
Introduction

These is a collection of lecture notes for a second course in quantum field theory. The notes
have grown out of a course on “Advanced Quantum Field Theory”, which I have given in
the Summer Semesters of 2023 and 2025 at the Technical University of Munich. I do not
claim that any of the material presented here is original; on the other hand, the way the
theory is developed, especially in the logical order of the various topics, does not follow any
standard textbooks. As much as possible, I have tried to to fill in the blanks for various
derivations found on standard textbooks.

As it is always the case, these lecture notes cannot be a substitute for one or more
textbooks on the subject. Quantum Field Theory is an enormous subject, which remains
a source of puzzles and conceptual pitfalls also for the most experts researchers. So my
suggestion is, don’t give up if things don’t seem obvious at first: most of the times, it turns
out that they are not! Browse through the many great references available and search for
the one that you resonate the most with. Probably, you will need more than one. Here is a
(non-exhaustive) list of books that treat the topics covered in this course, sometimes from
complementary perspectives.

Standard References

• Maggiore, A Modern Introduction to Quantum Field Theory (very short, good for

recapping especially QFT 1)

• Peskin, Schröder, An Introduction to Quantum Field Theory (a standard reference, we

will take a lot from here especially on later chapters)

• Schwartz, Quantum Field Theory and the Standard Model (a newer, very good refer-

ence, especially for the part on unitarity and for first chapters relevant to QFT 1)

• Weinberg, The Quantum Theory of Fields, volumes I and II (the book on QFT: if you

have a question, its answer is very probably in one of the Weinberg volumes, but finding it

might be part of the adventure...)

For a di↵erent “twist” to the topic, and some deep insights

• Itzykson, Zuber, Quantum Field Theory (a di�cult book, with a lot of interesting ma-

terial di�cult to find anywhere else, for example bound states in QFT)
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• Coleman, Quantum Field Theory (a beautiful set of lecture notes, with a lot of physics

insight. Very long, but worth reading!

• Coleman, Aspects of Symmetry (nice self-contained lectures on advanced QFT topics)

• Berestetskii, Lifshitz, Pitaevskii, Quantum Electrodynamics (an older book with a lot

of profound and half-forgotten results in QED)

• Shifman, Advanced topics in Quantum Field Theory (a very advanced book, with in-

teresting special topics)



Chapter 1

Consequences of Unitarity

Quantum Field Theory (QFT) is an extremely rich mathematical framework. In your first
encounters with this theory, you have already seen the first glimpses of its richness and
complexity. Indeed, as for every physical theory and phenomena, for QFT it is especially
true that looking at the same problem from di↵erent perspectives can o↵er unique and
sometimes unexpected insights. One of the most striking examples of this, is provided by
the recent (re-)discovery of the impact that simple intuitive concepts as those of Unitarity,
Causality and Locality can have to constrain the space of available QFTs.

We start this course by reconsidering these concepts and describe how of a large impact
they can have in our understanding of Quantum Field Theory. As we will see, following
the threads of unitarity and locality and their consequences for the physics of on-shell
scattering amplitudes, we will be able to justify a priori why we are interested in studying
so-called Non-Abelian Yang-Mills gauge theories, i.e. natural generalizations of QED based
on non-abelian Lie Groups (in particular, SU(N)).
Disclaimer: a lot of the material presented in this chapter has been heavily inspired and
adapted from M. Schwartz, Quantum Field Theory and the Standard Model, with some
obvious reordering, additions and changes.

1.1 The Optical Theorem

The fact that the S-matrix must be unitary is equivalent to the requirement of probability
conservation in scattering processes. In fact, consider a system described by a generic
Hamiltonian H, such that we can write its S-matrix formally as

S = e−iHt
, (1.1)

with t the time-evolution variable. Now consider a quantum state in the Schrödinger picture.
Its time evolution is given by

� ; t� = e−iHt� ; 0� , (1.2)
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8 CHAPTER 1. CONSEQUENCES OF UNITARITY

such that conservation of probability (i.e. that the state remains properly normalized at
all times) implies that ∀ t

� ; t� ; t� = � ; 0� ; 0� ,
→ � ; 0�S†S � ; 0� = � ; 0� ; 0�

→ S†S = 1 (1.3)

i.e. the S matrix must be Unitary. Equivalently, this also implies that

�e−iHt�† e−iHt = eiH†t
e
−iHt = e−i(H−H†

)t = 1

→ H† =H (1.4)

i.e. H is Hermitian.
Let us see what the consequences of these simple facts are. We start o↵ by separating

the S-matrix into the trivial part (no scattering) and the proper transfer matrix T , i.e.

S = 1 + i T (1.5)

and consider the usual S-matrix elements between an initial state �i� of total four-momentum
p
µ
i and a final state �f � of total four-momentum p

µ
f

�f �T �i� = (2⇡)4�(4)(pi − pf)M(i→ f) (1.6)

To be 100% clear, these are exactly the matrix elements that we learned to compute with
Feynman diagrams in QFT 1!

The formal required that S is unitary, implies that

S†S = (1 − iT †)(1 + iT ) = 1 − i(T † − T ) + T †
T = 1

→ i(T † − T ) = T †
T . (1.7)

By sandwiching this equation between initial and final state we can write for its left-hand
side

LHS: �f �i(T † − T )�i� = i ��f �T †�i� − �f �T �i��
= i [�i�T �f�∗ − �f �T �i�]
= i(2⇡)4�(4)(pi − pf) [M∗(f → i) −M(i→ f)] . (1.8)

For the right-hand side instead, we would like to insert a sum over a complete basis of
states, which we indicate generically with �X�

�
X
� dX �X��X � = 1 , (1.9)

where we also integrate over all their “quantum numbers” (including their momenta), indi-
cated with the formal integral over dX. For example, if X stands for a set of n final-state
scalar particles of momenta pf and energies Ef , we would have explicitly

� dX = �
n

�
f=1

d3pf

(2⇡)3
1

2Ef
. (1.10)
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By inserting this completeness relation, the right-hand-side becomes

RHS: �f �T †
T �i� =�

X
� dX �f �T †�X��X �T �i�

=�
X
� dX �(2⇡)4�2 �(4)(pi − pX)�(4)(pf − pX)M(i→X)M∗(f →X)

(1.11)

and we stress once more that, if the final state particles have other degrees of freedom (spin,
color etc), one has to sum over them too. Now we use

�
(4)(pi − pX)�(4)(pf − pX) = �(4)(pf − pi)�(4)(pi − pX)

and equate LHS and RHS dropping the common �(4)(pi − pf) to find

M(i→ f) −M∗(f → i) = i�
X
� dX(2⇡)4�(4)(pi − pX)M(i→X)M∗(f →X) (1.12)

Eq.(1.12) provides the most general form of the optical theorem. This is a non-perturbative
results, and in fact upon expansion in perturbation theory, the LHS and RHS turn out to
connect `-loop quantities on the left, with (` − 1) on the right. In fact, imagine, just for
definiteness, to work in a scalar theory with coupling constant �, then obviously since

LHS ∼M , RHS ∼ �M�2

eq. (1.12) connects one-loop results on the LHS, to tree-level results on the RHS, etc.
To get the optical theorem in its standard form, one usually considers a specific case

where the initial and the final state are identical (i.e. often refereed to as forward scattering
when dealing with 2 → 2 scattering processes). In this case �i� = �f� = �Y � and our formula
simplifies to

M(Y → Y ) −M∗(Y → Y ) =

= 2i Im[M(Y → Y )] = i�
X
� dX(2⇡)4�(4)(pY − pX)�M(Y →X)�2 (1.13)

which connects the imaginary part of the forward amplitude to the integral of the amplitude
squared, for producing all possible intermediate states X. To relate this formula to quan-
tities that we know better and for which we can give an immediate physical interpretation,
let us consider two special cases.

1.1.1 Optical theorem for one-particle states

If �Y � is a one-particle state, then we are usually interested in computing its decay rate.
Indeed, if the state �Y � has a total invariant mass mY (it could be for example a Higgs
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boson, or any other massive unstable state), the decay rate for �Y � to a specific state �X�
is defined as

�(Y →X) = 1

2mY
� dX(2⇡)4�(4)(pY − pX)�M(Y →X)�2 (1.14)

such that the optical theorem for a one-particle state becomes

Im [M(Y → Y )] =mY �
X

�(Y →X) =mY �tot (1.15)

where we indicated with �tot the total decay rate of the state Y .
Eq. (1.15) contains the important insight that the two-point correlator for the field

corresponding to the state Y , develops an imaginary part if and only if �tot ≠ 0, i.e. there
must exist some other state X in the theory for which Y has enough energy to “decay” to.
Graphically, we write this equation as

Im

�������

Y

�������
= mY �

X

�������������������

Y

X

X

�������������������

2

(1.16)

where with the filled bubble we represent the full propagator.
Armed with this result, let us go back and see what we can say about an unstable scalar

particle Y of invariant mass p2 = m2
Y . In QFT 1, we have learned to write its propagator,

for general values of p2, by resuming all one-particle irreducible (1PI) contributions as

⇧(p2) = Y = + + + ...

= i

p2 −m2
Y +⌃(p2) + i✏

, (1.17)

where mY is the bare mass and we defined the self-energy ⌃(p2) as the sum of the 1PI
graphs as

i⌃(p2) =
p

. (1.18)

Now, saying that particle Y is unstable, implies that there is some state X that the
particle Y can decay to. As implied by eq. (1.16), the self-energy can then develop an
imaginary part if p2 >m2

X , where m2
X is the invariant mass squared of the state X. So for

general values of p2 we must write

⌃(p2) = Re �⌃(p2)� + i Im �⌃(p2)� . (1.19)

With this, the full bare propagator becomes

⇧(p2) = i

p2 −m2
Y +Re [⌃(p2)] + i Im [⌃(p2)]

, (1.20)
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where we remove the i✏ prescription, given the imaginary part of the self-energy.
Let us now recall how to define the renormalized pole mass. From QFT 1 you might

remember that the on-shell (or “pole”) mass m2
Y is defined as the pole of the propagator.

