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Sheet 10: Quantum corrections to the linear sigma model

Part of the calculations in this exercise are a repetition of what is or will be done in class. You are
nevertheless invited to repeat the calculations yourself.

1 The linear sigma model

The Lagrangian of the linear sigma model involves a set of N real scalar fields φi(x):

L =
1

2
(∂µφ

i)2 +
1

2
µ2(φi)2 − λ

4

[
(φi)2

]2
, (1)

where we have replaced the usual mass term m2 by the negative parameter −µ2 and there is an implicit
sum over i in each factor of (φi)2. This Lagrangian is invariant under the symmetry

φi → Rijφj (2)

for any N ×N orthogonal matrix R. The group of transformations (2) is just the rotation group in N
dimensions, also called the N -dimensional orthogonal group, or simply O(N).

1.1 Spontaneous symmetry breaking

1. Show that any constant field φi0 that satisfies

(φi0)
2 =

µ2

λ
= υ2, (3)

minimizes the potential

V (φi) = −1

2
µ2(φi)2 − λ

4

[
(φi)2

]2
. (4)

Eq. (3) defines an infinite set of minima with fixed modulus of the vector φi0.

2. Suppose that the system is near one of the minima and define the fields

φi(x) =
(
πk(x), υ + σ(x)

)
, k = 1, . . . , N − 1. (5)

In this way you are choosing one of the minima and breaking the symmetry. This is what is usually
referred to as Spontanous Symmetry Breaking (SSB). Rewrite the Lagrangian (1) in terms of the
π and σ fields and show that

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 − 1

2
(2µ2)σ2

−
√
λµσ3 −

√
λµ(πk)2σ − λ

4
σ4 − λ

2
(πk)2σ2 − λ

4

[
(πk)2

]2
. (6)

Explain why this Lagrangian describes a massive σ field with mass
√

2µ and also a set of N − 1
massless π fields.

3. Derive the Feynman rules from the Lagrangian after SSB and prove that they can be written as
in Figure 1.
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Figure 1: Feynman rules for the linear sigma model.

2 One-loop corrections and renormalization

In this part of the exercise we want to study the renormalization of this theory to one-loop order.
As always, for an amplitude with Ne external legs, the so-called superficial degree of divergence in 4
dimensions is defined as

D = 4−Ne. (7)

2.1 Counterterms

1. Enumerate all the superficially divergent amplitudes in the linear sigma model.

2. What are the bare parameters available to absorb the infinities? Rewrite the original Lagrangian
before SSB in terms of physical parameters and counterterms in terms of π and σ fields. Show
that the counter-term Lagrangian after SSB takes the following form,

δZ
2

(∂µπ
k)2 − 1

2
(δµ + δλυ

2)(πk)2 +
δZ
2

(∂µσ)2 − 1

2
(δµ + 3δλυ

2)(σ)2

− (δµυ + δλυ
3)σ − δλυσ(πk)2 − δλυσ3

− δλ
4

[
(πk)2

]2 − δλ
2
σ2(πk)2 − δλ

4
σ4, (8)

where δZ , δµ, δλ are the shifts in the field strength, mass and coupling constant respectively.

The Feynman rules for the counterterms (8) are given in Figure 2. Notice that while there is a large
number of vertices and counter terms, the symmetry of the original Lagrangian implies that they all
depend only on three independent parameters δλ, δµ and δZ .
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Figure 2: Feynman rules for the counterterm vertices.

2.2 Renormalization conditions and fixing counterterms

We want to show now that by fixing only these three counterterms, all divergent Green functions are
regularized. As renormalization conditions we can choose the following:

1PI1PI = 0,

d

dp2

(
1PI1PI

)
= 0 at p2 = m2, (9)

Im

( )
= −6iλ at s = 4m2, t = u = 0,

1. Start by determining the counterterm δλ from the 4σ amplitude:

(a) Draw the contributing one-loop diagrams and argue that the only divergent diagrams are of
the type

(10)

(b) Compute the above diagrams and show that the counterterm δλ is given by

δλ ∼ λ2(N + 8)
Γ(2− d/2)

(4π)2
, (11)
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where we have omitted finite terms.

(c) Show that δλ renders the remaining superficially divergent four-point amplitudes (σσππ and
4π) finite.

2. Show that δλ renders finite the three-point amplitudes, σσσ and σππ.

3. Apply the first renormalization condition from (9) and show that

(δµ + υ2δλ) = −λΓ(1− d/2)

(4π)d/2

(
3

(2µ2)1−d/2
+

N − 1

(ζ2)1−d/2

)
. (12)

When applying (9) at one-loop order you will have to deal a tadpole that involves the massless
π field running inside the loop. This diagram involves a divergent integral over a massless prop-
agators. To make sense out of it, you can introduce a small mass ζ for π field as an infrared
regulator.

4. (Bonus) Compute the 2σ amplitude and show that δZ = 0.
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