1

)l
, (6)

fulfil Pl(1) = 1 and satisfy the relations

∞∑
l=0

2l + 1

2
Pl(x)Pl(y) = δ(x− y) (completeness) , (7)

1∫
−1

dxPl(x)Pl′(x) =
2 δll′

2l + 1
(orthogonality) . (8)

3. (Bonus) The mathematically curious might be interested in proving the existence of the partial
wave decomposition (5), as well as the question of how to determine the coefficients Al in general.
Given a function f(x) and performing a Fourier transformation for x = cos θ,

f(cos θ) =

∞∫
−∞

dk

2π
f̃(k) ei k cos θ , where f̃(k) =

∞∫
−∞

dx f(x) e−i k x , (9)

the form of eq. (5) and an explicit expression for Al in terms of an integral follow immediately by
plugging in the partial wave expansion

ei k cos θ =
∞∑
l=0

(2l + 1) il jl(k)Pl(cos θ) . (10)

The functions jl(k) are the spherical Bessel functions. In the literature, one of the usual definitions
for these functions is given by Rayleigh’s formula,

jl(k) = (−k)l
(

1

k

d

dk

)l
sin k

k
. (11)
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To show eq. (10), it is convenient to use instead the integral representation

jl(k) =
(−i)l

2

1∫
−1

dxPl(x) ei k x (12)

Plugging it into the right-hand side of eq. (10), the partial wave expansion simply follows from the
completeness relation for the Legendre polynomials (7). However, the integral representation (12)
is not quite standard and you are therefore invited here to show that it is equivalent to the textbook
definition by Rayleigh’s formula, eq. (11). Do this in several steps. First, write

sin k

k
=

1

2

1∫
−1

dx ei k x (13)

and prove, for example by induction, using a suitable integration by parts, that

jl(k) =
(−k)l

2l+1 l!

1∫
−1

dx (x2 − 1)l ei k x . (14)

Next, trade the factor (−k)l for a derivative (i d/dx)l acting on the exponential function and
integrate by parts l more times to arrive at eq. (12).

After this short mathematical excursion, let’s return to our scattering process and the optical theorem.

4. Go to the centre-of-mass frame and simplify the phase-space integral implicit in the right-hand
side of eq.(4) such that the cross section reads

σ (Bλ1(p1)Bλ2(p2)→ Bλ3 Bλ4) =
1

64π s

1∫
−1

d(cos θ) |A(cos θ)|2 (15)

5. Use this and the partial wave expansion (5) for A(cos θ) to show that the unitarity bound becomes

∞∑
l=0

(2l + 1) Im [Al] ≥
∞∑
l=0

(2l + 1) |Al|2 . (16)

If one considers the scattering of angular momentum eigenstates, it can be shown that the sum over l
can be dropped and the unitarity bound simplifies to

Im [Al] ≥ |Al|2 ∀l ⇔ 1

4
≥ (Re [Al])

2 +

(
Im [Al]−

1

2

)2

∀l ⇒ 1

2
≥ |Re [Al] | ∀l . (17)

The second bound is weaker, but it already provides a statement at lowest order in perturbation theory.
So let’s compute the amplitude A at tree-level and see what we get from it.
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6. Draw the three contributing Feynman diagrams and give an expression for A(λ1, λ2, λ3, λ4) using
the Feynman rules you derived in the beginning.

As we will see soon, the coefficients Al have a quite simple behaviour at high energies and are therefore
way more easily obtained in this limit. More precisely, we consider the kinematic region

s = (p1 + p2)
2 � m2

B , |t| = |(p1 − p3)2| � m2
B , |u| = |(p1 − p4)2| � m2

B . (18)

7. (Bonus) Check that this limit exists consistent with

s+ t+ u = 4m2
B . (19)

Further, we haven’t fixed yet the configuration of polarisations λi of the gauge bosons. In general,
massive gauge bosons can have either one of two transverse polarizations, λ = T±, or a longitudinal
polarization, λ = L. In either case, the corresponding polarization vectors satisfy

pµ ε
µ(p, λ) = 0 (equation of motion) , εµ(p, λ) εµ(p, λ) = −1 (normalisation) . (20)

Additionally, in some canonical frame of reference, the spatial components of the transverse and longi-
tudinal polarizations respectively fulfil the conditions

~p ⊥ ~ε (p, T±) (transversality) , ~p ‖ ~ε (p, L) (longitudinality) . (21)

For the transverse polarizations, we can adopt the familiar construction from the massless case.

8. Find an explicit expression for the longitudinal polarization vector εµ(p, L) in the canonical frame
of reference in terms of the vectors pµ = (p0, ~p ) and p̃µ = (p0,−~p ).

9. Go to the centre-of-mass frame, where p̃1 = p2, p̃2 = p1, p̃3 = p4, p̃4 = p3, and argue that in the
high energy limit, the scattering is strongest in the case where all gauge bosons are longitudinally
polarised1. Studying this configuration should therefore yield the most interesting unitarity bound.
Show that the corresponding amplitude behaves in this limit as

A(L,L, L, L) = −(g′ Yφ)2

m2
B

(
s2

s−m2
h

+
t2

t−m2
h

+
u2

u−m2
h

)
+O

((
m2
B

s/t/u

)0
)
. (22)

Assume further that s, |t|, |u| � m2
h � m2

B and verify that the amplitude approaches a constant,

A(L,L, L, L) −→ −3 (g′ Yφ)2m2
h

m2
B

. (23)

10. Starting from 1/2 ≥ |Re [Al] |, use that there is no more dependence on the scattering angle θ in
the amplitude in this limit to verify the following bound on the mass of the Higgs boson:

mh ≤
√

16π

3
v . (24)

The equivalent statement in the full standard model is known as the Lee-Quigg-Thacker bound. Although
the computation is more involved, it takes exactly the same form. This bound was the reason why it
was expected that the Higgs boson or something similar would be found sooner or later at the Large
Hadron Collider (LHC).

1Hint: Use that the transverse polarisation vectors are independent of the gauge boson mass and momentum magnitude.
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