Whenever the self-energy is real, we can define it by the condition

m
2
Y −m2

Y +⌃(m2
Y ) = 0 . (1.21)

This unfortunately cannot be used when the particle is unstable and ⌃ becomes complex,
since this would introduce a complex quantity in our renormalized Lagrangian, which among
the other things, would mean a non-hermitian operator! A natural way to define the pole
mass (and avoid this problem) in this case, is through the real part of the pole, i.e.

m
2
Y −m2

Y +Re �⌃(m2
Y )� = 0 . (1.22)

With this definition for the pole mass, the full renormalized propagator of the unstable
particle Y , close to the resonance, i.e. for p2 ∼m2

Y , becomes

⇧R(p2 ∼m2
Y ) ∼

i

p2 −m2
Y + i Im �⌃(m2

Y )�
, (1.23)

where we have also used the fact that the residue of the propagator at p2 =m2
Y is normalized

to 1 in the on-shell renormalization scheme.
The optical theorem eq. (1.15), allows us to say something more precise about the

imaginary part of the propagator:

�tot =
1

mY
Im [M(Y → Y )] = 1

mY
Im �⌃(m2

Y )� +O �
�tot

mY
� , (1.24)

where the last equality is true modulo non-1PI diagrams. The reason why we wrote a
O ��totmY

�, is that these terms are negligible in first approximation if diagrams the total
decay width of the particle is small, which is equivalent to say, if the coupling constant that
facilitates this decay is small.1 With this, we can then finally write, once more close to the
resonance,

⇧R(p2 ∼m2
Y ) ∼

i

p2 −m2
Y + imY �tot

, (1.25)

which is called a Breit-Wigner propagator.
Imagine now that this particle is exchanged in some s-channel scattering process p1+p2 →

Y → p3+p4. The cross-section for this process will be proportional to the amplitude squared.
If we assume that the particle Y has a very small width, i.e. the resonance is very narrow,
then we can with good precision approximate

Im [⌃(s)] ∼ Im �⌃(m2
Y )�

1
An equivalent way to see this, is using the fact that the scattering amplitude for Y → Y is, through

the LSZ formulaM(Y → Y )∝ Z⌃(mY ), and Z = 1 +O(�), for any small coupling � in the theory.
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over the whole width of the resonance, which is also where most of the cross-section will
come from. In this way, we get for the cross-section close to the resonance, in very good
approximation

� ∝

�������������������

p1

p2

p3

p4

Y

�������������������

2

∝ � i

p2 −m2
Y + imY �tot

�
2

= 1

(p2 −m2
Y )2 + (mY �tot)2

(1.26)

which is true, once more, as long as �tot � mY . The last form of eq. (1.26) is called the
Breit-Wigner distribution, and it is the tipical shape of resonances observed at particle
colliders, see fig ??.[ADD FIGURE]

1.1.2 Optical theorem for two-particle states

Consider now the case of a two-particle state, schematically �Y � = �p1p2�. In this case, the
cross section for producing any state �X� in the scattering process p1 + p2 →X, with center
of mass energy (p1 + p2)2 = s, is defined as

�(p1p2 →X) = 1

4
√
s��pcm� �

dX(2⇡)4�(4)(p1 + p2 − pX)�M(p1p2 →X)�2 (1.27)

where �pcm is the three-momentum of one of the two incoming particles in the center-of-mass
frame (clearly, which one does not matter, since we only need its modulus squared). In this
case, the optical theorem becomes

Im [M(p1p2 → p1p2)] = 2
√
s��pcm��

X

�(p1p2 →X) , (1.28)

i.e. the imaginary part of the forward 2→ 2 scattering amplitude is equal to the total cross
section for p1 + p2 → anything. Often, when people talk about the optical theorem, they
refer to this special case for two-particle scattering.

1.2 Imaginary parts from discontinuities

In the previous section, we have discussed how the optical theorem connects the “imaginary
part” of forward scattering amplitudes, to cross-sections (or decay rates). We have also seen
that the optical theorem, applied to a single particle state, suggests that imaginary parts are
generated as long as there is enough energy for that particle to decay to some other state.
In this section, we would like to investigate more in detail where these imaginary parts
come from, first in an explicit example, and then introducing the so-called “Cutkosky’s
cutting rules”, which allow to derive the imaginary part of an amplitude, or an integral,
but computing their “unitarity cuts”.
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1.2.1 An explicit calculation of an imaginary part

Let us start with an example. We work in the usual theory of a real scalar field with
Lagrangian

Lint =
1

2
(@µ�)2 −

1

2
m

2
�
2 − �

4!
�
4

and consider 2→ 2 scattering process:

�(p1) + �(p2)→ �(p3) + �(p4) . (1.29)

The four momenta are on the mass-shell, i.e. p2i = m2 for all i = 1, ...,4 and we introduce
the usual Mandelstam variables to parametrize the kinematics

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p2 − p3)2 , with s + t + u = 4m2
. (1.30)

In the physical scattering region, one needs s > 4m2, i.e. s must be above threshold to
produce the two particles in the final state. The kinematical constrains above tell us that
t + u < 0, and it is easy to prove that individually both t, u < 0.

Let us consider now this calculation up to O(�2), or one-loop order. The relevant
Feynman diagrams are

iM1`(12→ 34) =

2

1

3

4

+ 1

2

�������������

2

1

3

4

+

2

1

3

4

+

2

1

4

3

�������������

+O(�2)

(1.31)

where the only relevant Feynman rule is

2

1

3

4

= −i� ,

which also corresponds to the tree-level four-point amplitude above.
We would like to discuss which of these diagrams can produce an imaginary part in the

kinematical situation described by eq. (1.30). We start analyzing explicitly the s-channel
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one-loop diagram. Writing for compactness p1 + p2 = p, with p2 = s, we have explicitly

iMs(p2) =

2

1

3

4

= −�2�
dDk

(2⇡)D
i2

(k2 −m2 + i�)((k + p)2 −m2 + i�) (1.32)

where we used � for the Feynman prescription, to avoid confusion with the D-dimensional
regulator D = 4−2✏. Introducing Feynman parameters and completing the square as usual,
we can write

1

(k2 −m2 + i�)((k + p)2 −m2 + i�) = �
1

0
dx

1

[(k2 −m2)(1 − x) + (k2 + p2 + 2k ⋅ p)x −m2x + i�]2

= �
2

0
dx

1

[(k + px)2 + p2x(1 − x) −m2 + i�]2
. (1.33)

We then put this back in the original dDk integral and shift k → k − px to obtain

iMs(p2) = �2�
1

0
dx �

dDk

(2⇡)D
1

[k2 + p2x(1 − x) −m2 + i�]

(Wick Rotation) → = i�2�
1

0
dx �

dDkE

(2⇡)D
1

[k2
E + p2Ex(1 − x) +m2]

(with p
2
E = −p2 − i�) → = i�2

�(✏)
(4⇡)D�2 �

1

0
dx �p2Ex(1 − x) +m2�−✏ . (1.34)

Now we use �(1 + ✏) = ✏�(✏) to extract explicitly the pole and expand the integrand close
to ✏ = 0 to obtain

iMs(p2) =
i�2

(4⇡)D�2
�(1 + ✏) �1

✏
−�

1

0
dx log (m2 + p2Ex(1 − x))� +O(✏) . (1.35)

From inspecting the result above, we see that the logarithm is real as long as m2, p2E > 0.
For physical values of the external kinematics, though, as we know p2E = −p2 − i� < 0 and
the logarithm can develop an imaginary part. In particular, the argument of the logarithm
can become zero for two values of x±

m
2 − p2x(1 − x) = 0 → x± =

1

2
± 1

2

�
1 − 4m2

p2
. (1.36)

From this, it is clear that the logarithm behaves di↵erently depending on the values of p2.

• For p2 < 4m2, there is no real solution for 0 < x < 1, which means that we can integrate
the logarithm and we will obtain a real result.

• If instead p2 > 4m2, one finds that both solutions are real and, in particular, 0 < x± < 1,
such that they both lie on the integration contour!
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It is here that we need Feynman’s prescription i� to specify on which side of the branch
cut we are. In particular, using the fact that x(1 − x) > 0, we can reinstate the Feynman
prescription directly in the logarithm. We also define �(x) = m2 − p2x(1 − x) and notice
that

�(x) > 0 , for 0 < x < x− & x+ < x < 1 , (1.37)

�(x) < 0 , for x− < x < x+ . (1.38)

Let us then split the integration contour and write (very explicitly...)

�
1

0
dx log (m2 − p2x(1 − x) − i�) = �

x−
0

dx log (�(x)) +�
1

x+
dx log (�(x))

+�
x+

x−
log (−[−�(x)] − i�)

= ��
x−

0
+�

1

x+
�dx log (�(x))

+�
x+

x−
dx log ([−�(x)]) + log (−1 − i�)�

x+
x−

dx . (1.39)

Using log (−1 − i�) = −i⇡ we finally can extract the imaginary part of this integral as

Im ��
1

0
dx log (m2 − p2x(1 − x) − i�)� = −i⇡

�
1 − 4m2

p2
✓(p2 − 4m2) , (1.40)

where we introduced an explicit ✓-function to stress that the imaginary part is di↵erent
from zero only if p2 > 4m2 . Putting everything together, this finally gives for the amplitude
in the s channel (and writing for consistency with the usual Mandelstam variables notation
p2 = s)

iMs(s) =
i�2

(4⇡)D�2
�(1 + ✏)

������

1

✏
−Re��

1

0
dx log (�(x))� + i⇡

�
1 − 4m2

s
✓(s − 4m2)

������
. (1.41)

Since the imaginary part is finite in D = 4, we can write (removing the overall i factor)

Im [Ms(s)] =
�2

16⇡2

�
1 − 4m2

s
✓(s − 4m2) (1.42)

NOTE: Often, people talk interchangeably about imaginary part or discontinuity of an ampli-

tude. While this is not entirely precise, we will use this nomenclature as well, meaning typically

the imaginary part developed by an amplitude in one single variable. Indeed, we define the dis-

continuity of the amplitude in the variable s as the di↵erence of its value across the branch-cut

for s > 4m2
:

Disc (Ms(s)) = lim
�→0
[Ms(s + i�) −Ms(s − i�)] = 2i Im [Ms(s)] . (1.43)
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Let’s go back now to the full amplitude, eq. (1.31). We analyzed the first of three one-
loop graphs and discovered that it develops an imaginary part (or a discontinuity) whenever
s > 4m2. What about the other graphs? Is there any other contribution to the imaginary
part of the amplitude? Clearly, if we were to compute the t- and u-channel graphs, the
would give exactly the same result as the s-channel one, with s ↔ t, u. This also means,
that those diagrams will develop an imaginary part if and only if t > 4m2 and u > 4m2

respectively. But as we discussed above, in the scattering region 12 → 34, only s > 4m2,
while t, u are negative, so the only contribution to the imaginary part of the full amplitude
is the one that we computed in (1.42). Putting this back into the equation for the amplitude
eq. (1.31), we get (putting back in the symmetry factor 1�2)

Im �M1`(12→ 34)� = �2

32⇡

�
1 − 4m2

s
✓(s − 4m2) .

(forward limit) → Im �M1loop(12→ 12)� = �2

32⇡

�
1 − 4m2

s
✓(s − 4m2) (1.44)

where in the last line we noticed that in the forward limit nothing changes, since the
imaginary part does not depend on p3 or p4, but only on s!

Comparing with the Optical theorem

We can now verify the validity of the optical theorem perturbatively to O(�2). In this case,
it implies that the imaginary part we just computed should be equal to the cross section
for 12 →X. To this order in perturbation theory, the only possible process contributing is
the tree-level diagram with X = 34:

2

1

3

4

= iMtree(12→ 34) = −i� → �Mtree(12→ 34)�2 = �2 .

The cross-section then becomes

�(12→ 34) = 1

4
√
s ��pcm�

1

2!�
identical particles

�
d3�p3

(2⇡)32E3

d3�p4
(2⇡)32E4

(2⇡)4�(4)(p1 + p2 − p3 − p4)�2

= 1

2
√
s ��pcm�

�2

4
⇧2 (1.45)
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where we introduced the notation for the two-particle phase-space

⇧2 = �
d3�p3

(2⇡)32E3

d3�p4
(2⇡)32E4

(2⇡)4�(4)(p1 + p2 − p3 − p4)

= �
d4p3

(2⇡)4 (2⇡)�
+(p23 −m2)�

d4p4

(2⇡)4 (2⇡)�
+(p24 −m2) (2⇡)4�(4)(p1 + p2 − p3 − p4) ,

(1.46)

with, given a four-vector xµ, the usual definition �+(x2) = �(x2)✓(x0).
The computation of the phase-space is standard. We integrate out the four-dimensional

delta function removing the momentum p4, and then specify the calculation in the center-
of-mass frame of p1 + p2, i.e. choose p1 + p2 = (

√
s,�0), to find

⇧2 = �
d4p3

(2⇡)4 (2⇡)
2
�(p23 −m2)✓(E3)✓(E1 +E2 −E3)�((p1 + p2 − p3)2 −m2)

(c.o.m frame) → = �
d4p3

(2⇡)2 �(p
2
3 −m2)✓(E3)✓(

√
s −E3)�(s − 2

√
sE3)

= 1

2
√
s
�

d3�p3
(2⇡)2 �

√
s

0
dE3 �(E2

3 − �p23 −m2) �(E3 −
√
s�2)

= 1

2
√
s
�

d3�p3
(2⇡)2 � �

s

4
−m2 − ��p3�2�

(spherical coord.) → = 1

2
√
s

4⇡

4⇡2 �
∞

0
d��p3� ��p3�2� ����p3� −

�
s

4
−m2����p3� +

�
s

4
−m2��

= 1

2
√
s⇡
�s
4
−m2� 1

2
�

s
4 −m2

= 1

4⇡
√
s

�
s

4
−m2 . (1.47)

Putting everything together, we can write for the two-particle phase space

⇧2 =
1

8⇡

�
1 − 4m2

s
, (1.48)

such that the cross section in eq. (1.45) reads

�(12→ 34) = 1

2
√
s��pcm�

��
2

4
� 1

8⇡

�
1 − 4m2

s
✓(s − 4m2) , (1.49)

where we added a ✓(s − 4m2) to stress that the cross-section is di↵erent from zero only if
enough energy is available.

We can now use the cross section just computed in eq. (1.49) to verify the optical
theorem to order O(�2). In fact, eq. (1.28) to this order implies

Im [M(12→ 12)] = 2
√
s��pcm��

X

�(12→X)

(to order O(�2)) → = 2
√
s��pcm� �(12→ 34)

= �2

32⇡2

�
1 − 4m2

s
, (1.50)
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which indeed agrees with the imaginary part computed in eq. (1.44). We notice that we
never needed the explicit value of ��pcm�, since it canceled between the expression for the
imaginary part in terms of the cross-section, and the cross-section computed in eq. (1.49).

In conclusion, we have proved the optical theorem in general and verified its validity with
an explicit calculation. In doing so, we have seen that the one-loop amplitude in eq. (1.31)
develops an imaginary part when s > 4m2. As we will demonstrate in the next section,
this is the threshold energy necessary for the virtual particles exchanged in the loop to get
on-shell (it has nothing to do with the energy required to produce the final state particles!).
Graphically, this is often expressed as a “cut” through the virtual particles that have to be
produced on-shell:

Im

����������

2

1

3

4

����������

∝

�������������������

2

1

3

4

�������������������

(1.51)

1.2.2 Cutkosky’s cutting rules

We have seen an explicit calculation that suggests that “discontinuities” (or imaginary
parts) of scattering amplitudes seem to be related to kinematical configurations where
virtual particles can be produced on-shell. In this section, we will make this statement
more precise and introduce a set of rules to compute discontinuities without having to first
compute the full Feynman diagram, as we did in the previous lecture.

Let us consider some generic scattering amplitude in some scalar theory, involving N

external particles, say

p1 + p2 → p3 + ... + pN .

The integrand for such an amplitude, is always a combination of Feynman propagators

⇧F (k) =
i

k2 −m2 + i✏ . (1.52)

NOTE: We are considering a scalar theory for simplicity, but all our considerations extend more

or less straightforwardly to any spin. On way to convince yourself that this is true, is realizing

that an amplitude in a theory with particles with spin, can always be rewritten, after some trivial

algebraic manipulations, as a combination of purely scalar Feynman integrals, which are also the

only source of possible discontinuities or branch cuts. You have already seen many examples of

this, for example when you computed the electron self-energy in QED or the g-2 of the electron.

In the case of the self-energy, you probably wrote it as something like

⌃̂(p,m) = ⌃V (p
2,m2

) �p +⌃S(p
2,m2

)mI , (1.53)

where the entire spinor-structure is contained in the matrices �p and I, while ⌃V and ⌃S are scalar

functions, containing Feynman integrals with propagators exactly in the form of (1.52).
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Since we are interested in obtaining the discontinuity of an amplitude, we start, with
some abuse of language, defining the “discontinuity” of an individual Feynman propagator

Disc [⇧F (k)] = lim
✏→0
� i

k2 −m2 + i✏ −
i

k2 −m2 − i✏� = lim✏→0

2✏

(k2 −m2)2 + ✏2 . (1.54)

Here, we are using the fact that all branch cuts originate from poles in the propagators
and, in turn, the imaginary parts in the Feynman amplitudes are fixed by Feynman’s
prescription. In this sense, computing the discontinuity of a graph is related to the value
of the same graph with flipped signs of the Feynman i✏, which justifies the terminology.

In the limit for ✏ → 0 we can recognize the famous representation of the Dirac delta
function

lim
✏→0
� ✏

x2 + ✏2 � = ⇡�(x) (1.55)

which has to be interpreted as an identity at the distribution level, i.e. for our purposes
valid in the integral sign

lim
✏→0
�✏�

∞

−∞

dx

x2 + ✏2f(x)� = ⇡f(0) . (1.56)

With this, we can identify (again at the distribution level)

Disc [⇧F (k)] = 2i Im [⇧F (k)] = 2⇡ �(k2 −m2) , (1.57)

which shows that propagators can contribute to a discontinuity only when they go on shell.
Let’s go back to the Feynman propagator now, and split its energy component and

partial fraction it to write

⇧F (k) =
i

k2
0 − !2

k + i✏
= i

2!k
� 1

k0 − !k + i✏
− 1

k0 + !k − i✏
� (1.58)

with !k =
�
�k2 +m2 . Let’s now add and subtract from this the complex conjugate of the

first term, i.e.

⇧F (k) =
i

2!k
� 1

k0 − !k − i✏
− 1

k0 + !k − i✏
�

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
retarded propagator ⇧R(k)

+ i

2!k
� 1

k0 − !k + i✏
− 1

k0 − !k − i✏
�

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������−2i✏(k0−!k)2+✏2

(1.59)

such that we can write

⇧F (k) = ⇧R(k) +
1

!k

✏

(k0 − !k)2 + ✏2

= ⇧R(k) +
⇡

!k
�(k0 − !k) (at the distribution level) , (1.60)

and we have introduced the retarded propagator, which has the peculiarity of having poles
only in the upper half complex plane (i.e. above the real axis).
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Let’s now consider the one-loop diagram studied in the previous section eq. (1.32), which
for the current argument we rewrite as

iMs(s) =

2

1

3

4

= −�2�
dDk

(2⇡)D⇧F (k)⇧F (k − p) . (1.61)

We now use eq. (1.60) and do a bit of gymnastic, which might look a bit funny at first, to
find

iMs(s) = −�2
������
�

dDk

(2⇡)D⇧R(k)⇧R(k − p)

+�
dDk

(2⇡)D
⇡2

!k!k−p
�(k0 − !k)�(k0 − p0 − !k−p)

+�
dDk

(2⇡)D
⇡

!k
�(k0 − !k)⇧R(k − p)

+�
dDk

(2⇡)D
⇡

!k−p
�(k0 − p0 − !k−p)⇧R(k)

������
. (1.62)

Of the four terms above, one can easily see that the first two are identically zero. In
particular:

I1 = �
dDk

(2⇡)D⇧R(k)⇧R(k − p) = 0 (1.63)

because when doing the energy integral (in k0), one realizes that the integrand has only poles
above the real axis, so closing the contour below the real axis gives identically zero. Let us
consider the second integral instead, and for to the center of mass frame for p = (

√
s,�0). In

this frame !k = !k−p and we obtain

I2 = �
dDk

(2⇡)D
⇡2

!k!k−p
�(k0 − !k)�(k0 − p0 − !k−p)

= �
dDk

(2⇡)D
⇡2

!2
k

�(k0 − !k)�(k0 −
√
s − !k) = 0 (1.64)

because s > 4m2 and the two delta functions would require
√
s = 0. The last two integrals

don’t drop naively, so let us manipulate them “back” into a more standard form, by re-
inserting the inverse of eq. (1.60) to reintroduce the Feynman propagator. When doing
that, we will obtain again two terms with products of two delta functions as I2 above,
which we know can be dropped for the same reason. The terms that remain are then the
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last two, with the retarded propagator substituted by the Feynman one

iMs(s) = −�2
������
�

dDk

(2⇡)D
⇡

!k
�(k0 − !k)⇧F (k − p)

+�
dDk

(2⇡)D
⇡

!k−p
�(k0 − p0 − !k−p)⇧F (k)

������
. (1.65)

This expression is exact, in all our manipulations we never threw away anything.
We would like now to use this expression to compute the imaginary part ofMs. Indeed,

in this form it is easy to do wo, because the delta functions are clearly real (the only contain
energies), the only possible sources of discontinuities (or branch cuts) are the Feynman
propagators. Using eq. (1.57) we find

Disc [iMs(s)] = −�2
������
�

dDk

(2⇡)D
⇡

!k
�(k0 − !k)Disc [⇧F (k − p)]

+�
dDk

(2⇡)D
⇡

!k−p
�(k0 − p0 − !k−p)Disc [⇧F (k)]

������

= −�2
������
�

dDk

(2⇡)D
⇡

!k
�(k0 − !k)2⇡�((k − p)2 −m2)

+�
dDk

(2⇡)D
⇡

!k−p
�(k0 − p0 − !k−p)2⇡�(k2 −m2)

������
. (1.66)

Now, we can simplify this expression a bit more, realizing that the Lorentz-invariant
delta functions can be split as follows

�(k2 −m2) = �((k0 − !k)(k0 + !k)) =
1

2!k
[�(k0 − !k)✓(k0) + �(k0 + !k)✓(−k0)]

�((k − p)2 −m2) = 1

2!k−p
[�(k0 − p0 − !k−p)✓(k0 − p0) + �(k0 − p0 + !k−p)✓(p0 − k0)] (1.67)

We can substitute these equations into eq. (1.66) to find four terms, which look somewhat
similar to eq. (1.64):

Disc [iMs(s)] = −�2
������
�

dDk

(2⇡)D
⇡

!k
�(k0 − !k)

⇡

!k−p
�(k0 − p0 − !k−p)✓(k0 − p0)

+�
dDk

(2⇡)D
⇡

!k
�(k0 − !k)

⇡

!k−p
�(k0 − p0 + !k−p)✓(p0 − k0)

+�
dDk

(2⇡)D
⇡

!k−p
�(k0 − p0 − !k−p)

⇡

!k
�(k0 − !k)✓(k0)

+�
dDk

(2⇡)D
⇡

!k−p
�(k0 − p0 − !k−p)

⇡

!k
�(k0 + !k)✓(−k0)

������
. (1.68)
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In the same way as we argued for eq. (1.64) to be zero, we can prove that three out of these
four terms (i.e. all except the second) are also zero. In fact, going to the center of mass

frame pµ = (
√
s,�0) and using !k−p =

�
(�k − �p)2 +m2 = !k in this frame, we are left with,

respectively

� dk0�(k0 − !k)�(k0 − p0 − !k−p)✓(k0 − p0)→ � dk0�(k0 − !k)�(−
√
s)✓(k0 −

√
s) = 0

� dk0�(k0 − p0 − !k−p)�(k0 − !k)✓(k0)→ � dk0�(−
√
s)�(!k − !k)✓(!k) = 0

� dk0�(k0 − p0 − !k−p)�(k0 + !k)✓(−k0)→ � dk0�(−
√
s − 2!k)�(k0 + !k)✓(−!k) = 0

all due to the lack of support for at least one delta functions in each integral, since both√
s and !k are always positive. Putting all together we are then left with

Disc [iMs(s)] = −�2
������
�

dDk

(2⇡)D
⇡

!k
�(k0 − !k)

⇡

!k−p
�(p0 − k0 − !k−p)

������
. (1.69)

Finally, we can use again eq. (1.67) to render this expression Lorentz invariant by realizing
that

✓(k0)�(k2 −m2) = 1

2!k
�(k0 − !k)

✓(p0 − k0)�((p − k)2 −m2) = 1

2!k−p
�(p0 − k0 − !k)

so that the discontinuity can be written as

Disc [iMs(s)] = −�2�
dDk

(2⇡)D
�(2⇡)�(k2 −m2)✓(k0)� �(2⇡)�((p − k)2 −m2)✓(p0 − k0)�

= −�2�
dDk

(2⇡)D
�(2⇡)�(+)(k2 −m2)��(2⇡)�(+)((p − k)2 −m2)� . (1.70)

The operation of substituting a propagator with a delta function goes under the name of
a unitarity cut. One also says that the cut propagator is put “on shell”. Usually it is
represented graphically as a proper “cut” through the respective propagators, i.e.

Disc

����������

2

1

3

4

����������

∝

�������������������

2

1

3

4

�������������������

(1.71)

We can summarize the result for the discontinuity of the graph Ms(s) in the variable
s, as given in eq. (1.70), by the following semi-graphical “cutting rules”, first described by
Cutkosky:
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Cutkosky Rules:

1. To obtain the discontinuity of a graph in a kinematical variable (say s), “cut” a set of
propagators through the diagram in any possible way, such that the diagram is split
into two di↵erent parts, with the variable s flowing from one part to the other.

2. Replace every cut propagator using the following rule

i

k2 −m2 + i✏ → +(2⇡)�(k
2 −m2)✓(k0)

1

k2 −m2 + i✏ → −(2⇡i)�(k
2 −m2)✓(k0) (1.72)

In doing this, pay attention to the directionality of the cut: the energy flows from the

left to the right of the cut:

p

k

k0

p0 − k0

(1.73)

3. To obtain the discontinuity (or the imaginary part) in the variable s,
sum over all allowed cuts.

Of course, these rules can be used to compute the imaginary part of a graph, possibly
generated by multiple variables going “above threshold”. For example, if we are dealing
with a triangle graph, the latter depends in general on three di↵erent kinematical invariants,
and one can compute the imaginary part in each of them by summing all relevant cuts. We
haven’t really demonstrated these rules in full generality, but we have hopefully provided a
practical exemplification.2

1.3 Poles of Green Functions

Branch cuts are one type of singularities that can appear in Feynman diagrams and scatter-
ing amplitudes, but not the only one. As you must have seen explicitly when you computed
your very first tree-level Feynman diagram in QFT, a single virtual particle exchange can

2
If you are interested in a detailed proof, you could try to look into the Largest-time equation, see “Uni-

tarity and causality in a renormalizable field theory with unstable particles” by Tini Veltman on Physica

29 (1963) 186-207 and “Dispersion relations for Feynman Graphs”, by E. Remiddi on Helv.Phys.Acta 54

(1982) 364.
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produce a “pole” when the corresponding particle goes on-shell. For example

lim
q2→0

����������

p1

p2

p3

p4

q

����������

∼ 1

q2
where q = p1 + p2 . (1.74)

In fact, the relation between poles and intermediate one-particle state going on shell in
arbitrary N-point correlation function (or Green functions) is a very general result. As the
optical theorem discussed above, it is a rare non-perturbative result, and in fact it does
not require the one-particle intermediate states to be “elementary”: they could be bound
states! For example, in specific situations, a positronium bound state can be exchanged as
a single-particle intermediate state, leaving a trace through a pole at the positronium mass
in the corresponding correlator.

The proof can be found on Weinberg, Volume 1 (Section 10.2) and on Schwartz (Section
24.3). The proof is tedious and we won’t reproduce it here. Instead, we will summarize
this important result and then see it “in action” in the special case of two-point correlators.
This is something you should already be familiar with from your previous QFT studies and
that goes under the name of the “spectral representation” for the two-point function.

Let us start with the momentum-space Green function for n fields �(x1),...,�(xn):

Gn(p1, ..., pn) = � d
4
x1e

ip1x1 ...� d
4
xne

ipnxn�⌦�T{�(x1)...�(xn)} �⌦� (1.75)

where �⌦� is the vacuum of the theory and T is the usual time-ordering operator. We divide
now the momenta in two di↵erent sets

���������

p1

...

pr

���������incoming

,

���������

pr+1

...

pn

���������outgoing
, (1.76)

the first set incoming and the second outgoing, and define the intermediate momentum

p = p1 + ... + pr = pr+1 + ... + pn .

We assume now that there exists a one-particle state in the Hilbert space (not necessarily
an elementary one!) � �, with mass m , which can be produced from the vacuum �⌦� by
action of the field operators, i.e.

� ��(x1)...�(xr)�⌦� ≠ 0 . (1.77)

In other words, � � has non-zero matrix element with the vacuum through the operators
associated to the first r momenta. Now, if this is the case, one can prove that the Green
function has a pole at p2 =m2

 and, when p2 →m2
 , it factorises as follows

Gn(p1, ..., pn)→ (2⇡)4�(4)(p1 + ... + pr − pr+1 − ... − pn)

× M1,r
 

i

p2 −m2
 + i✏

Mr+1,n
 

��������������������������������������������������������������������������������������������������������������������������������������������������������
sum over all intermediate states (hel, color, etc)

+non divergent terms (1.78)
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whereM1,r
 is the matrix element for �1 + ... + �r →  

(2⇡)4�(4)(p1 + ... + pr − p )M1,r
 = � d

4
x1...d

4
xre

ip1x1 ...e
iprxr

× �⌦�T{�(x1)...�(xr)} � � (1.79)

and similarly forMr+1,n
 as matrix element for  → �r+1 + ... + �n .

In conclusion, from the last two sections, we can draw the following important lessons:

Scattering amplitudes are analytic functions of the kinematical invariants on which they
depend, except for possible poles and branch cuts, that appear for very specific values of
the invariants, determined by unitarity and locality:

• Poles can appear when single-particle states go on-shell, which already happens in
tree-level graphs (which can be seen also as a consequence of locality).

• Branch cuts can appear when two or more internal propagators go on shell and so
they first appear in loop diagrams (as we have seen, a consequence of unitarity).

In the following sections, we will discuss various important consequences of these find-
ings, which will start to give us a glimpse of how “on-shell” physics can constrain “o↵-shell”
physics.

1.4 Polarization sums and propagators

A first interesting consequence of unitarity, the you might have already encountered “in
disguise”, is about the explicit form of the numerator of fields’ propagators. Indeed, you
might have already observed that the numerator of the propagator for given field, is very
similar (or better, identical!) to the expression for the sum over physical polarizations of
the corresponding particle. Let’s see this in the explicit example of the QED one-loop self
energy graph

µ ⌫

k1

k2

p p

Modulo some numerical prefactors, the Feynman diagram above gives the following
expression for the self-energy (without resolving the four-momentum conservation delta
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function)

A = C (−1)�
dDk1

(2⇡)D
dDk2

(2⇡)D
Tr [�µ(−�k2 +m)�⌫(�k1 +m))]

(k2
1 −m2)(k2

2 −m2) (2⇡)D�(D)(k1 + k2 − p)

= C �
dDk1

(2⇡)D
dDk2

(2⇡)D
Tr [�µ(�k2 −m)�⌫(�k1 +m))]
(k2

1 −m2)(k2
2 −m2) (2⇡)D�(D)(k1 + k2 − p) (1.80)

where the propagator of momentum k2 indicates the positron, and we assigned for conve-
nience its momentum to go in the opposite direction (the momentum conservation delta
function takes care of assigning its right value k2 = p − k1). We collected some irrelevant
prefactors in the constant C (coupling constants etc).

Now let us cut this diagram using Cutkosky rules. Even if we are dealing with spinors
here, the computation of the discontinuity proceeds in the same way, since all contributions
to possible branch cuts come from the scalar part of the propagators. We can then write

Disc [A] = C �
dDk1

(2⇡)D
dDk2

(2⇡)D Tr [�µ(�k2 −m)�⌫(�k1 +m))] (2⇡)D�(D)(k1 − k2 − p)

× (2⇡)�(+)(k2
1 −m2)(2⇡)�(+)(k2

2 −m2) (1.81)

According to the optical theorem eq. (1.15), this should be proportional to the decay rate
for a photon decaying to an electron-positron pair of momenta k1 and k2 respectively, i.e.
p→ k1 +k2. Since we want to compare this to the calculation in eq. (1.80), it becomes clear
why we assigned the fermion momenta as we did there. In this case we find:

�(� → e
+
e
−) = C

p2
�
s,s′
�

dD−1k1

(2⇡)D−1
1

2!k1
�

dD−1k2

(2⇡)D−1
1

2!k2

(2⇡)D�(D)(k1 + k2 − p)

× vs(k2)�µus′(k1)us′(k1)�⌫vs(k2) (1.82)

and using

�
dD−1q

(2⇡)D−1
1

2!q
= �

dDq

(2⇡)D (2⇡)�(q
2 −m2)✓(q0) ,

�
s′
us′(k1)us′(k1) = �k1 +m, �

s
vs(k2)vs(k2) = �k2 −m

we get as expected

�(� → e
+
e
−) = C

p2
�

dDk1

(2⇡)D
dDk2

(2⇡)D Tr [�µ(�k2 −m)�⌫(�k1 +m))] (2⇡)D�(D)(k1 + k2 − p)

× (2⇡)�(+)(k2
1 −m2)(2⇡)�(+)(k2

2 −m2) . (1.83)

So finally we can once more verify the optical theorem

Disc [A]∝ p
2 �(� → e

+
e
−) (1.84)

with p2 the “invariant mass” of the photons that decays. The important thing to realize
here, is that while the two expressions are identical, their numerators have very di↵erent
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origins! When computing the discontinuity, the numerator came from tracing over the
fermion propagators in the fermion loop. On the other hand, when computing the decay
rate, the very same numerator was produced when computing the sum over the electron
and positron polarizations! So here, indirectly, we have “proved” that: the numerator of

the propagator of a fermion, has to be equal to the sum over its polarizations! The same
proof can be repeated for particles of any spin. For the particularly interesting case of
spin-1 particles, we have to distringuish massless and massive case

• Massive spin 1. Consider a spin-1 massive particle of mass m (i.e. a Proca field),
we have

3

�
j=1

✏
µ
j ✏

⌫∗
j = −gµ⌫ +

pµp⌫

m2
(1.85)

and indeed for its propagator we have

⇧µ⌫(p) = i
∑3

j=1 ✏
µ
j ✏

⌫∗
j

p2 −m2 + i✏ = −i
gµ⌫ − pµp⌫

m2

p2 −m2 + i✏ (1.86)

• Massless spin 1. For a massless particle, the situation is slightly less obvious due
to gauge invariance. In fact, the statement above remains true as long as we sum
only over physical polarizations, which are also the ones that contribute to a cross-
section or a decay rate! This can be achieved working in a so-called physical (non-

covariant) gauge. A famous choice, which will we say more about when discussing
Yang-Mills theories, is the class of Axial Light-Cone gauges, where we specify a light-
cone momentum nµ with n2 = 0 and quantize with respect to it. In this gauge, we
have that only 2 physical polarizations propagate and

2

�
j=1

✏
µ
j ✏

⌫∗
j = −gµ⌫ +

pµn⌫ + nµp⌫

p ⋅ n (1.87)

and indeed for its propagator we have

⇧µ⌫(p) = i
∑2

j=1 ✏
µ
j ✏

⌫∗
j

p2 −m2 + i✏ = −i
gµ⌫ − pµn⌫

+nµp⌫

p⋅n

p2 −m2 + i✏ . (1.88)

1.5 The spectral decomposition “reloaded”

To see how poles and branch cuts of correlators come together, we reconsider the spectral
decomposition of the two-point correlator, which you should have already seen in QFT 1.
We will briefly recap what you should already know, and connect it to the considerations
we have done in this chapter. Also here, we focus on a scalar field theory, but adding spin
is conceptually straightforward.

We start from the definition of a two-field correlator and, as usual add an identity
operator in the form of a complete sum of states in the Hilbert space

�⌦��(x)�(y)�⌦� =�
X
� dX�⌦��(x)�X��X ��(y)�X� (1.89)
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At this point, we add two more identity operators written in terms of the momentum
operator P̂ µ as 1 = eiP̂ ⋅xe−iP̂ ⋅x and write

�⌦��(x)�X� = �⌦�eiP̂ ⋅xe−iP̂ ⋅x�(x)eiP̂ ⋅xe−iP̂ ⋅x�X� . (1.90)

Using P̂ µ�X� = pµX �X� and P̂ µ�⌦� = 0 (the vacuum has zero momentum), and that P̂ generate
translations, i.e.

e
−iP̂ ⋅x

�(x)eiP̂ ⋅x = �(0) ,
we find

�⌦��(x)�X� = e−ipX ⋅x�⌦��(0)�X� (1.91)

such that the two-point correlator becomes

�⌦��(x)�(y)�⌦� =�
X
� dXe

−ipX ⋅(x−y)��⌦��(0)�X��2 . (1.92)

Now we can insert a delta-function �(4)(p − pX) and write

�⌦��(x)�(y)�⌦� = �
d4p

(2⇡)4 e
−ip⋅(x−y) ��

X
� dX(2⇡)4�(4)(p − pX)��⌦��(0)�X��2�

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
F (p2)

= �
d4p

(2⇡)4 e
−ip⋅(x−y)

F (p2) . (1.93)

What can we say about F (p2)? Some properties are obvious:

1. F (p2) is a Lorentz scalar, i.e. it can only depend on p2, as the notation suggests.

2. It must be zero for p2 < 0 and p0 < 0, and positive otherwise F (p2) ≥ 0, because the
states are physical states and they cannot have negative energy (or be tachionic).

A parametrization that respects these requirements is

F (p2) = (2⇡) ✓(p0)⇢(p2) , (1.94)

where ⇢(p2) is called the spectral density and it should fulfil

⇢(p2) ∈ R+ , ⇢(p2) = 0 for p
2 < 0 . (1.95)

Putting all together we write

�⌦��(x)�(y)�⌦� = �
d4p

(2⇡)4 e
−ip⋅(x−y)(2⇡)✓(p0)⇢(p2) . (1.96)

Till now we haven’t done much. Let us not try to relate this formula to the Feynman
propagator. To do that, it is convenient to introduce the function

D(x, y,m2) = �
d3�p
(2⇡)3

e−ip⋅(x−y)

2!p
= �

d4p

(2⇡)4 e
−ip⋅(x−y)(2⇡)✓(p0)�(p2 −m2) , (1.97)
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with !p =
�
�p2 +m2, which, by definition, is also the two-point function in a free scalar

theory

�⌦��0(x)�0(y)�⌦� = �
d3�k
(2⇡)3

e−ik⋅(x−y)

2!k
=D(x, y,m2) . (1.98)

Now we go back to eq. (1.96) and introduce a “redundant” delta function �(p2 − q2),
such that we can write

�⌦��(x)�(y)�⌦� = �
∞

0
dq

2
�(p2 − q2)�

d4p

(2⇡)4 e
−ip⋅(x−y)(2⇡)✓(p0)⇢(q2)

= �
∞

0
dq

2
⇢(q2)�

d4p

(2⇡)4 e
−ip⋅(x−y)(2⇡)✓(p0)�(p2 − q2)

= �
∞

0
dq

2
⇢(q2)D(x, y, q2) . (1.99)

Comparing eq. (1.98) with eq. (1.99), we see that in a free theory the spectral density is

⇢0(q2) = �(q2 −m2) , (1.100)

but we should stress that eq. (1.99) is much more general, it is valid non-perturbatively!
But we still aren’t where we wanted to get. To connect this with the propagator, we

need time-order this expression and compute

�⌦�T{�(x)�(y)} �⌦� = �
∞

0
dq

2
⇢(q2) �D(x, y, q2)✓(x0 − y0) +D(y, x, q2)✓(y0 − x0)�

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�(x,y,q2)

.

(1.101)

This new function �(x, y, q2) is nothing but the Feynman propagator of a free scalar field
of “mass” q2 in coordinate space:

�(x, y, q2) = �
d4p

(2⇡)4
i

p2 − q2 + i✏e
ip⋅(x−y) (1.102)

which substituted in eq. (1.101) gives finally

�⌦�T{�(x)�(y)} �⌦� = �
d4p

(2⇡)4 e
ip⋅(x−y)

i�
∞

0
dq

2 ⇢(q2)
p2 − q2 + i✏

�������������������������������������������������������������������������������������������������������������������������
⇧(p2)

= �
d4p

(2⇡)4 e
ip⋅(x−y)⇧(p2) . (1.103)

In this manipulations, we have found the spectral or Källen-Lehmann representation of the
propagator

⇧(p2) = i�
∞

0
dq

2 ⇢(q2)
p2 − q2 + i✏ (1.104)
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which of course makes sense, as in the free theory using eq. (1.100), we have

⇧0(p2) =
i

p2 −m2 + i✏ (1.105)

as expected . We also know that ⇢(p2) > 0 and real, so if we want to compute the disconti-
nuity of this propagator we can do

Disc �⇧(p2)� = �
∞

0
dq

2
⇢(q2)Disc � i

p2 − q2 + i✏� = �
∞

0
dq

2
⇢(q2)2⇡�(p2 − q2)

= 2⇡⇢(p2) ,

→ ⇢(p2) = 1

2⇡
Disc �⇧(p2)� (1.106)

where I used eq. (1.57). This means that the spectral density also provides the discontinuity
(or, equivalently, the imaginary part) of the full propagator! Unitarity requires that the
imaginary part of the propagator be related to the existence of intermediate particles that
can go on-shell (or “be cut”), which in turn tells us that the spectral density contains
information about all “particles” in the theory, whether they are elementary or not.

Let’s be more specific. We go back to the definition of the spectral function

(2⇡)⇢(q2)✓(q0) =�
X
� dX(2⇡)4�(4)(q − pX)��⌦��(0)�X��2 (1.107)

and assume that in the spectrum of the theory there is one single-particle “scalar” state
with mass m and momentum p1. Let’s say this corresponds to the first value of X = 1 and
call the state �1p1�. We separate this state from the sum and write

�
X
� dX = �

d4p1

(2⇡)4 (2⇡)�
(+)(p21 −m2) + �

X≠1
� dX (1.108)

and we split similarly the spectral function

⇢(q2)✓(q0) = �⇢1(q2) + ⇢X≠1(q2)� ✓(q0) . (1.109)

By comparing this equation to eqs. (1.107) and (1.109) and canceling the (2⇡) from lhs and
rhs, we can read o↵

⇢1(q2)✓(q0) = �
d4p1

(2⇡)4 �
(+)(p21 −m2)��⌦��(0)�1p1��2(2⇡)4�(4)(q − p1)

= �(q2 −m2)✓(q0)��⌦��(0)�1q��2 . (1.110)

Finally, let us substitute this form of the spectral function in the Källen-Lehmann repre-
sentation for the propagator eq. (1.104) to find

⇧(p2) = i�
∞

0
dq

2 ⇢(q2)
p2 − q2 + i✏ = i

��⌦��(0)�1p��2
p2 −m2 + i✏
���������������������������������������������������������������������������
single-particle pole

+ i�
∞

0
dq

2 ⇢X≠1(q2)
p2 − q2 + i✏

�������������������������������������������������������������������������������������������������������������������������
contribution from multiparticle states

.

(1.111)
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This elucidates the “theorem” discussed in section 1.3 for the special case of two-point
correlators. We have demonstrated, in fact, that for every single-particle state, a pole
appears in the two-point correlator.

We also recall here that ��⌦��(0)�1p��2 = Z is the wave-function renormalization constant
(it tells us how the asymptotic state di↵ers from the same state created from the vacuum)

⇧(p2) = iZ

p2 −m2 + i✏ +multiparticle states (1.112)

where Z = 1 in the pole-mass (or on-shell) renormalization scheme, if m is also the on-shell
mass. Indeed, we could have performed the same derivation also for the bare fields �b(x),
and we would have found a very similar result, modulo the overall Z

�b(x) =
√
Z�(x) → �⌦�T{�b(x)�b(y)} �⌦� = Z�⌦�T{�(x)�(y)} �⌦� . (1.113)

1.5.1 Spectral density in a scalar theory

Let’s see how this all discussion works in an explicit example. We consider a Lagrangian with
two scalar fields, � and ⇡, with masses M and m respectively, with interaction Lagrangian

Lint =
�

2
�⇡

2
.

The propagator of the field � can then be written as always as

⇧�(p2) =
i

p2 −M2 + iIm [⌃(p2)]
(1.114)

where M is the pole-mass renormalized according to the real pole-mass scheme defined
in eq. (1.22). We can easily compute ⌃(p2) to one-loop order, which corresponds to the
Feynman diagram

i⌃(p2) =
�

⇡

p
(1.115)

which consists in the very same calculation performed in section 1.2.1, see eq. (1.44), to
obtain

Im �⌃(p2)� = �2

32⇡

�
1 − 4m2

p2
✓(p2 − 4m2) . (1.116)

Now using eq. (1.106), expanding order by order in �, we can finally write

⇢(p2) = 1

2⇡
Disc
������

i

p2 −M2 + iIm [⌃(p2)] + i✏

������

= 1

2⇡

�
�
Disc
������

i

p2 −M2 + i✏

������
− iDisc

������

iIm [⌃(p2)]
(p2 −M2 + i✏)2

������

�
�
+O(�4) (1.117)
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where, even if it looks counterintuitive, we extracted the i from the Disc operation acting
on the second term. The reason is that Disc is defined as the di↵erence of the argument
in the brackets, below and above the branch cut generated by the pole of the propagator.
This requires only to change the sign of i✏ and iIm [⌃(p2)], and not of the overall i! Using
then

Disc
������

i

p2 −M2 + i✏

������
= 2⇡�(p2 −M2)

and

Disc
������

iIm [⌃(p2)]
(p2 −M2 + i✏)2

������
= 2i Im [⌃(p

2)]
(p2 −M2)2

+O(✏2) (1.118)

we finally obtain

⇢(p2) = � �p2 −M2�
�����������������������������������������������������

pole at one-particle state

+ �2

32⇡2

�
1 − 4m2

p2
✓(p2 − 4m2) 1

�p2 −M2�
2

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
branch cut at the first multi-particle threshold

+O(�4) . (1.119)

In eq. (1.119) we see how the spectral density, as expected, “knows” about the one-particle
pole and the multi-particle branch cuts. Expanding to higher orders in perturbation theory,
more multiparticle threshold can open, generating more branch cuts. We also notice that
the residue at the pole is normalized to 1, as expected since we are working in the pole-mass
scheme. The same would not be true in a di↵erent renormalization scheme!

1.6 Dispersion Relations

We have said a lot about discontinuities, how to compute them, and how they are related
to internal virtual particles going on-shell. Of course, one important practical reason to
be interested in discontinuities is that, typically, they are simpler to compute than full
graphs, through the cutting rules provided above. Moreover, as we will see in this sections,
they allow us to reconstruct the full “real” part of the graph through a so-called dispersion

relation.3 This is a first example of how “on-shell” quantities (cut diagrams) puts direct
“constraints” on o↵-shell ones (uncut diagrams).

To see how this work, let us go back to our graph

iMs(s) =

2

1

3

4

. (1.120)

3
The nomenclature “dispersion relations” is derived from optics and in particular the use of

Kramers–Kronig relations in their context.
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As a consequence of the considerations done in the previous sections, this function can
develop a branch cut when s ≥ 4m2 but it has no poles (there is no one-particle state prop-
agating from left to right). Apart from this, it is an analytic function of s. Let us consider
than an arbitrary point s in the s-complex plane, importantly not exactly on the branch

cut, see fig. ??ADD FIGURE. As usual, if we are interested in a point on the branch cut,
we must specify on which side of it we are. This is specified by Feynman’s prescription and
it turns out that there is an easy mnemonic rule to pick the right choice:

Every Mandelstam invariant that is above the threshold to produce an imaginary part,
must carry a positive i✏, so in our case for example s = 5m2 + i✏. This is equivalent to
Feynman’s prescription.

Clearly, since the function is analytic, we can write

iMs(s) =
1

2⇡i �C
ds′

s′ − s(iMs(s′)) (1.121)

where the contour C encircles the point s, without crossing the branch-cut. We can now
deform this contour to infinity, encircling the branch-cut, to find the equivalent represen-
tation

iMs(s) =
1

2⇡i
��
C∞
+�

�0
� ds′

s′ − s(iMs(s′)) +
1

2⇡i
��

4m2+i�
−�

4m2−i�
� ds′

s′ − s(iMs(s′)) .

(1.122)

Now the contour �0 can be shrunk to zero and the contribution from ∫�0 disappears. The
last term instead, can be easily seen to define precisely the discontinuity of the function
across the branch cut

��
4m2+i�

−�
4m2−i�

� ds′

s′ − s0
(iMs(s′)) = �

∞

4m2

ds′

s′ − s0
(iMs(s′ + i�) − iMs(s′ − i�))

= �
∞

4m2

ds′

s′ − s0
Disc (iMs(s)) (1.123)

and finally using Disc = 2i Im we get our final formula

iMs(s) =
1

2⇡i �C∞
ds′

s′ − s(iMs(s′))
�����������������������������������������������������������������������������������������������������������������������
= 0 if lims→∞Ms(s)∼1�s

+ 1
⇡
�
∞

4m2

ds′

s′ − s Im [iMs(s′)]
�����������������������������������������������������������������

from Cutkosky rules

. (1.124)

One can prove that if non-zero, the term at infinity

�
C∞

ds′

s′ − s(iMs(s′)) = P(s)

where P(s) is a polynomial in s. This term is related to the UV behavior of the graph,
which in turn can be improved by a so-called “subtraction”: instead of considering iMs(s),
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we compute iMs(s) − iMs(s0), for an arbitrary point s0. Repeating the same steps as
above, we obtain

iMs(s) − iMs(s0) =
1

2⇡i �C∞
ds
′(iMs(s′))

(s − s0)
(s′ − s)(s′ − s0)

+ 1

⇡
�
∞

4m2
ds
′Im [iMs(s′)]

(s − s0)
(s′ − s)(s′ − s0)

, (1.125)

where both terms have now improved convergences as s→∞, and therefore it is enough for
Ms(s) ∼ s0 as s→∞, for the dispersion relation to converge and to be able to prove that

�
C∞

ds
′(iMs(s′))

(s − s0)
(s′ − s)(s′ − s0)

→ 0 .

Subtracting the graph at a specific value of s = s0 reminds of the important issue of UV
renormalization: we often define renormalized quantities (for example in the on-shell or
pole scheme) by providing their value at a given kinematical point, for example p2 = s = 0.
Dispersion relations, in this sense, allow us to naturally relate the UV behavior of the graph
with the counter-term required to render it finite! We will see an explicit example of this
in the exercises.



Chapter 2

On-shell methods

In the previous lectures, we have discussed the consequences of Unitarity, Locality and
Causality on Green Functions. We have re-discovered the Optical Theorem, which relates
imaginary parts of forward amplitudes to cross-sections, and we derived Cutkosky rules,
which relate discontinuities to “cuts”, i.e. virtual particles going on-shell. Finally, we
presented a general argument about poles of correlators, relating their appearance to the
existence of (on-shell) single-particle states in the spectrum of the theory.

The word “on-shell” appeared a lot in the previous paragraph, and indeed this is just
a small fraction of the large amount of evidence accumulating towards the idea that very
general properties of QFT are entirely determined by on-shell physics. This logic is some-
what opposite to that of fields and Lagrangians, on which standard QFT is built. In fact,
in the standard approach, everything is “o↵-shell” (we build Green functions from o↵-shell
Feynman diagrams), and we only go “on-shell” at the very end of the calculation, when we
“amputate” the Green functions and use the external polarization vectors (spinors etc) to
represent the on-shell external states.

The idea behind “on-shell methods”, is to see how far we can go in deriving predictions
from QFT, without ever having to talk about Lagrangians, fields and o↵-shell correlators.
These methods are very promising, but they are far from being mature enough to substitute
a fields-based approach to QFT. Nevertheless, some of their predictions go beyond what we
can even dream of achieving in the standard o↵-shell approach, and for this reason, I think
they deserve to be studied already in a “standard course” like this one. This is literally a
booming field, and we won’t be able to go deep into everything that has been discovered
in the past three decades, as many topics are still matter of research while these notes
are being written. If these topics sound fascinating to you, you’ll be able to deepen your
understanding of them in more advanced specialized classes on the theory of scattering
amplitudes. Our goal here, is to present a powerful formalism that allows us to make
calculations of directly on-shell quantities (as scattering amplitudes) much simpler. This
the by now famous Spinor-Helicity formalism. Armed with it, we will manage to derive the
main result of this chapter: the uniqueness of Yang-Mills theories. What we mean
with uniqueness will become more clear in the coming sections.

The material in this chapter is taken from various sources, including my own lecture

35
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notes of my course of scattering amplitudes1, lecture notes by Lance Dixon2 and Kirill
Melnikov, and the book Quantum Field Theory and the Standard Model by M. Schwartz.

2.1 Spinor Helicity Formalism

We start with a brief introduction to the formalism. Many of the properties will be worked
out more in details in the exercises.

Let us start considering a generic S-matrix for the scattering of n particles of spins �i.
For definiteness, let us say p1 + p2 → p3 + .... + pn, such that

S = � out
p3�3...pn�n

� in
p1�1p2�2

� =

p1

p2 p3

pn

(2.1)

where � out
pi�i...pj�j

� are multi-particle states.
As you learned in QFT1, one-particle states are irreducible representations of the

Poincaré group, i.e. under a Poincaré transformation

� i�→ Pij � j�

where the irreps Pij are, in turn, classified by the irreducible representations of the corre-
sponding Little Group associated to each particle.

Briefly, the Little Group is defined as the subgroup of the Poincaré group that leaves
the momentum of the particle, say pµ, invariant. We have few possibilities, of which two
are of interest for the elementary particles that we observe:

• if pµ = 0, there is only the vacuum and all is trivial and nothing is interesting.3

• if pµ ≠ 0 and p2 > 0, the particle is massive. We can go to its center-of-mass frame
where pµ = (m,�0), from which it is clear that the subgroup that leaves this momentum
invariant is the group of rotations in the three-dimensional space, SO(3) . Its irreps
are, as we know, the same of SU(2) and are labeled by an half-integer j, which we
refer to as the “spin” of the particle. For each value of j, there are (2j + 1) di↵erent
states, or “polarizations”. For example, a massive particle of spin 1 has possible
polarizations states “{−1,0,1}”.

• if pµ ≠ 0 and p2 = 0, the particle is massless. We can orient its three-momentum along
the z-axis and write pµ = (E,0,0,E) . Despite appearances, from here one can derive
that the full subgroup of transformations that leaves this momentum invariant is the

1
See link.

2
See, for example, link

3
At least as far as this argument goes. The vacuum of a QFT can hide a lot of surprises...

https://www.ph.nat.tum.de/ttpmath/teaching/ws-2023-2024/
https://arxiv.org/pdf/hep-ph/9601359
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so-called Euclidean group ISO(2), i.e. the group of translations and rotations on
the plane. Translations would generate a continuous eigenvalue to label the particles,
which we don’t observe. Focusing on SO(2), its irreps are the same as U(1) and are
labeled in general by a continuous eigenvalue h, such that a general transformation
can be parametrized as g = eih✓ in terms of an angle ✓. This is again a continuous
eigenvalue that we don’t seem to observe. In fact, a standard argument on the non-
trivial topology of the Lorentz group, allows us to argue that only those h are allowed,
for which a 4⇡ rotation would take us back to the starting point

e
ih(4⇡) = 1 ,

which imposes h = n
2 with n ∈ Z, i.e. also in this case, h has to be an half-integer.

So massless particles should exists labeled by a single eigenvalue, which takes one
specific value (integer or half-integer), which we call helicity. The fact that particles
like the photon or massless fermions appear with two helicities (the photon can have
±1), comes from the extra requirement of parity invariance: if we want a parity
invariant theory (as QED), we need the particle to exist in both helicities, since a
parity transformation sends one to the other.

As you should have seen in QFT 1, the transformation properties of single- and multi-
particle states, implies an important consequence for the S-matrix eq. (2.1): while we are
used to think about it as a Lorentz scalar, it is actually not invariant under Poincaré
transformation, instead it is “covariant” under Little Group transformations. One could
say that through its transformation properties, the S-matrix “knows” the “spin” of the
incoming and outgoing particles. In order words, think about some generic amplitude
as in eq. (2.1), where, for definiteness, all external particles are spin 1. In the standard
Feynman-diagrams based approach, the amplitude will take the general form

p1

p2 p3

pn

= ✏
µ1∗

1 ✏
µ2∗

2 ✏
µ3
3 ...✏

µn
n

�����������������������������������������������������������������������������������
polarization vectors

Aµ1...µn

��������������������
Feyn. diags.

(2.2)

where Aµ1...µn is a Lorentz tensor, as the indices make manifest, and is computed through
the LSZ formula, from o↵-shell (amputated) Feynman diagrams. The polarization vectors
✏
µj

j , instead, have double transformation properties: the index µj says that they transform
as Lorentz vectors, and in fact by contracting them with the tensor Aµ1...µn , we obtain
something that is scalar under Lorentz transformations. At the same time, they also must
carry information from the Little Group of the corresponding particle, in order to guarantee
that the final result for the S-matrix transforms as described above.

The Spinor-Helicity formalism that we aim to introduce in this section, has been de-
veloped to make these transformation properties manifest for massless particles. We will
introduce the formalism having in mind QED with massless electrons as a physical theory
which contains both spin 1/2 and spin 1 particles.
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2.1.1 Spinor-Helicity for Weyl Spinors

We start considering the building blocks used to build massless spinors in QFT, namely
the Weyl spinors. There are two types of Weyl spinors, which correspond to two distinct
irreducible representations of the Lorentz group. We briefly recall here that the Lie Algebra
of SL(2,C), the covering group of the Lorentz group SO(1,3), is isomorphic (or equivalent)
to the Lie Algebra of SU(2)×SU(2). For this reason, each irreducible representation of the
Lorentz group is labeled by two half integers (j1, j2). With this notation, the two irreducible
representation we are interested in correspond to

• (1�2,0), called the Left-handed Weyl spinors.

• (0,1�2), called the Right-handed Weyl spinors.

Both spinors transform in the same way under spatial rotations

 L,R �→�
rotations

 
′

L,R = ei
�✓⋅ ��

2 L,R , (2.3)

where �i are the Pauli matrices:

�1 = �
0 1
1 0
� , �2 = �

0 −i
i 0

� , �3 = �
1 0
0 −1� . (2.4)

On the contrary, Left- and Right-handed spinors transform in the opposite way under
Lorentz boosts

 L,R �→�
boost

 
′

L,R = e±
��⋅ ��

2 L,R . (2.5)

Moreover, one can easily prove that

 L = +i�2 ∗L transforms as a right-handed spinor

 R = −i�2 ∗R transforms as a left-handed spinor , (2.6)

which means that by taking a complex conjugation and multiplying by the matrix ±i�2, we
can transform a Left-handed to a Right-handed spinor and viceversa. Notice the di↵erent
sign in the second equation in eq. (2.6), which is not strictly needed for the transformation
properties, but it is required to guarantee that if we concatenate the two transformations,
we go back to the spinor we started from (Left → Right → Left), i.e.

 L = −i�2 [i�2 ∗L]
∗ = −i�2 (i�2) L =  L , (2.7)

where we used (i�2)∗ = i�2, since i�2 is real, and �2�2 = 1.
Since each spinor is a two-dimensional vector and in order to keep track of these di↵erent

transformation properties, it is common to introduce two di↵erent sets of indices to indicate
their components, referred to as “dotted” (ȧ) and “undotted” (a) indices. In particular we
put (conventionally!)

 L =  a ,  R =  ȧ (2.8)
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i.e. we assign lower undotted indices to Left-handed spinors, and upper dotted indices to
Right-handed spinors. To express the transformation properties from Left to Right-handed
indices eq. (2.6), we write

i�2( L)∗ �→ (i�2)ȧḃ( b)∗ = (i�2)ȧḃ ḃ =  ȧ �→  R , (2.9)

i.e. complex conjugation swaps dotted and undotted indices, which (i�2) can be used to
raise dotted indices, which suggests that it should take the role of a metric in the space of
dotted indices.

Similarly, we write

−i�2( L)∗ �→ (−i�2)ab( ḃ)∗ = (−i�2)ab b =  a �→  L , (2.10)

such that (−i�2) is the metric in the space of undotted indices and can be used to lower
undotted indices. Again, this suggests that this matrix coult take the role of the metric
in the space of undotted indices. But how do we lower dotted indices and raise undotted
ones, respectively? It’s quite easy! Indeed, we ±i�2 is real, and we have seen that complex
conjugation must by consistency change dotted to undotted indices (and viceversa), we
must have that

(i�2)ȧḃ = �(i�2)ȧḃ�
∗ = (i�2)ab , (−i�2)ab = �(−i�2)ab�

∗ = (i�2)ȧḃ . (2.11)

This completes the definition of the spinor metric. It is also easy to see that its definition
coincides with the Levi-Civita tensor in 2 dimensions, and so we also put

(i�2)ȧḃ = (i�2)ab = "ab = "ȧḃ = �
0 1
−1 0

� ,

(−i�2)ȧḃ = (−i�2)ab = "ab = "ȧḃ = �
0 −1
1 0

� , (2.12)

such that

"
ab
"bc = (i�2)ab(−i�2)bc = �ac ,

"
ȧḃ
"ḃċ = (i�2)ȧḃ(−i�2)ḃċ = �ȧċ . (2.13)

Now, the use of dotted and undotted indices is based on conventions that can change
from one book or article to the another, and for this reason they are often an infinite source
of headaches and confusion. The good thing is that, for what we are interested in, with the
spinor-helicity formalism we can completely forget about them!

We start by using the spinor metric eq. (2.12) to define a scalar product in spinor space.
We consider here for spinors the spinor wave functions. These are the c-numbers that
appear in the Fourier decomposition of spinor field and therefore, to avoid confusion, are
not Grassmann numbers, but instead they normally commute!! We start with left-handed
spinors and define

 
a
�a =  a�b"

ab
. (2.14)
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Our definition is clearly Lorentz invariant. One can also see that, while the spinors are
c-functions, the spinor product is antisymmetric

 
a
�a =  a�b"

ab = − a�b"
ba = −�a

 a , (2.15)

which means that in the definition of the spinor product, the order matters! This of course
implies as well that

 
a
 a = 0 . (2.16)

The same equations are true for dotted (right-handed) indices. There, we define a spinor
product as

 ȧ�
ȧ =  ȧ

�
ḃ
"ȧḃ . (2.17)

Again, the spinor product is antisymmetric and the order is therefore important.

2.1.2 Spinor-Helicity for Dirac spinors

We want now to use our Weyl spinors to build Dirac spinors, which are the basic building
blocks for parity invariant theories (in which both helicities have to be paired to obtain a
field which can is transformed to itself under parity transformations). Dirac spinors live in
the direct sum representation (0,1�2)⊕ (1�2,0).

We work in the chiral representation and define the usual left and right projectors

PL =
1 − �5
2
= �1 0

0 0
� , PR =

1 + �5
2
= �0 0

0 1
� (2.18)

and define a Dirac spinor as

u(p) = N � L(p)
 R(p)

� (2.19)

where N is some normalization, whose exact value we will largely ignore in what follows.
For definiteness, we assume that all momenta are incoming and define left and right-handed
Dirac spinors as

uL(p) = N �
 L(p)

0
� = N � a

0
� , uR(p) = N �

0
 R(p)

� = N � 0
 ȧ� (2.20)

and similarly for the adjoint spinors

uL(p) = u†
L(p)�0 = N∗ (0, ȧ) , uR(p) = u†

L(p)�0 = N∗ ( a
,0) . (2.21)

Finally, in oder to completely forget about dotted and undotted indices, we introduce a
bra-(c)-ket notation

uL(p) = p] , uL(p) = �p , uR(p) = p� , uR(p) = [p . (2.22)
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These are typically referred to as angle and square brackets, in a obvious manner. I stress
here that, depending on how formulas read better, I might or might now add a bar of the
left or right of the spinor brackets, i.e. we will use interchangeably

k] = �k] , [k = [k� , �k� = k� , �k = �k� .

Using eq. (2.20), we can then immediately see that

uL(p)uL(q) = �pq] = 0 , uR(p)uR(q) = [pq� = 0 , ∀ p, q (2.23)

while

uL(p)uR(q) = �N �2 a(p) a(q) = �pq� ≠ 0 ,
uR(p)uL(q) = �N �2�ȧ(p)�ȧ(q) = [pq] ≠ 0 , (2.24)

where the spinors in each spinor product are di↵erent because they are evaluated at two
di↵erent momenta! In this notation, antisymmetry gives

�pq� = −�qp� , [pq] = −[qp] , �pp� = [pp] = 0 , ∀ p, q . (2.25)

Here it is important to stress that some references use the “same” bracket notation for
Weyl spinors instead of Dirac spinors, i.e. intending something along the lines of

uL(p)∝ �
p]
0
� uR(q)∝ �[q , 0� .

Ultimately, the value of the spinor products is clearly the same, as one can see comparing
with eqs. (2.20) and (2.21). The bracket notation, in which we carry only information on
the momentum, is a very compact and convenient one and it’s the one that one usually
refers to as spinor-helicity formalism. Clearly, this can work in this form only for massless

spinors. Generalizations for massive ones exists, but we will not consider them here.
We have seen which spinor products are zero eq. (2.25). What can say about the value

of the ones that are non-zero?

• First, notice that if the momenta are real, then obviously

�pq�∗ = (uL(p)uR(q)) = uR(q)uL(p) = [qp] (2.26)

so, as expected from our previous construction, complex conjugation swaps angle and
square brackets, and it also swaps the order of the spinors.

• The completeness relation for massless spinors reads in this notation

�
�

u�(q)u�(q) = �q = �q�[q� + �q]�q� . (2.27)
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• Eq. (2.26) and eq. (2.27) together imply that

�pq�[qp] = ��pq��2 = �[pq]�2 , (2.28)

but also

�pq�[qp] = �p��q�[q��p] = �p��q�[q� + �q]�q�
�

adds zero due to eq. (2.23)

�p] = �p �q p] . (2.29)

• Now notice that any “spinor string” that starts and ends with the same momentum
can be turned into a trace

�p �q p] = �
�

u�(p)�
1 + �5
2
� �q u�(p)

�������������������������������������������������������������������������������������������������������������������������������������������������������������
inserting PL allows me to sum over all helicities

= Tr ��p �qPL� = 2p ⋅ q . (2.30)

• Finally, putting all the previous steps together, we see that we must have

�pq� =
�
�2p ⋅ q�ei�pq , [pq] = −

�
�2p ⋅ q�e−i�pq , (2.31)

which shows that spinor products are proportional to the square root of the scalar
product of their momenta. Moreover, they are always defined modulo a phase, which
is often referred to as “spinor phase”. As we will see later, this phase is also connected
to the little group covariance of the polarization vectors and spinors which we hinted
to at the beginning.

Properties of spinor products

Let us list here some of the most important properties satisfied by spinor products. We
will not prove them here, but instead they will be the subject of the second exercise sheet.

1. Dirac Equation �pu(p) reads in this formalism

�p�p� = �p�p] = �p��p = [p��p = 0 . (2.32)

2. The left- and right-handed projectors read

�p�[p� = 1 + �5
2
�p , �p]�p� = 1 − �5

2
�p . (2.33)

3. Spinor products fulfill the so-called Gordon identity

�p�µp] = [p�µp� = 2pµ . (2.34)

4. They can be conjugated as follows

[p�µq� = �q�µp] . (2.35)
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5. They fulfill Fierz identities

[p�µq�[k�µl� = 2[pk]�lq�
�p�µq]�k�µl] = 2�pk�[lq] . (2.36)

6. They fulfill Schouten identities

�pq��kl� = �pk��ql� + �pl��kq�
[pq][kl] = [pk][ql] + [pl][kq] . (2.37)

7. From the definition of the left- and right-handed projection operators, it should be
obvious that

�p�µ1 ...�
µ2nq] = [p�µ1 ...�

µ2nq� = 0 even number of Dirac matrices

�p�µ1 ...�
µ2n+1q� = [p�µ1 ...�

µ2n+1q] = 0 odd number of Dirac matrices (2.38)

i.e., spinor products which start and end with the same type of bracket, are zero if
they contain an odd number of Dirac matrices. Similarly, the ones which start and
end with di↵erent types of brackets, are zero if they contain an even number of Dirac
matrices.

8. Finally, for the opposite cases to the ones above, i.e. the non-zero spinor products,
we have reversal identities. For strings of odd numbers of Dirac matrices

�p�µ1 ...�
µ2n+1q] = [q �µ2n+1 ...�µ1p� , (2.39)

while for strings of even numbers of Dirac matrices

�p�µ1 ...�
µ2nq� = −�q �µ2n ...�

µ1p� ,
[p�µ1 ...�

µ2nq] = −[q �µ2n ...�
µ1p] . (2.40)

Here we will prove only one, which is a good exemplification of how many proofs with
spinor products can be attempted. We consider Schouten identities, i.e. point 6, and focus
on the version with square brackets (of course the very same can be repeated for angle
brackets). We want to prove

[pq][kl] = [pk][ql] + [pl][kq] .

This identity involves 4 di↵erent spinors. Its validity is based on the fact that spinors are
actually 2-dimensional objects and therefore, if the momenta are non-exceptional (not in
some special parallel configuration), only two spinors can be independent in two dimensions.
Let us pick as independent ones �k] and �l], so that we can write for a third spinor

�q] = A�k] +B�l] . (2.41)
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Contracting this with [k and [l, respectively, and using anti-symmetry, we get two equations

[kq] = B[kl] , [lq] = A[lk] = −A[kl] , (2.42)

which in turn implies

A = − [lq][kl] , B = [kq][kl]

→ �q] = − [lq][kl] �k] +
[kq]
[kl] �l] . (2.43)

Now we multiply by [p to finally obtain

[pq] = − [lq][kl][pk] +
[kq]
[kl] [pl] .

→ [pq][kl] = −[lq][pk] + [kq][pl] = [pk][ql] + [pl][kq] . (2.44)

2.1.3 Little-group scaling

As already anticipated, spinor products, among the other things, make little-group trans-
formation properties manifest. We will argue now, in particular, that under a little-group
transformation, the spinor brackets scale by a phase. This is consistent with the fact that
spinor products per se are defined modulo a phase, as we saw in eq. (2.31). We start from
the definition of the momentum in spinor space as

p
µ
�µ = �p = �p�[p� + �p]�p� (2.45)

From here, it’s clear that a Lorentz transformation that leaves pµ invariant can at most
rescale the spinors by some complex number z. In particular, conventionally we choose

�p�→ z�p� , [p�→ 1

z
[p� ,

�p]→ 1

z
�p] , �p�→ z�p� . (2.46)

That �p� and �p� have to be shifted in the very same way should make sense if you think
about their definition:

�p� = uR(p) , �p� = uL(p) = (−i�2)u∗R = [(−i�2)u∗R]
†
�0 = uR(p)

�
all dep. on p here

(−i�2)†�0 , (2.47)

and similarly for p] and [p .
Now, assuming the momentum pµ is real , it’s clear that

�p] = �p�∗ �→ z
∗�p] �p� = [p�∗ �→ 1

z∗
�p� . (2.48)

Comparing these equations with eq. (2.46), we see immediately that for consistency they
imply

z
∗ = 1

z
�→ �z�2 = 1 ,

i.e. a Little-Group transformation must change the spinors by a phase!
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2.1.4 Spinor-Helicity representation for spin-1 massless bosons

Before being able to use the formalism to do computation in realistic theories (and use
it to make our general statements about Yang-Mills theories), we need to find a way to
represent the other types of particles that we need in our theories: spin-1 massless bosons
(like photons in QED and gluons in QCD, which we will encounter soon). The question is,
how do we represent the polarization vector of a massless spin-1 boson? We will assume
here to work with the spin-1 bosons of some gauge theory and, for definiteness, we will think
of spinor QED, based on the gauge group U(1). We will see later how these techniques will
allow us to make very general statements for any gauge theory of a spin-1 massless boson.

Consider a photon of momentum pµ. As you have learned in QFT 1, its polarization
vector "µ�(p), with � = ± fulfills the following properties

1. Transversality:
pµ"

µ
� = 0 (2.49)

2. Normalization:
"
∗

�µ"
µ
� = −1 (2.50)

Let us start with discussing an explicit representation for its polarization vectors, which
you should have already encountered. As before, we assume all momenta are incoming and
we rotate our reference frame such that pµ = (E,0,0,E) (which we can do, because the
boson is massless). There are two choices for the two physical polarizations of the vector
boson, ±, which in this frame are typically fixed as4

"
µ
+ =

1√
2
(0,1, i,0) , "

µ
− =

1√
2
(0,1,−i,0) . (2.51)

From eq. (2.51) one can also explicitly see that, if one does not take the complex con-
jugation,

"µ±"
µ
± = 0 .

To consistently parametrize only the two physical polarizations, we need to specify an
extra momentum rµ. In fact, by making sure that r ⋅p ≠ 0, pµ and rµ allow us to fully specify
the 2-dimensional plane where the two physical polarizations “live”. Following standard
conventions, we do this imposing that

p
µ
"
±

µ = 0 , r
µ
"
±

µ = 0 , with r
2 = 0 . (2.52)

This choice determines what is usually called a (light-cone) axial gauge, which we already
briefly encountered in section 1.4. We will see more of this in the later lectures when
we study quantization of non-abelian gauge theories. For now, take this simply as a way
(importantly, not the only one!!) to parametrize the two physical degrees of freedom that
we are interested into.

4
As an important comment here, notice that transversality alone is not enough to specify the two

physical polarizations only, in fact any longitudinal polarization "µL ∝ (a,0,0, a) still fulfills transversality.
On the other hand, "µL cannot be properly normalized since "µL"

∗
Lµ = 0 .
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We would like now to use these two momenta to build a representation for the polariza-
tion vectors using spinor-helicity variables. Let us start considering the following two “four
vectors”

⌘
µ
1 = [r�µp� , ⌘

µ
2 = �r�µp] . (2.53)

By direct computation, using the Dirac equation eqs. (2.20) and (2.21), we see that

⌘
µ
1,2pµ = ⌘

µ
1,2rµ = 0 . (2.54)

Moreover, these vectors also satisfy the following properties

(⌘µ1 )∗ = ⌘2 ,
(⌘µ1 )∗⌘2,µ = �r�µp]�r�µp] = 0 ,
(⌘µ1 )∗⌘1,µ = �r�µp]�p�µr] = 2�rp�[rp] = (⌘

µ
2 )∗⌘2,µ , (2.55)

where we used Fierz identities. These equations imply that these two vectors are linearly in-
dependent from rµ and pµ, so all together these four vectors form a basis in four-dimensional
Minkowski space. Any other four-vector can be then written as a linear combination of these
4 basis vectors. This must be true, in particular, for the polarization vectors, i.e.

"
µ
±(p, r) = A±pµ +B±rµ +C±⌘µ1 +D±⌘

µ
2 . (2.56)

From here, imposing conditions eq. (2.52), one immediately can see that A± = B± = 0 for
both polarizations, i.e. the polarizations are transverse to the plane spanned by p, r. In
addition, imposing the normalization conditions in eq. (2.50), we find that there are two
possible independent choices for the two polarization vectors, each involving only one of
the vectors ⌘µ1,2. Which one we call which is conventional. We always assume incoming
momenta and we define

"
µ
+(p, r) = −

[r�µp�√
2[rp]

= ("µ−)∗ ,

"
µ
−(p, r) = +

�r�µp]√
2�rp�

= ("µ+)∗ . (2.57)

From these equations, using Fierz identities, it’s straightforward to see that these vectors
are correctly normalized as required above

("µ+)∗"+µ = ("µ−)∗"−µ = −1 ,

("µ+)∗"−µ = ("µ−)∗"+µ = 0 .

Little Group Scaling

With the formulas derived in section 2.1.3, it is also immediate to see how these newly
defined polarization vectors transform under the little group. Consider the transformation
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p → ⇤p = p such that �p� → z�p� and �p] → 1�z�p]. Then just by counting the number of
square or angle brackets of the momentum p, it’s obvious to see that

"
µ
+(p, r)→ z

2
"
µ
+(p, r) , "

µ
−(p, r)→

1

z2
"
µ
−(p, r) , (2.58)

i.e. the spin-1 polarizations scale as “double” the spin 1/2 ones do, as expected. This
shows that, as described at the beginning of this chapter, the polarization vectors carry
the information on the spin of the corresponding particles. By performing the appropriate
little group transformation and studying the scaling of the amplitude, we can “learn” if
the particle involved is a scalar, a spin 1/2, a spin 1, etc.... It is enough to just count how
many square or angle brackets there are for a given momentum, to be able to immediately
extract the corresponding spin.5

As an interesting observation, which allows us to discuss the role of the auxiliary vector
rµ, we can ask ourselves what happens if we perform a little-group transformation that
keeps this moment invariant. In this case, as it is easy to see from eq. (2.57), the same
number of square and angle brackets of the momentum rµ appear at the numerator and
denominator of each expression, showing that the polarization vectors do not scale at all

with rµ. This hints to the fact that the dependence on this vector is somewhat non-physical.
In fact, it can be shown that changing the vector rµ does not change the physics of the
scattering amplitude. In particular, it corresponds to performing a “gauge transformation”
for the external photon considered, in the class of the “light-cone” axial gauges. Notice the
important subtlety: this is not a gauge transformation at the Lagrangian level and it would
not a↵ect any photons propagating in the loops. It is more like a sort of change of “gauge
reference frame” for the external particle, which can indeed be fixed independently for each
particle in the amplitude. You will see some more examples of this in the exercises.

To demonstrate more precisely what we mean when we say that changing the vector rµ

does not change the physics, we take two polarization vectors "−µ(p, r) and "−µ(p, q) depending
on two di↵erent gauge vectors rµ and qµ and compute their di↵erence. We then have

"
−

µ(p, r) − "−µ(p, q) =
1√
2
��r�

µp]
�rp� −

�q�µp]
�qp� �

= 1√
2

�r�µp] �qp� − �q�µp] �rp�
�rp� �qp�

= − 1√
2

�r�µ�pq� − �q�µ�pr�
�rp� �qp�

= − 1√
2

�r(�µ�p + �p�µ)q�
�rp� �qp�

= − 1√
2
� 2 �rq�
�rp� �qp��p

µ
,

(2.59)

where we used �µ�p+�p�µ = p⌫{�µ,�⌫} = 2pµ. We see that the di↵erence of the two polarization
vectors is proportional to the boson momentum pµ. Now recall that polarization vectors

5
A similar construction can be generalized also for spin 2, but we won’t consider it here.
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only appear in the amplitude as "µMµ and the Ward identity in QED (a statement of gauge
invariance) states that6

pµMµ = 0 . (2.60)

This shows that changing the arbitrary vector rµ corresponds to a gauge transformation and,
through the Ward identities, does not a↵ect the final result for the scattering amplitude.

6
We stress here that in a general gauge theory, as we will see later on, this statement is strictly true

only if all other external bosons are on-shell. In QED this is not necessary.
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